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Summary. A high-frequency asymptotic expansion of  a time-harmonic 
wavefield given on a curved initial surface into Gaussian beams is determined. 
The time-harmonic wavefield is assumed to  be specified on the initial surface 
in terms of  a complex-valued amplitude and a phase. The asymptotic expan- 
sion has the form of  a two-parametric integral superposition of  Gaussian 
beams. The expansion corresponds to  the relevant ray approximation in all 
regions, where the ray solution is sufficiently regular (smooth) in effective 
regions of'the beams under consideration. 

1 Introduction 

Gaussian beams are the high-frequency asymptotic time-harmonic solutions of  the elasto- 
dynamic equations concentrated close t o  rays. The solutions concentrated close to rays were 
first investigated by Babich (1968) and applied to  elastodynamic equations by Kirpichnikova 
(1971). For  details refer to Cerveny (1981) or  Cerveny & PSentik (1983). A large number of  
references is given in Cerveng (1983). 

In the Gaussian beam method, the high-frequency initial conditions for solving elasto- 
dynamic equations are decomposed into the initial conditions for Gaussian beams, the 
Gaussian beams are evaluated and the high-frequency asymptotic solution is obtained as a 
superposition of these beams. The method of  Gaussian beams is shown t o  be a powerful 
generalization o f  the ray method. Its results correspond to the Maslov theory applied in a 
general 3-D subspace of a 6-D complex phase space. The Gaussian beam method has no 
caustics, only its limiting cases like the ray method or asymptotic solutions in a real mixed 
subspace of  a phase space (Chapman & Drummond 1982) may have caustics. It is capable of 
providing a uniform asymptotic solution even without any blending of various asymptotic 
solutions with weighting functions. 

Since we intend to study the choice of the initial conditions for Gaussian beams in this 
paper in the first place, we shall consider perfectly elastic media with smooth elastic para- 
meters: density p ,  velocity up of  P-waves and velocity us of S-waves. Dynamic ray tracing 
across curved interfaces is described in Cerveny & Hron (1980) and the transformation of  
Gaussian beams at curved interfaces is described in Cerveny (1984). 

The initial high-frequency conditions for solving elastodynamic equations given on a 
curved initial surface are assumed to  be decomposed into initial conditions for P- and 
S-waves. Each of these initial conditions with the corresponding wave is considered indepen- 
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106 L. KlimeS 
dently and is assumed to  be described along the initial surface in terms of the complex- 
valued amplitude and the phase, see (28). 

The paper is divided into four sections. Some quantities used frequently throughout the 
paper are introduced in Section 2, The reader is required to pay attention t o  the notation 
of  vectors and matrices used. The notation is introduced at the beginning o f  Section 2.  
Section 3 contains the expressions for one Gaussian beam. 

The high-frequency expansion of  the wavefield given on an initial surface into Gaussian 
beams is performed in Section 4. The wavefield on  the initial surface is assumed to  be 
expressed in terms of the complex-valued amplitude and the phase. For comparison see also 
Kravtsov & Orlov (1980), Popov (1982) and Chapman & Drummond (1982). The obtained 
results involve the Maslov method of  Chapman & Drummond (1982) as a special limiting 
case for infinitely broad Gaussian beams. The application of  Gaussian beams with a finite 
width has very much the same sense as applying interpolation between individual paraxial 
approximations in the ray method and/or as applying a Gaussian integration window in the 
Chapman-Maslov method. 

The parameters specifying the shape of  the Gaussian beams are supposed t o  be given so 
that we can use the paraxial ray approximation in the effective regions of  the beams along 
the screen. Some optimization of the parameters will be described elsewhere. 

The expansion formulae derived in this paper may also be obtained by  applying the 
Maslov asymptotic theory t o  a general 3-D subspace o f  the 6-D complex phase space. The 
rederivation using the Maslov theory is shown in KlimeS (1984). 

For simple numerical examples see Cervenjr & KlimeS (1984). 

2 The specification of some used quantities 
The capital-letter indices will take the values 1 and 2,  lower-case indices will take the values 
1, 2. 3. The indices will have the form of right-hand suffices. For instancef(xJ = f ( x , ,  x2, 
x ~ ) , ~ ( x A ) = ~ ( x I ,  x2) and, for any functionf(xi),fIxi=o = f ( O ,  0 ,  O),flx,=o =f(O, 0 , x g )  
may be used. Pairs of identical indices will indicate summing. This means that we shall use 
the Einstein summation convention for the suffices instead of writing the sunimation 
symbol. 

2 x 2 matrices with components A A ~  will be parallely denoted by the symbols A or A A ~ .  
3 x 3 matrices will always be described by means of their components. The symbol A j i  will 
indicate the  components of  the matrix inverse t o  A A B ,  i.e. 

where SAc is the Kronecker delta symbol. In other words, tiA, denotes the components of 
the unit matrix. A I B  = A B A  denote the components of the matrix transposed t o  A A ~ .  

We shall use three important coordinate systems throughout this paper: 

(1) Cartesian coordinates xi. 
( 2 )  Ray coordinates yi = (yl, y2, y3 = u), where yA = (yl ,  y2)  are the parameters of the 

ray (e.g. the take-off angles at a point source specifying the initial direction of  rays or the 
coordinates along an initial surface), and u is the coordinate along the ray connected with 
the travel time T or with the arclength s by  the relations 

Here v is the velocity of propagation of the corresponding wave. 
(3) Orthogonal ray-centred coordinate system along a chosen ray. This coordinate system 
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Expanding a h igh-frequency time-harmoriic wa vejfield 107 
and its computation is described in Popov & PSenEik ( l978a ,  b) and also in Cerveny & Hron 
(1980). We shall denote the ray-centred coordinates by q i =  ( q l .  4 2 ,  q 3 = s )  where s is the 
arclength along the ray and qA = ( q l .  q 2 )  are the Cartesian coordinates in the plane perpen- 
dicular t o  the ray at points s = q 3  with the origin on the ray. 

The travel time corresponding to the relevant ray approximation will be denoted by 7 .  

We define the Cartesian components of the slowness vector 

axk ax, a2u V..(s)= - - ~ 

11 
a4i '%j a x k  ax/ 

The velocity of propagation of the appropriate elementary wave is denoted by u. The 
velocity on the central ray will be denoted by 

V(s)= U I q A = 0 .  (4 ) 

We also denote the components of the velocity gradient in the ray-centred coordinate 
system on the central ray by 

4 A = o  

Similarly we define the second derivatives of the velocity in the local Cartesian base of the 
ray-centred coordinate system taken on the central ray 

is the unitary matrix, the columns of which constitute the local vector basis of the ray 
centred coordinate system expressed in general Cartesian coordinates xi. 

We define the matrix of  transformation from the ray coordinates t o  the ray-centred 
coordinate system as 

We shall call i t  the matrix of geometrical spreading. 
The components of the matrix 

are the  second derivatives of  the travel-time field in the ray-centred coordinate system. 

nents of the slowness vector in the ray-centred coordinate system 
We also define the matrix of the transformation from the ray coordinates t o  the compo- 
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108 L. Klimes' 
Matrix PR is related to  matrix QR by means of ordinary differential equations called the 
dynamic ray tracing system: 

Equations ( 1  I )  follow from definitions (8) and (10) of matrices PK.  QK and from the ray 
tracing system 

d 

d o  
x i  = p i  - 

d 1 au 
- p i = -  - -. d o  u3 axi 

Equations ( 1 1 ) and ( 12)  can also be directly used for numerical computation o f  the rays and 
of  matrices PR, QR along the rays. The initial conditions for the numerical integration of the 
ordinary differential equations (1 1 )  riiust be chosen in accordance with (8) and (10) in this 
case. Considering (10). we can evaluate matrix M R  using the relation 

For the fixed point s = s1 at the ray, we can transfer from the ray-centred coordinate 
system t o  the corresponding local Cartesian coordinates 

where Xj(qk) are the general Cartesian coordinates xi corresponding t o  point qk in the ray- 
centred coordinate system. In coordinate system (14), rA = qA for r 3  = 0 and the third 
coordinate r 3  is measured along the tangent to the ray at  point s = sl. 

Now we evaluate the second derivatives o f  the travel-time field in the local Cartesian 
coordinates ri. Since rA = q A  l'or r3  = 0, we obtain 

As ri at-e Cartesian coordinates. 

- ar  
ari P i ,  - _  

where, for a whde, pi are the components of a slowness vector transfoimed to the co- 
ordinates r ,  . Using the ray tracing system ( 1  3). we obtain 
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Expanding a h igh-jrequ ency tim e- harmonic wa vefi'eld 

For and V see (4) and (5). We rewrite (1 5) and ( 1  7) in the compact fotm 

109 

We can easily transfer from the local Cartesian coordinates ri to  the geiieral Cartesian 
coordinates x, by incans of the relation 

where the transformation matrix Hjk  froin the local cool-dinates rk t o  the general Cartesian 
coordinates x i  is given by (7) .  

3 Gaussian beams 

Gaussian b ea ms are t tie h ig h- tre qu  e n c y as y m p t o  tic t i  m e-h arm on ic so I u t io n s of el as t o- 
dynamic equations concentrated close to  their central rays. 

The most natural expressions for the Gaussian beams can be written in the orthogonal 
ray-centred coordinate system, because the polarization of the beams docs not change in this 
coordinate system. The principal component of the complex-valued vector amplitude of  the 
Gaussian beam has the form 

where C is the normalization factor. constant along the ray, which may depend on the ray 
parameters The quantity u denotes the velocity of propagation of the corresponding 
elementary wave, p is the density, o is the angular frequency (positive), r is the travel time 
along the central ray, t is the time and MA. is the complex-valued matrix given by 

M = PQ-' . (21) 

The complex-valued matrices P and Q are the functions of  the parameter CI along the central 
ray and must satisfy the dynamic ray tracing system ( 1  1 )  which reads 

d p v  
do  d o  V 3  

The initial conditions a t  u = u0 for solving 

M(oo) = P(oo) Q-' (00) 

is symnietric in both its real and imaginal 

- - ~- - Q .  - P ,  - 
dQ _ -  ( 2 2 )  

32) have to be chosen in such a way that matrix 

( 2 3 )  

parts, and its imaginary part I m  M(uo) is positive 
definite. The matrix M will then be symmetric along the whole ray and its imaginary part 
will be positive definite everywhere, see Cerveni & PSenCik ( 1  983). 

In (20) we must take the same branch of the complex-valued square root along the whole 
ray. 

We denote by ui the complex-valued components of the displacement vector in the ray- 
centred coordinate system. 
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110 L. Klimes’ 

The compressional Gaussian beam has only one principal component 

arid two additional components 

UA = ~ M A B  qe u3. 

The quantity u in (24) and (25 )  denotes the velocity of P-waves 
The shear Gaussian beam has two principal components 

and one additional component 

u3= --v4,4 M A B  u B .  ( 3 7 )  

The quantity u in (26) and (27) denotes the velocity of S-waves. 

Cerveny & I’cetencik ( I  ‘183).  
The detailed derivation and description of the properties of the beams are given in 

4 Expansion of a 
Gaussian beams 

4.1 W A V E  F I E L D  
B E A M S  

Assume ;i curved 

high-frequency time-harmonic wavefield given on an initial surface into 

G I V E N  O N  A N  I N I T I A L  S U R F A C E  - T H E  C E N T R A L  R A Y S  O F  

ini t ia l  surface paranie te r iA by curvilinear coordinates &, t 2 .  The 
elastodynamic wavefield pi-upagating from the initial surface into the model is specified on 
the initial surface. Assume the wavefield to be time-harmonic and to be decomposed into 
the P-wavefield and into two independent linearly polarized S-waves. We shall choose one of 
these elementary waves and expand it into Gaussian beams. The expansion will be found 
asymptotically for high frequencies w.  

Assume that the cornpiex-valued amplitude of the selected elementary wave is specified 
on  the initial surface in the following form: 

We require functions A ( t A ) ,  T ( & )  to be at least so smooth. to be able t o  replace the 
function A(4;4) by the linear expansion and the function T ( & )  by the Taylor expansion 
up to the second order in the effective regions of the Gaussian beams used below. In the 
same way suppose that the initial surface can be locally described by the  Taylor expansion 
up  to the second order i n  the effective regions of the beams. The mentioned assumptions 
can be satisfied especially for high frequencies w. for which the Gaussian beams can be 
c h e n  sufficiently narrow. 

Let us consider the local Cartesian coordinate system for every point of  the initial surface 
with its origin at this point, The coordinates x,, x2 are measured tangentially to the initial 
surface, and xg is measured perpendicularly to the initial surface and is oriented into the 
model. The central ray of the Gaussian beam is specified at this point by the slowness vector 

P 3  = &L ( 3 0 )  
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111 Expanding a high$xquency time-harmonic wavefield 

The initial travel time r on the initial surface will be equal t o  the phase T 

7 11s = 7: (30)  

Note that the local coordinates x i  may be introduced, e.g. in such a way that the coordinate 
x2 is measured perpendicularly t o  the plane of 'incidence' of the beam, i.e. 

p2 = T2 = 0.  

In (29)  we have used to  denote the first derivatives of T ( b  ) in coordinates XA 

In the s a n e  way we use 

v = o  

3' T 

x j = o  a t C  aED 

The coordinates xA can be locally used as the coordinates along the initial surface, 
because their projections upon the initial surface in the direction of the axis x3 forni local 
orthogonal coordinates on the initial surface. In these coordinates the time field T(x, )  
along the initial surface can be locally approximated by the Taylor expansion 

T ( x E ) = T + T A x A  + % x A T A B x ~ .  (35) 

Note that x~ = 0 is understood everywhere, where the local coordinates are used but the 
independent variables x E  of the  used quantities are not specified. Similarly we can write 
the expansion 

A ( x E ) = A  + A ,  x A .  (36)  

4.2 T H E  T R A C E  of: A G A U S S I A N  B E A M  O N  T H E  I N I T I A L  S U R F A C E  

The complex-valued travel time of the Gaussian beam (20) will be denoted by 

'(qi) = 7(q3) + S4A MAB(4314B. ( 3 7 )  

Assume the product of frequency o and matrix M(q3) (especially its imaginary part) t o  be 
sufficiently large, so that the Taylor expansions used below are valid in the effective regions 
of the Gaussian beams. Let us transform the time field O(qJ of the Gaussian beam into local 
Cartesian coordinates xi .  In these coordinates we use the Taylor expansion of the time field 
t?(Xj ) :  

The local Cartesian coordinates ri, corresponding to the ray-centred coordinates, were intro- 
duced in Section 2. The transformation matrix Hik was defined by (7). 
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112 L. KlimeS 

Assume that the  initial surface may be described in the effective regions of the  Gaussian 
beams by  a Taylor expansion up to  the second order, 

x 3 =  ~ / X A  D A B X B ,  (39) 

where D A B  is the matrix of curvature of the initial surface. 
The trace of the time field 9 on the initial surface is then given by the relation 

in rerms u p  to the second order. 
The second derivatives of the complex-valued time field 9 of the Gaussian beam can be 

written in the form of (18) similarly as the derivatives of the travel time T .  We may then 
write 

where MAB(uO) is t h e  initial value of the complex-valued matrix MAE at point Y, = 0. 
Substituting (41) into (40), we obtain the expansion 

1 1s = ‘T PA xA ’ !h xA x B  [ P  3DAB + HA C HBD M C D  (00 )  + EA B 1 . 

811s=T+TA XA + % X A  X B l p 3 D A B  + H A C H B D M C D ( U O ) + E A B I .  

(44) 

Using initial conditions (29) and (30),  we obtain 

(45) 

The expression (45) describes the time field of the Gaussian beam propagating from point 
x ,  = 0. The  time field is computed a t  point xA on the initial surface. 

Similarly we may consider the beam with the central ray starting from point xA and 
evaluate its time field at  the origin x ,  = 0 

(46) 
a T k E )  

ax, 
T ( X E )  - x A  ___ + % x A x B [ P 3 D A E  tHACHBDMCD(uO)+EABB].  

Substituting (35) into (46), we obtain the expansion of the time field of the Gaussian beam 
with the central ray starting from point xE.  The value of the time field is taken at  the origin 
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The field is considered along the initial surface. Introducing matrix 

RAB = P 3 D A B P T A B  + H A C H B D M C D ( u O ) + E A E ,  

we can rewrite (47) in a brief form: 

8 , ~ =  T +  M x ~ ~  R A B x B .  

We denote by CAB the inverse matrix to  the 2 x 2 matrix HAB 

G A B  = &AC.  

The matrix 

Mz,g (00)  = GAC GBD( TCLI - P ~ D c D  -EcD) (51) 

is the initial value of matrix (9) of  the second derivatives of the travel-time field correspond- 
ing to the ray approximation of the wave field generated froni the initial surface. Using the 
initial value of the ray matrix M2B(oo.) we can rewrite definition (48) to read 

RAB = HAcHBD [McD(uO) -M:D(aO)l' ( 5 2 )  

4.3 T W O - P A R A M E T R I C  I N T E G R A L  S U P E R P O S I T I O N  01; G A U S S I A N  BE A M S  

The integral superposition of the principal components of Gaussian beams has the form 

where g(y,. y2) is the wavefield of the Gaussian beam (20)  concentrated close t o  the ray 
with the ray parameters y,, y2. The additional components are not considered in this expan- 
sion. The integral superposition of the additional components is assumed t o  be negligible in 
this paper. 

Using expansion (49) we can evaluate integral superposition (53) locally as 

Using definition (8) of the matrix of the ray geometrical spreading, we have 
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114 L. Klimes' 

Assume that  the normalization factor K(x,-)  can be replaced by the linear Taylor expansion 

K ( x c ) =  K + K A  X A  (58) 

in the effective region of the Gaussian beam. The quantity ( P U ) - " ~  is taken a t  the  'receiver'. 
It is then independent of x A .  The odd part of the integrand, corresponding to  K ,  X A ,  

vanishes after integration and we have 

(59) 

We can evaluate this integral (C'ervenp 1982) 

x ?n 1 
u = -  - ----- e x p [ i o ( T - t ) l .  ((10) fi w c d e t ( R A B j  

where the  square root &det K A B  must be taken with a positive real part. We wish (60) t o  
be equal to the given wavefield (28) on the initial surface. We then have to  choose 

at  each point of the initial surface. In this way we obtain the expression for the normali- 
zation factors C o f  the beams (see 56), 

W 
C= - f i A  t/--det R A ,  I det H,, I- '  I det Q&-(oo) I Jdet  Qcr,(uo). 

2n 
(62) 

Now we substitute for 4- from (52) 

The square root 4- det [M(oo) -MR(oo)] must be  taken with a positive real part. The same 
branch of  the square root as in (20) must be taken for d m ) .  Using (10) and (2 l), we 
can rearrange (63) to read 

C =  ~ ' P ( u o )  U ( U O ) A ( @ O )  1- I 
2n 

The argument of the square root d-de t [PT(ao)  QR(uo)  -QT(ao)  PR(ao)]  must not differ 
by more than n/2 from the argument of the  square root d/detQ(ob) in (20) to preserve the 
correct argument of C from (62) and (63). 

The amplitude A(uo) specified on the initial surface can be understood here as the 
complex-valued ray amplitude given on the initial surface. 
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Expanding a 11 igh-frequency time-harrnoriic wawfield 115 
4.4 T H E  N O R M A L I Z A T I O N  F A C T O R S  O F  B E A M S  

The normalization factor (64) can be expressed as the product o f  three factors, constant 
along the lay: 

w c = -  
I  7-n (66) 

The argument of C, must not differ by more than rr/? from the argument o f  Jdet Q(uo) 
in (10). 

The constant Cz may be evaluated at any point u o f  the ray using theEiijylex-valued ray 
amplitude A(u),  density p(u), velocity u(u), geometrical spreading IJdet @ ( o )  I and the 
phase shift @(u, oO) = - n/3- KMAH between points uo and u due to  caustics (see :he KMAH 
index in Chapman & Drummond 1982) 

- - _ _  
Cz = A ( @ )  &(a) 40) I d d ;  dZ(0) I exp[  -i@(u. uo) l .  

The constant C3 may be expressed at any point of the ray as 

C3 = J-det [PT(o) Q R  (a) - QT(o) PR(u)] ,  

because the matrix 

(60) 

p'QR - Q T p R ,  (71) 

where matrices P, Q and p, @ satisfy equations (22) (or 1 1  ). is constant along the ray. 
This can be proved by differentiating (7 1 )  with respect to  u and using equations (22 )  (see 
cerveny & PSentik 1983). However, there is one problem in (70). The argument of the 
square root (70) must be taken in accordance with the argument of d m  not in 
accordance with the argument of m m  This choice of a constant argument of C3 
along the ray is connected with the phase shift in (69). To avoid the above-mentioned 
problem with the phase shift i n  (70)- we shall rewrite (70) in the form 

C , = m  I- l J -de t [M(o)-MR (u)l  exp[i@(u.  ao)J, ( 7 2 )  

where the same branch of the square root is taken for d m  as in expression (20) for 
the Gaussian beam, and &det[M(o) -MR(u)] is taken with a positive real part. Now we 
prove that the expression (72)  is equivalent to (68) or (70). Argument of the quantity 
*-Q(u) is continuous along the whole ray. The phase shift @(u, uo) and the argument of 
J-det[M(o) - M  (u)j are continuous along the elements of the ray between two conse- 
quent caustics. The phase shift @(u, uo) increases by n/2 or n at a caustic and the argument 
of &det[M(u) -MR(u)] taken with a positive real part decreases at the caustic by the 
same quantity n/2 or n. Therefore, the argument of (72) is continuous along the whole ray. 
Since (C,)', given by (72 ) ,  is constant along the ray, C3 must be constant too. 

Using (65), ( 6 6 ) ,  (69), (72) we can evaluate the normalization factor C(yA ) of  the beams 
(20) in superposition (53) at any point u of the central ray as 

- 

R -  

w -__ 
C = - A ( u )  Jp(a) u( u )  I det Q R  ( u )  I J- det [M(u) - M R x ]  d- (73) 

2n 
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116 L. Klirriei 

where A (  u j  is tlie complex-valued ray amplitude including the corresponding phase shift. the  
square root 4 - d e t [ M ( u )  -MK(u)]  is taken with a positive real part and the same branch of  
the square root is taken for Jdet Q ( u )  as in expression (20) for the Gaussian beam. The 
normalization factor (73) is constant along the whole ray. but may depend on the para- 
meters yn of the central ray. 

4.5 I )  I S C LJ S S I 0  N 

We have expanded the wavefield (28). given on a curved initial surface, into the integral 
superposition (53) of the Gaussian beams (20). The normalization factor C o f  the beams 
( 2 0 )  in the superposition is given by (63),  which is the special case of its generalization (73). 
Expressiiin ( 7 3  j o f  the noi-malizatiori f’actor of  tlie beanis i n  the superposition offers more 
c o m  p u t a t io na 1 possibilities a t i  d t h eo r e t ic a I  conclusions t h a ii express iu n (6 3 ). 

Only the quantities describing the Gaussian beam and the quantities corresponding to the 
relevant ray approximation of  the wavefield generated from tlie initial surface appear in the 
evaluation (73) of the normalization factor of the beam. Therefore, the expansion of the 
wavefield into Gaussian beams need n o t  be specified directly on the initial surface. The 
wavefield given on the initial surface may be extended on to  another surface by means of the 
ray approximation and the expansion can be specified on the latter surface. Even if the ray 
wavefield is not I-egulai- on the latter surface. the expiinsion is valid, but it corresponds to the 
wavefield given on the initial surface or on any other surface on which the corresponding 
ray l‘ield is sulf’iciently regular. I n  t h i s  way o u r  asymptotic expansion of the wavefield into 
Gaussian beams cot-responds to  the far-field approximation of the source. 

On the other hand, in every region where the ray solution is regular in such a way that tlie 
ray diagram and the ray solution can be replaced by paraxial ray approximations in the 
effective regions of the used Gaussian beams. we obtain the ray solution as the integral 
super-position (53) of  Gaussian beams. In particular, a frequency sufficiently high t o  obtain 
the ray solution as the integral superposition of- Gaussian beams can be chosen for almost 
every point o f  the medium. 

For practical numerical computations of Gaussian beams we determine the normali- 
zation factor (73) a t  a point of the ray a t  which we know simultaneously the ray quantities 
A .  det Q R ,  M R  (see 5 I  ) and the quantities det Q, M appropriate to the beam. For instance, 
at a point source [Qns (UO) = 01 we obtain the limiting value of  ( 7 3 )  for u +  uo + as 

is the radiation pattern of the point source. From the point a t  which we have determined 
the  noi-maliation factor ( 7 3 ) ,  we need to  compute numerically beams (20 )  to  the vicinity 
of  the I-eceiver. For more details refer to  Ccrveny & PSenEik ( 1983). 

If we know the quantities A .  det QR. M R  corresponding to the ray solution in the vicinity 
of  the receiver, we can choose the quantities det Q,  M describing the beams arbitrarily and 
determine the normalization factor (73) directly in the vicinity of the receiver. Super- 
position (53)  of the beams (20) than takes the form 

dy,r?dy,AldetQHIJ-det(M-M R ) e x p  { i w [ 7 + ! h q A M A B y B - r ] }  , ( 7 6 )  
2n 
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where all the quantities A ,  det @. M, MR.  r :ire taken a t  the point whicli is the orthogonal 
projection of the receiver upon the ray specified by the ray parameters y A ,  The quantity 
A is the complex-valued ray amplitude including phase shift due to the caustics; 1 det QH 1 
is the square of the ray geometrical spreading in ray coordinates 7 , .  yz: 7 is the travel time; 
MR is the matrix of the second derivatives of the travel time; matrix M describes the shape 
of the beam; qn are the relevant ray-centred coordinates of the receiver. 

4.6 T H E  E X P A N S I O N  I N  C A R T E S I A N  C O O K 1 ) l N A T E S  

It is useful to  rewrite the expansion (76)  i n  the general Cartesian coordinates xi. Applying 
(18) and ( 1 9 )  for the complex-valued time field of the Gaussian beams, we can modify 
(76) as 

zl (xl)  = - d y ,  A d y , ~  I det Q~ I J-det(M-MK-) 
2n 

x exp ( iw(r  + (x,-.?j)p, + E(xj-.?,) ( x k - - . ? k ) f f j  1~ H kri Mm,r f l j  . ( 7 7 )  

ss 
where the square root &det (M-MH) IS taken with d positive leal part. I n  (77 )  we hdve 
introduced the 3 x 3 matrix, 

where M A R  is an arbitrary complex-valued symmetric 2 x 2. matrix with a positive definite 
imaginary part. Ail the quantities A ,  7, p k ,  det @? MR, M, Hi,, 4, V are taken a t  the 
termination point xi of the ray specified by the ray parameters yn I The quantities Hij, 
6, Vare defined by (4), (5) and (7). 

For example, if all the third coordinates 2, of the termination points of the rays are equal 
to the third coordinate x 3  of the receiver, expression (78) simplifies to  

u ( x ~ )  = /J d y ,  A d y 2 A  1 det Q R  14- det(M-MR ) 
2n 

x exp { ~ G ) [ T  +pA(xA -& ) t % ( x A  -.?A ) (xB-YB)  ( H A c H s D M c D  + L A B )  - r ]  1. 
(79) 

where the matrix E A B  is given by (43). Note that (79) gives the generalization of the Maslov 
method of the second order (Chapman & Di-ummond 1982) arid can also be derived using 
the Maslov asymptotic theory in a general 3-D subspace of 0-D complex phase space (KlinieS 
1984). 

The optimal choice of the matrix M in ( 7 6 ) ,  (77) or (79) will be proposed elsewhere. 
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