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Expansion of a plasma into vacuum with a bi-Maxwellian
electron distribution function
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Abstract. A comprehensive theory is developped to describe the expansion of a plasma into a vacuum with
a two-temperature electron distribution function. The characteristics of the rarefaction shock which occurs
in the plasma when the hot- to the cold-electron temperature ratio is larger than 9.9 are investigated with
a semi-infinite plasma. Furthermore by using a finite plasma foil, a possible heating of the cold electrons
population is evidenced, for a sufficiently large hot- to the cold-electron density ratio.

1. INTRODUCTION

The interaction of lasers with solid targets creates plasmas which may be modeled with a two
temperature electron distribution function, as has been observed by experiments [1]. The effects of these
two populations of electrons on the expansion of a plasma into a vacuum and on the ion acceleration
need to be clarified. In the quasi-neutral and isothermal limits, Bezzerides et al. [2] demonstrated that
the self-similar model has a multivalued solution when the ratio of the temperature between the hot and
the cold electrons is larger than a critical value (≈ 9.9). Physically this breakdown of the self-similar
model corresponds to the occurrence of a rarefaction shock wave. We first aim here to extend this work
by presenting a model which gives a complete description of the rarefaction shock and its effects on the
ion acceleration mechanism. On the other hand, with a kinetic model we study the time variation of the
cold and hot electrons temperature in the case of a finite plasma foil.

2. THE ELECTRON FLUID MODEL FOR PLASMA EXPANSION

We consider at t = 0 a 1-D plasma composed of cold ions of mass mi and charge Ze, occupying the
half-space x ≤ 0 with uniform density nu/Z (in the following the subscript u will always correspond to
the unperturbed plasma), and of electrons in equilibrium with the electric potential �(x, t = 0) which
builds up due to the charge separation at the plasma edge, with density ne(�) and pressure P (�). We
assume that the potential vanishes in the unperturbed plasma (x < 0, |x| → ∞), with ne(0) = nu. For
t > 0 the ions motion is described by the fluid equations, which can be written as
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where n(x, t) is the ion density multiplied by Z, v(x, t) is the ion velocity, m = mi/Z, and where
�(x, t) is now time-dependent. Due to the smallness of their mass, the electrons are assumed to
remain in equilibrium with the electric potential �(x, t), at all positions and times. With the quasi-
neutrality approximation, the solution corresponding to a self-similar expansion towards x > 0 is thus
given by v = � + cs where � = x/t , while the electric potential and the position � are related by
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the equation [2, 6]
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where cs is the ion sound velocity. If the right-hand side of Eq. (2) is positive one obtains a multivalued
solution of �(�) which physically corresponds to an occurrence of a rarefaction shock, as discussed in
Ref. [2]. We will construct the physical self-similar solution of the expansion of a plasma, with electrons
density defined such that

ne(�) = nhu exp(e�/kBTh) + ncu exp(e�/kBTc), (3)

where kB is the Boltzmann constant Th and Tc are respectively the hot- and the cold-electron
temperatures, nhu and ncu are the corresponding densities in the undisturbed plasma.

2.1 Rarefaction shock

In the frame moving with the shock the equations of conservation of mass, energy and momentum flux
read [2, 6]
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where u = v − �s is the relative velocity and �s is the self-similar parameter corresponding to the
position of the shock. The analysis of these equations allows to determine the characteristics of the
rarefaction shock.

Figure 1(a) shows the profile of the electric potential corresponding to the multivalued solution
of Eq. (2) for � = 102 and yu = 10−2 (for convenience we have defined two dimensionless parameters
yu = nhu/ncu and � = Th/Tc). Also shown in solid line is the self-similar solution obtained by using the
jump conditions given by Eqs. (4) as described in Refs [2, 6]. The profile can be divided as follows: the
unperturbed plasma on the left of the rarefaction wave situated in A, a region of uniform expansion
dominated by cold electrons between A and B, the shock rarefaction joining B and E, a plateau
between E and F , and a region of uniform expansion dominated by hot electrons on the right of F .
The dot-dashed lines represent the results of the numerical simulations at different times �piht = 20,
100, and 500, performed with the hybrid code described in Ref. [3]. We observe an excellent agreement
between the analytical model and the numerical simulations, in particular for large values of �piht .
The velocity spectrum is shown in Fig. 1(b) for the same parameters as in Fig. 1(a). The spectrum is
normalized to time, as the number of accelerated ions increases almost linearly with time. We recognize
on the spectrum the low velocity part corresponding to the expansion dominated by the cold electrons,
the dip corresponding to the shock, the peak corresponding to the plateau, and the high velocity part
corresponding to the expansion dominated by hot electrons down to the velocity cut-off [5]. For ratios
of densities in the unperturbed plasma yu ≥ yB , where yB is the ratio yB = nhB/ncB calculated at point
B in Fig. 1(a), the rarefaction shock is directly connected to the undisturbed plasma (line A-B in Fig. 1(a)
disappears). Consequently, the shock propagates inside the plasma at a supersonic velocity.

3. THE ELECTRON KINETIC MODEL FOR PLASMA EXPANSION OF A THIN FOIL

We also performed simulations with a non-relativistic kinetic code describing the collisionless expansion
of a one-dimensional plasma slab with initial length L. The code is presented in detail in Ref. [4].
The electron dynamics is described by the Vlasov equation, and ions are treated as particles. The
electron population is composed of a hot component and a cold component, corresponding respectively
to distribution functions fh(x, v, t) and fc(x, v, t) with fe = fh + fc. Moreover, the electron densities
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Figure 1. (a) Profile of the potential � (dot-dashed lines), obtained with the hybrid code, as a function of � at times
�piht = 20, 100 and 500, where �pih =

√
e2nhu/ε0me. The plasma parameters are � = 102 and yu = 10−2. The

dashed lines indicate the solution found from the numerical integration of Eq. (2). The solid line is the physical
solution obtained by solving Eqs. (4) with the constraint that the flow must be sonic at point B. (b) normalized ion
velocity spectrum as a function of time for the same parameters.

are nh(x, t) and nc(x, t), with ne = nc + nh. At time t = 0, the distribution function of each electron
population is represented by a Maxwellian distribution.

In all our simulations, the ratio of the hot to the cold electron initial temperature is taken such that
� � 1. We define a characteristic time parameter � = L/csh where csh = (kBTh/m)1/2.

3.1 Cold electrons mean temperature

Though the distribution functions do not remain Maxwellian during the expansion, it is still possible to
define a cold (and hot) electron temperature at any time and any position, with

kBTc, h(x, t) = me

∫ −∞
+∞ v2fc, h(x, v, t) dv∫ −∞
+∞ fc, h(x, v, t) dv

, (5)

where kB is the Boltzmann constant. A mean temperature Tc,h(t) is defined by an integration of Tc,h(x, t)
over the simulation box.

Let us consider a plasma slab with a large value of the ratio of densities yu, i.e., yu � 1. This
regime of plasma expansion is academic because it does not fit with the plasma obtained in laser plasma
experiments. However, it provides interesting features of the time variation of the cold electrons energy.
Figure 2(a) shows the cold electrons temperature Tc(t) as function of time for yu = 104 and for values
of � ranging from 10 to 103. The expansion of the plasma slab can be separated into two phases. In the
first phase (t � 0.4�), a rarefaction wave progresses towards the center of the foil. For time t � 0.4�, the
plasma foil disassembles. We observe a heating of the cold electron population during the first phase.
This heating mechanism increases with � and can be as large as a factor of (�/3)2/3 for plasmas with
initial width L/2�Dhu ≥ 100 [7]. This amplification results from the compression of the cold electrons
by the electrostatic potential.

We develop a simple analytic model to explain these observations. One assumes that the cold
electrons experience a compression inside the potential well. In this case, the time variation of the
width of the cold electrons layer can be roughly estimated as Lc(t) � L − 2 csh t . We also consider
that the cold electron density behaves as nc(t) = Ncu/Lc, where Ncu is the initial number of cold
electrons per unit of surface. Notice that as the rarefaction wave is getting close to the target center,
the density diverges. An adiabatic compression states that the relation between the pressure and electron
density gives Pc/n

�
c = const , where � is the cold electron polytropic index. For a mono-dimensional
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Figure 2. Cold electron mean temperature as a function of time for yu = 104. (a) L/2�Dhu = 20 and � = 10 − 103,
(b) � = 102, L/2�Dhu = 20 (dashed-dot line) and L/2�Dhu = 100 (solid line). The dashed line correspond to
the theoretical formula (6). Tc is normalized with its initial value Tc0 = Tc(0). (c) hot and cold electron mean
temperatures normalized to hot electrons initial temperature Th0 = Th(0) as a function of time for � = 102,
yu = 0.08 and L/2�Dhu = 20.

expansion, � is equal to 3. By combining all these results one obtains the expression of the cold electrons
temperature,

Tc(t) � Tc0

(1 − 2t/�)2
, (6)

where Tc0 is the cold electron initial temperature. The expression of the cold electron mean temperature
(6) is shown in Fig. 2(b). Also shown are the results of the numerical simulations for � = 102 and
yu = 104. We notice a quite good agreement in the first phase of expansion. The departure of the
analytical model from the numerical results is related to the fact that when the rarefaction wave arrives
at the center of the slab, the expression of the cold electron density is no longer valid.

For ratios of densities in the undisturbed plasma such that yu � 0.8 �−1/2, the cold electrons heating
vanishes as observed in Fig. 2(c). Both the cold and hot electrons cool down.

4. CONCLUSION

A theory of expansion of a plasma with a bi-Maxwellian electron distribution function is studied both
with a fluid and a kinetic model. With an isothermal fluid model, we discussed the structure of the
rarefaction shock. One distinguishes: the unperturbed plasma, a zone of rarefaction corresponding to
the cold electrons expansion (this region disappears for large ratios of hot to cold electron densities),
the rarefaction shock, a plateau and finally a zone of expansion dominated by the hot electrons. The
expressions of the characteristics of the structure of the shock are discussed in more detail in Ref. [6].

In the second part, we studied the expansion of a plasma slab into a vacuum with initially hot and
cold Maxwellian electron populations by performing simulations with a 1-D kinetic code [4], taking into
account the time evolution of the electron distribution function for a finite width foil. Simulation results
show that whereas hot electrons always lose energy to expanding ions, cold electrons can either gain or
lose energy depending on the initial temperature ratio, density ratio, and time. When the cold electron
density is not too large, they experience initially a temperature increase which may be as large as a factor
of a few tens. Later on, as expected, the cold electrons eventually loose energy due to the expansion.
Simple analytical calculations based on an adiabatic compression of the cold electron population by the
electric field associated with the rarefaction wave confirmed the results of the numerical simulations.
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