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ABSTRACT: Detection of high-energy neutrinos from distant astrophysical sources will open a

new window on the Universe. The detection principle exploits the measurement of Cherenkov

light emitted by charged particles resulting from neutrino interactions in the matter containing

the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31

3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT

will be surrounded by an expansion cone which collects photons that would otherwise miss the

photocathode. Results for various angles of incidence with respect to the PMT surface indicate

an increase in collection efficiency by 30 % on average for angles up to 45◦ with respect to the

perpendicular. Ray-tracing calculations could reproduce the measurements, allowing to estimate

an increase in the overall photocathode sensitivity, integrated over all angles of incidence, by 27 %

(for a single PMT). Prototype DOMs, being built by the KM3NeT consortium, will be equipped

with these expansion cones.

KEYWORDS: Large detector systems for particle and astroparticle physics; Cherenkov detectors;

Optical detector readout concepts; Instrument optimization.
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1. Introduction1

KM3NeT [1] is a future deep-sea research infrastructure hosting a neutrino telescope with a volume2

of several cubic kilometers to be constructed in the Mediterranean Sea. The design, construction3

and operation of the KM3NeT neutrino telescope will be pursued by a consortium formed by4

numerous research institutes currently involved in the ANTARES [2], NEMO [3] and NESTOR [4]5

pilot projects. These Mediterranean pilot projects have been exploring the technologies, building6

prototypes and deploying small scale telescopes. Since May 30, 2008, the ANTARES underwater7

neutrino telescope has been fully operational. Although being the largest neutrino detector viewing8

the Galactic Center through the Earth as a shield against atmospheric muons, an efficient search for9

high-energy (1-1000 TeV) neutrinos originating from galactic and extra-galactic sources requires a10

much larger deep-sea Neutrino Telescope.11

The detection principle exploits the measurement of Cherenkov light emitted by charged sec-12

ondary particles resulting from neutrino interactions in the matter surrounding the telescope. Ac-13

curate measurements of the light arrival times and amplitudes are required. These, together with a14

precise knowledge in real time of the positions and orientations of the photosensors, are mandatory15

to reconstruct the direction of the neutrinos with an angular resolution better than 0.3◦ for neutrino16

energies above a few TeV. Such a precision on the measurement of the neutrino direction is a key17

ingredient to reach the necessary sensitivity on point-like cosmic neutrino sources in a few years18

of operation. In order to improve the rejection of environmental background and to increase the19

sensitivity to high energy neutrinos, a digital optical module (DOM) with an arrangement of 3120

3-inch photomultiplier tubes (PMTs) has been designed.21
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Figure 1. Upper panel: A mechanical reference model of a multi-PMT DOM with reflectors surrounding

3-inch PMTs. A single reflector is shown in the insert.

Lower panel: Cross section of a multi-PMT DOM [6] revealing the dense packing of readout electronics

inside. Numbers refer to: 1-Heat conductor, 2,3-Foam cores, 4-PMT with PMT base, 5-Expansion cone,

6-Optical coupler, 7-Nanobeacon, 8-Glass sphere, 9-Piezo element.

2. Multi-PMT DOM22

The multi-PMT DOM is an alternative to the conventional approach using one single 10-inch PMT23

or larger, and has several advantages. The total photocathode area that can be fitted in a standard24

17-inch diameter glass pressure sphere is significantly larger when using many small PMTs as com-25

pared to a single large PMT. The segmentation of the detection area in the multi-PMT DOM will26

aid in distinguishing single-photon from multi-photon hits. Two-photon hits can be unambiguously27
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recognized if the two photons hit separate tubes. Photons arriving in a plane wave from a particular28

direction may be sensed by 7 PMTs on average. The probability that a signal corresponding to two29

photo-electrons in a single 10-inch PMT is shared by two small PMTs is thus (1 - 1/7) ≈ 0.85 [1].30

Small PMTs can offer a quantum efficiency above 30%, provide a small transit time spread and do31

not require shielding from the Earth’s magnetic field. Also the reliability of the multi-PMT DOM32

is higher since a failure of a single PMT will have much less impact on the performance of the33

total DOM as compared to an optical module housing a single large PMT. Since handling the data34

flow from the large number of PMTs in such a DOM becomes challenging, a cost-efficient readout35

system is being developed [1, 5] with complete digitization inside the DOM.36

The housing of the multi-PMT DOM (Fig. 1) is a transparent 17-inch glass sphere (VITRO-37

VEX glass [7], wall thickness 14 mm), built to withstand the ambient hydrostatic pressure up to38

600 bar. The sphere is separated into two hemispheres and contains the PMTs, the high-voltage39

power supplies, front-end and readout electronics. The PMTs are suspended in a foam support40

structure carrying 19 tubes in the lower and 12 in the upper hemisphere.41

The center of the front face of each PMT is placed 4 mm from the inner surface of the glass42

sphere. Optical gel fills the cavity between the foam support or the PMT front face and the glass43

in order to assure optical contact (optical coupler). The foam support and the gel are sufficiently44

flexible to allow for the deformation of the glass sphere under the hydrostatic pressure.45

A mushroom-shaped aluminum structure transfers the heat generated by the DOM electronics46

via the glass sphere to the seawater. For accurate muon reconstruction, it is necessary to know47

the PMT positions with an accuracy of about 10 cm, and for this a position calibration system48

is required. The multi-PMT DOM contains three calibration devices: the compass-tiltmeter, the49

acoustic piezo sensor, and the nanobeacon, a compact low-cost nanosecond light flasher. More50

details on the multi-PMT DOM can be found in Ref. [6, 8].51

The dense packing constrains the space available for power supply and readout in the center52

of the DOM. However, the optimal electro-optical design of the PMT leaves extra space between53

neighboring PMTs on the inner surface of the sphere, surrounding the cathode entrance window54

(see Fig. 1). To exploit this extra space for light collection, a reflector (expansion cone) will be55

employed to guide additional light to the photocathode. The Photonis XP53B20 PMT, that passed56

the specification requirements of KM3NeT except the dark-currect performance, has a concave-57

convex shaped glass window with a thickness of about 9 mm at the circumference and provides58

a curved photocathode for optimum light collection and fast timing properties. PMTs with simi-59

lar performance parameters are presently commercially available from several manufactures. The60

thickness of the entrance window leaves space available for the entrance of light from the side onto61

the curved photocathode. Results of tests will be presented for an expansion cone made of silicone62

gel [9] which is shaped and kept in place by an aluminum structure serving as reflector, shown63

schematically in Fig. 2. The reflectivity of the 45◦ tilted surface was improved by silver evapora-64

tion. In order to demonstrate the potential benefit of the expansion cone, measurements in air and65

with a single PMT have been performed.66

3. The expansion cone: idea and implementation67

Each PMT in the multi-PMT DOM will be surrounded by an expansion cone designed to collect68
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Figure 2. A drawing of the expansion cone mounted on a PMT.

Figure 3. The idea of light collection by an expansion cone.

photons that would otherwise miss the photocathode, thus increasing the effective photocathode69

area (Fig. 1). The main idea behind such an expansion cone is demonstrated in Fig. 3. The light70

that comes aside of the PMT entrance window is reflected by the 45◦ tilted surface into the pho-71

tocathode. Ray-tracing simulations were performed for various opening angles of the expansion72

cone. The opening angle of 45◦ is optimized for maximum collection of light coming perpendicular73

to the PMT entrance window, which is essential for the direction reconstruction. The silicone gel74

serves as an optical interface, having a refractive index of 1.40 and the refractive index of the PMT75

entrance window is 1.54 (for photons of 420 nm wavelength).76

For the performance tests, a 3-inch diameter Photonis XP53B20 PMT was used with main77

characteristics listed in Table 1. The Photonis XP53B20 tube has a compact Box & Linear struc-78

tured 10-stage electron multiplier allowing a short tube design required for a compact multi-PMT79

DOM. Moreover, it has a convex-shaped entrance window matched to the curvature of the glass80

sphere of the optical module (Fig. 1). In order to test the idea of such an expansion cone, measure-81

ments with a simplified setup were done. In comparison to the expansion cone to be used in the82
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Table 1. Characteristics of the used XP53B20 Photonis PMT from specifications and measurements.

Photonis

XP53B20

Window material lime glass

Window curvature, R[mm] 198

Photocathode improved Bi-alkali

QE [%] 33 (404 nm) [10]

Spectral range [nm] 290-700

Multiplier structure 10 stage

Box & Linear

Time resolution, σ [ns] 2.30(0.02)∗

Transit Time Spread [ns] 0.4∗

Dark count rate [kHz] 5∗

∗detailed results and method described in [11]

Figure 4. The expansion cone geometry to be used in the multi-PMT DOM. For the performance tests an

expansion cone with sizes as given in brackets was manufactured (details in text).

multi-PMT DOM [6], a cone with a larger diameter of 104 mm instead of 92 mm was manufactured83

from aluminum (Fig. 4). This cone allows to fill silicon gel up to the level of 1 mm above the edge84

at the circumference of the PMT, as shown in Fig. 5, without using a glass sphere. Further, the85

larger cone allows to eliminate edge effects as they appear in the test setup due to the finite size of86

the test beam.87
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Figure 5. Silicon gel filled in the: A. Expansion cone geometry used in the multi-PMT DOM; B. Geometry

used for tests. Silicone gel filled 1 mm above the edge at the circumference of the PMT. For the analysis,

only data points limited to a radius X<46 mm (dotted lines) were considered.

4. Test bench88

The performance of the expansion cone was measured using a PMT socket with a built-in pre-89

amplifier (pre-amplification factor 62) in order to reduce heat dissipation, electronic noise and dark90

current. It allowed the operation at a PMT gain 1.2×106 with a high voltage of 950 V.91

A PMT with the mounted expansion cone was placed inside a light-tight box (DarkBox). As a92

pulsed light source a laser1 with wavelength λ = 405 nm and time jitter of <70 ps between trigger93

and pulse was used. Additionally, a variable neutral density filter allowed to reduce intensities down94

to the level of single photo-electrons per pulse. A trigger output from the laser controller was used95

as a start signal for the data acquisition. The light from the laser was guided with a light fiber (core96

diameter 0.6 mm) inside the DarkBox and shone perpendicularly to the entrance window. This97

setup allowed a spot size of FWHM=1.4 mm at the center of the entrance window with a distance98

of 3 mm from the fiber to the PMT. Signal shapes were recorded by a fast sampling ADC2. A99

remote-controlled 2D scanning system placed inside the DarkBox allowed precise measurements100

1Hamamatsu PLP10-40 laser diode head (wavelength 405 nm) with C10196 Controller.
2Acqiris DC282 digitizer with 10 bit resolution and 8 GS/s sampling rate.
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of the photocathode homogeneity and sensitivity with respect to position and angle of incidence.101

The scanning system consisted of two linear stages that allowed scanning in horizontal and vertical102

directions, equipped with stepper motors providing a repeatability of 1.5 µm. The orientation of103

a PMT in the setup was defined by the orientation of the dynode structure. The origin of the104

coordinate system was the center of the entrance window. The Y axis lies in the plane of symmetry105

of the electron multiplier chain, perpendicularly to the dynodes. In practice, the correspondence106

between pin layout and inner configuration was used: the Y axis points from the anode to the first107
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dynode pin (Fig. 6).108

5. Results109

A typical measured charge spectrum for a single point on the photocathode (center) is shown in110

Fig. 7. The position of the single-photoelectron (SPE) peak was determined and the PMT gain111

was derived. In Fig. 7 the contributions of one-, two- and three-PEs are separated by applying a112

deconvolution procedure according to [12]. The operation of a tube at a gain of 1.2×106 provides a113

good peak-to-valley ratio of about five. In order to determine the relative collection efficiency, the114

fraction of events with a charge above 0.3 SPE out of a total number of 20,000 accepted triggers115

was obtained for various points on the photocathode. The number of selected events for the center116

of the PMT was about 10,000.117

In this work we compare the number of measured photon pulses for various positions on the118

photocathode and for a number of angles of incidence. The number of counts Nd is defined as119

Nd = PDE ·Np = QE ·CE ·Np, where PDE is the photon detection efficiency, Np the number of120

incident photons, QE the quantum efficiency and CE the collection efficiency. We use the ra-121

tio Nd(X)/Nd(0), where Nd(0) is the number of counts collected in the centre of the photocathode,122

and Nd(X) at any other point X . In the ratio, QE and Np drop out (since we measure under the same123

conditions), resulting in the ratio of collection efficiencies CE(X)/CE(0) or the relative collection124

efficiency. We assumed the collection efficiency in the centre of the entrance window (photocath-125
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Figure 9. Measured relative collection efficiency as a function of the radial position X for various angles of

incidence (see Fig. 3); Upper panel: for negative angles of incidence; Lower panel: for positive angles of

incidence.

ode) to be 100% (for perpendicular incidence) and investigated the difference for the other points126

distributed on the photocathode and for various angles of incidence.127

The relative collection efficiency as a function of the position on the photocathode is shown128

in Fig. 8 for the perpendicular incidence (0◦). This results were obtained for a scan across the129

photocathode along the X-axis, measured at a temperature of 21◦C. A dip in the relative collection130

efficiency curve observed at about X=38 mm can be explained by the expected decrease in the131

reflection on the contact between the PMT and the expansion cone and the thickness of the glass132
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Figure 10. Upper panel: Gained collection efficiency along the X-axis according to Eq. 5.1, as a function

of sin of the angle of incidence θ . All presented data points have error bars of Cgained [%]±0.04[%]. Results

of the performed ray-tracing simulations are shown for comparison. Lower panel: Results of the ray-tracing

simulations. Collection efficiency as a function of the angle of incidence for a single PMT with and without

expansion cone (squares and diamonds, respectively).

Figure 11. The expansion cone performance was tested with angles of incidence varied in two planes:

parallel to the X-axis (A) and to the Y-axis (B).

wall. However, an additional experiment with a cone that could be moved axially has shown,133

that the observed decrease is not only caused by the effects mentioned above but also by the shift134

along the axial direction of the expansion cone relative to the photocathode. This assumption was135

confirmed by the performed ray-tracing simulations (see Section 6) and in previous extensive tests136

with an expansion cone made of PMMA [13]. The shoulder at 46-48 mm corresponds to the level137

to which the gel is filled (see Fig. 5).138

Since every measured point Xν in the scan along the X direction represents an annulus with139

a width equal to the distance ∆Xν of neighboring measured points, weights W (Xν) are applied140
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Figure 12. Measured relative light collection efficiency as a function of sin of the angle of incidence θ in

the plane parallel to the Y-axis (B in Fig. 11), for various radial positions on the expansion cone.

in order to account for the respective annular areas: W (Xν) =
∫

∆Xν
2πXdX . The larger spacing141

between data points in the region 10 mm < X < 25 mm resulted in larger weighting factors for142

these points.143

Results for the measurements with various angles of incidence are presented in Fig. 9. The def-144

inition of the sign of the angles of incidence is introduced in Fig. 3. In order to estimate the benefit145

of the expansion cone, the gained collection efficiency was calculated. For each angle of incidence146

the integral CPMT was taken under the collection efficiency curve (Fig. 9) for the range (0 mm,147

38 mm), corresponding to the light entering directly in the photocathode. The integral CPMT+Cone148

was taken for the range (0 mm, 46 mm) corresponding to the radial range of the expansion cone to149

be used in KM3NeT (Fig. 5). In Section 6 we demonstrate that the procedure of truncating a larger150

cone provides a realistic estimate of the light collection for the combination of PMT and expansion151

cone (PMT + Cone). Finally, the gained collection efficiency Cgained was estimated as a ratio152

Cgained =
CPMT+Cone −CPMT

CPMT

×100%, (5.1)

where CPMT+Cone and CPMT are the collection efficiencies of the combination PMT + Cone and153

PMT, respectively.154

Results for the measurements under various angles of incidence are presented in Fig. 10, re-155

vealing an increase in collection efficiency by 30 % on average for angles of incidence from −50◦156

to +45◦, with a maximum of 35 % for perpendicular incidence.157

The results presented above were performed with angles of incidence varied in a plane parallel158

to the X-axis (A in Fig. 11), because of limitations of the scanning system. In order to account for159

– 11 –



Figure 13. A. Simulated geometry (not to scale). The expansion cone is shown in gray, the photocathode in

blue and the light guiding fiber in yellow on part A (used to reproduce the measured results).

B. Zoomed view of the contact region between photocathode and expansion cone.

C. Zoomed view of the geometry with an expansion cone that is slightly shifted axially relative to the

photocathode (situation for the presented data).

effects for angles in the plane parallel to the Y-axis, measurements with configuration B (Fig. 11)160

were performed. Points with radius 41, 42, 43 and 44 mm were chosen to represent the performance161

of the expansion cone. Results presented in Fig. 12 follow a Gaussian-like distribution and agree162

well with distributions measured in the plane parallel to the X-axis (see Fig. 10 for comparison,163

configuration A in Fig. 11). The combined results allow to estimate the expansion cone performance164

rather well from data obtained for angles of incidence varied in one plane.165

6. Simulation166

Ray-tracing calculations were performed by using SLitrani [14], a general purpose Monte-Carlo167

program simulating light propagation. Even with a very simplified geometry (photocathode and168

aluminum expansion cone), shown in Fig. 13, the simulations reproduce the essential features of169

the distribution for the measured collection efficiency at perpendicular incidence (see Fig. 14 and170

8 for comparison). For this purpose a horizontal scan across the photocathode was simulated with171

light emitted perpendicularly from a light fiber producing a spot size of 1.4 mm FWHM on the172

photocathode. Results are shown in Fig. 14. In order to reproduce the experimental data points,173

a 1 mm axial shift of the expansion cone relative to the photocathode position was introduced.174

The obtained results, presented in Fig. 14, with different amplitudes in the contact region, confirm,175
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Figure 14. The relative collection efficiency obtained in the ray-tracing calculations with a pencil light beam.

Stars correspond to the ideally aligned expansion cone of 46 mm radius. Circles show results obtained with

an expansion cone of 46 mm radius that is shifted axially by 1 mm, reproducing well the essential features

of the measured distribution presented in Fig. 8. Vertical lines indicate the position of the contact between

the PMT and the expansion cone (dashed line), and the physical size of the expansion cone used in the

multi-PMT DOM at 46 mm (solid line).

as discussed in Fig. 8, the shift in the axial position of the expansion cone. This underlines the176

importance to know the exact geometry of the photocathode.177

In Section 5 the performance of the expansion cone in the multi-PMT DOM of KM3NeT was178

estimated by truncating experimental data measured for a 104 mm diameter cone. It should be179

noted that measurements were done with a light beam of 1.4 mm FWHM. The finite beam size180

creates edge effects because part of the beam will not be reflected when approaching the edge of181

the cone. This is demonstrated in Fig. 15 by comparing simulations for cone diameters of 104182

mm and 92 mm performed with light-beam diameters of 1.4 mm and 0.001 mm, respectively. The183

situation of the almost 0-size light beam corresponds to the situation of single photons hitting the184

cone in KM3NeT. This situation is very well reproduced by truncating data taken with a finite-size185

light beam and the larger cone at the radius of the cone which will be implemented in KM3NeT.186

In order to estimate the collection efficiency integrated over all angles of incidence, a light187

emitting disk with 50 cm radius, much larger than the one of a PMT (3.8 cm) was simulated at a188

distance of 5 cm from the photocathode. In total 2×106 photons were emitted. The emission points189

were distributed uniformly over the light disk surface and the photon directions were uniformly190

distributed over the solid angle 2pi. To compare to a configuration without an expansion cone, a191

photocathode was simulated together with a light absorbing foam core, to account for shadowing192

effects (see Section 2 and Fig. 1). These two simulated configurations are illustrated in Fig. 16.193

To assure that no light is reflected back to the cone or the photocathode, a totally absorbing plane194
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Figure 15. The relative collection efficiency obtained in the ray-tracing calculations with a pencil light

beam. Stars show results obtained with an expansion cone of 46 mm radius and an almost 0-size light beam.

Diamonds demonstrate results for an expansion cone of 52 mm radius as used in the measurements shown

in Fig.s 8 and 9. Vertical lines indicate the position of the contact between the PMT and the expansion cone

(dashed line), and the physical size of the expansion cone used in the multi-PMT DOM at 46 mm radius

(solid line).

was included in the simulation. The simulation results reveal an increase in the overall sensitivity,195

integrated over all angles of incidence, by 27%.196

The collection efficiency as a function of the angle of incidence was simulated. Results are197

presented in Fig. 10. The experimentally obtained curve for the gained collection efficiency (upper198

panel, Fig.10) is slightly asymmetric in comparison to the simulated one. The lower collection199

efficiency for +10◦ and +20◦ results from the curves shown in Fig. 9B, that exhibit a second dip at200

X=45 mm and X=43 mm, respectively. The cause for this phenomenon is schematically shown in201

Fig. 17, where light at certain angles can be reflected above the photocathode.202

7. Summary and Discussion203

In this work we demonstrated the performance of an expansion cone that is meant to enlarge the204

sensitive photocathode area of PMTs in a multi-PMT DOM for the future KM3NeT neutrino tele-205

scope. The expansion cone consisted of an aluminum ring filled with silicon gel and collects206

photons that would otherwise miss the photocathode. We have used a simplified experimental207

geometry to demonstrate the potential benefit of using such an expansion cone, and performed ex-208

tensive measurements on 3-inch PMTs with concave-convex shaped entrance window. This type of209

PMT is available for mass production and application in KM3NeT. Note, that the tested expansion210

cone was larger (exact sizes given in Fig. 4) in comparison to the one that will be used in the multi-211
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Figure 16. Simulated geometry with (A) and without (B) the expansion cone. The expansion cone, the

photocathode, the light emitting disk, the totally absorbing plane, and the foam core are shown.

Figure 17. Schematic illustration of a light ray at an angle of incidence of +10◦, that can miss the photo-

cathode due to reflection.
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PMT DOM. However, due to the applied pencil light-beam scanning, it was possible to estimate212

the realistic performance without edge effects for the expansion cone to be used in the multi-PMT213

DOM by considering only data points limited to a radius X<46 mm (Fig. 5).214

Results for various angles of incidence indicate an increase in collection efficiency by 30 %215

on average for angles of incidence from -50◦ to +45◦, with a maximum of 35 % for perpendicular216

incidence. Ray-tracing simulations estimate an increase of the collection efficiency by 27% inte-217

grated over all angles of incidence. Simulations and experiments have shown that the edges of the218

photocathode are located higher than expected because of lacking information on the photocathode219

geometry. This effect decreases the cone performance. In the future, precise information on the220

photocathode geometry will be required from the producer. The proper alignment of the expan-221

sion cone relative to the axial position of the photocathode is important to minimize the dip in the222

collection efficiency at the contact between the expansion cone and the surface of the PMT.223

A pencil light-beam has been applied in order to be able to scan precisely the collection ef-224

ficiency at various locations on the surface of the photocathode. Alternatively, a light beam il-225

luminating the whole PMT equipped with an expansion cone would be advantageous to estimate226

the cone performance integrated over all angles of incidence. First tests with such a set-up were227

reported in [15].228

In order to obtain the final performance figures of the expansion cone in KM3NeT, measure-229

ments under realistic conditions in sea water and with PMTs mounted in a glass sphere will soon230

be possible using a DOM deployed in ANTARES.231
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