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Expansion of a superconducting vortex core into a
diffusive metal
Vasily S. Stolyarov1,2,3,4,5, Tristan Cren2, Christophe Brun2, Igor A. Golovchanskiy1,5, Olga V. Skryabina1,3,

Daniil I. Kasatonov1, Mikhail M. Khapaev1,6,7, Mikhail Yu. Kupriyanov1,7,8, Alexander A. Golubov1,9

& Dimitri Roditchev1,2,10,11

Vortices in quantum condensates exist owing to a macroscopic phase coherence. Here we

show, both experimentally and theoretically, that a quantum vortex with a well-defined core

can exist in a rather thick normal metal, proximized with a superconductor. Using scanning

tunneling spectroscopy we reveal a proximity vortex lattice at the surface of 50 nm—thick

Cu-layer deposited on Nb. We demonstrate that these vortices have regular round cores in

the centers of which the proximity minigap vanishes. The cores are found to be significantly

larger than the Abrikosov vortex cores in Nb, which is related to the effective coherence

length in the proximity region. We develop a theoretical approach that provides a fully self-

consistent picture of the evolution of the vortex with the distance from Cu/Nb interface, the

interface impedance, applied magnetic field, and temperature. Our work opens a way for the

accurate tuning of the superconducting properties of quantum hybrids.
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T
he proximity effect occurs at interfaces between super-
conducting (S) and normal (N) metals. It is due to the
penetration of superconducting correlations into the N

material and of non-superconducting quasiparticles into the
superconductor1–3. As a result, the N-layer acquires a relatively
long-range quantum coherence from the superconductor, while
on the S side the superconducting order parameter is partially
suppressed. Owing its quantum coherent nature, the proximity
effect is a key ingredient for operation of various superconducting
quantum coherent devices, ranging from simple Josephson
junctions to quantum computers4–12.

In the vicinity of the S/N interface the proximity effect leads to
specific spectral features in the quasiparticle excitation spec-
trum13–15. In the diffusive regime and at a finite thickness dN of
the N-layer, the induced coherent state in N-layer is characterized
by an energy gap δ, commonly referred to as minigap, which is of
the order of the Thouless energy � �hDN=d

2
S , smaller than the bulk

superconducting gap Δ in S16–21 (see also Methods, subsection
Proximity phenomena in the diffusive limit).

Local spectral signatures of the proximity effect were studied in
numerous theoretical and experimental works, though, on a
microscopic scale, the coherent character of the proximity phe-
nomena was revealed only recently20,22. In these works lateral
proximity junctions were built, specific phase portraits were
produced by applying an external magnetic field, and the quan-
tum coherence was demonstrated through its effect on local
spectral signatures in one (1D)20 and two dimensions (2D)22.

A more general yet complex is the 3D case of a superconducting
vortex crossing a S/N interface. From a fundamental point of view,
the interest to this problem is related to the special feature of the
proximity-induced state, namely that the pair potential Δ vanishes
on the N side of the S/N bilayer, while the minigap δ persists.
Therefore, an important question is how the superconducting
vortex structure is reproduced in the normal metal. Previous
studies23–26 were restricted to the limit of very small N layer
thickness, at which the proximity vortex essentially mimics the
superconducting one. How does the vortex evolve in a thick N-
layer? Do these vortices have cores, like Abrikosov vortex in
superconductors? What does fix the core size? Both experimental
and theoretical understandings of the problem are missing.

In this paper we study the spatial evolution of quantum vortices
induced into a diffusive 50 nm thick metallic Cu-film by proximity
with a superconducting 100 nm thick Nb layer. The geometry of
the experiment is presented in Fig. 1a (see also Methods, sub-
sections Sample preparation and characterization and scanning

tunneling spectroscopy experiments). At zero magnetic field a
spatially homogeneous proximity minigap is revealed at the sur-
face of Cu-film by scanning tunneling spectroscopy (STS), Fig. 1b.
By applying a magnetic field perpendicular to Cu/Nb interface we
created Abrikosov vortices in Nb and measured their effect on the
tunneling Local Density of States (tunneling LDOS) at Cu-surface.
STS maps revealed a disordered lattice of proximity vortices, with
a proximity minigap vanishing inside the vortex cores (Fig. 1c, d).
Since quantum vortices are direct consequence of the 2π-singu-
larity of the macroscopic phase, our STS experiments directly
demonstrate that in the diffusive normal Cu the quantum
coherence is preserved several tens of nanometers away from the
S/N interface. To extend our knowledge about the proximity
vortices inside N-electrode we developed a self-consistent theo-
retical model based on quasi-3D Usadel formalism27. A combi-
nation of this theory with the results of the surface-sensitive STS
experiment offers a complete microscopic picture of the spatial
and spectral evolution of the proximity vortex cores in a diffusive
metal. Among possible candidates for S/N bilayers we chose Nb/
Cu, a system commonly used for SNS junctions10,28–32.

Results
Experiment. Despite the expected granular structure of sputtered
Cu-films33 (see also Supplementary Fig. 3a), the tunneling spectra
acquired at zero magnetic field are spatially homogeneous; at 300
mK they have a typical shape of a proximity LDOS. The spectra
are characterized by broad quasiparticle peaks and a well-
developed proximity minigap δCu≃ 0.5 meV, which is sig-
nificantly smaller than the superconducting gap of the underlying
Nb, ΔNb= 1.4 meV (Fig. 1b). When the temperature increases,
the minigap rapidly vanishes; at T= 4–4.5 K it is not observed
anymore (the temperature dependence of the tunneling spectra is
available in Supplementary Fig. 2c, e).

In contrast, when a magnetic field is applied, the zero-bias
conductance (ZBC) maps dI/dV(V= 0) show spatially inhomoge-
neous distribution of ZBC, forming regular round spots, Fig. 2. As
the external magnetic field H is increased from 5 to 55mT, and
then to 120mT, the density of the spots raises in an expected ∝H
manner (Figs. 1c and 2a, c). In the centers of the spots the minigap
vanishes, and a normal state LDOS is recovered (Fig. 2b, d). The
spots can therefore be unambiguously interpreted as cores of
quantum vortex generated in Nb, crossing the entire Cu-film, and
emerging at the surface. The ZBC profiles of these vortices (Fig. 1c)
are similar to those of Abrikosov vortex cores in superconduc-
tors24,34–38. However, they are by a factor of 4 larger than the
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Fig. 1 Scanning tunneling spectroscopy experiment. a Local tunneling characteristics are probed at the surface of 50 nm thick Cu-film backed with a 100

nm-thick Nb. Superconducting vortices are created in Nb by applying an external magnetic field perpendicularly to Cu/Nb interface; b Red data points:

tunneling conductance dI(V)/dV spectrum measured at Cu-surface exhibits a minigap δCu≃ 0.5 meV; it is three times smaller than the superconducting

gap ΔNb≃ 1.4 meV in the dI(V)/dV spectrum of Nb (blue line); the observed excitations inside the minigap are due to a non-zero residual magnetic field

(see the discussion in the main text); c 800 nm × 250 nm color-coded ZBC dI/dV(V= 0) map acquired in the magnetic field of 120mT reveals proximity
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expected vortex core profile in the underlying superconducting Nb.
The understanding of this effect is not trivial, and requires
additional theoretical considerations that we present below.

Theory and numerical method. We performed our theoretical
calculations in the framework of the quasiclassical Usadel form-
alism27. The advantage of this approach is that in the diffusive
limit, l≪ ξ (where l and ξ are respectively the mean free path and
the coherence length), it enables accurate calculations of the
spatial and energy variations of the quasiparticle excitation
spectra in superconducting hybrids (Usadel fits of experimental
tunneling conductance spectra acquired in zero-field are available
in Supplementary Fig. 2d, f).

The drawback of the Usadel approach resides in a technical
complexity of solving differential Usadel equations self-consistently
in spatially inhomogeneous 3D-systems, with properly including the
self-consistency and taking into account various boundary condi-
tions. These are nevertheless required to describe realistic super-
conducting hybrids under magnetic filed. This complexity explains
why the Usadel model has mainly been used to solve 1D or quasi-1D
problems, rare exceptions being the original works by Cuevas and
Bergeret39,40 who solved Usadel equations in 2D and predicted the
existence of quantum vortices in the proximity area of diffusive SNS
junctions, and a recent report by Amundsen and Linder41. In the
present work we took advantage of a quasi-cylindrical geometry of
the vortex core and replaced the hexagonal vortex lattice unit cell by
a circular one. This so-called Wigner–Seitz approximation42 is
reasonable at low fields when the size of the vortex lattice unit cell is
significantly larger than the lateral size of the vortex core. Notice,
that the Wigner–Seitz approximation we use here to define the
coordinate dependence of the Green’s function has been previously
successfully used to study the Abrikosov vortex lattice and the
influence of trapped Abrikosov vortices on properties of tunnel
Josephson junctions16,43.

We a priori assumed that the conditions of the dirty limit are
valid for both S and N films, whose thicknesses are defined

respectively as dS and dN. The pair potential, Δ is considered zero

in N. We aligned the z-axis with ~H, and placed the origin at the
interface between S and N metals. The S and N layers are
therefore located at −dS ≤ z ≤ 0 and 0 ≤ z ≤ dN, respectively
(Fig. 3a–c). According to the Wigner–Seitz approach the
hexagonal unit cell of the vortex lattice is replaced by a circular

one with a radius RS= Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Hc2=H
p

, where the critical radius Rc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ0=πHc2

p

(Φ0 is the magnetic flux quantum) and the second
critical field Hc2 are determined by the well-known expressions42:

ln t þ ψ
1

2
þ t

r2c

� �

� ψ
1

2

� �

¼ 0: ð1Þ

In Eq. (1) ψ(x) is the digamma function, t= T/Tc—reduced
temperature, rc= Rc/ξS is the reduced critical radius, ξS=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hDS=2πkBTc

p

, is the effective superconducting coherence length

(An often used formula ξS ¼
ffiffiffiffiffiffiffiffiffiffiffi

DS=Δ
p

differs from our definition

only by a numerical factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π=1:76
p

’ 1:89), and DS is the
diffusion coefficient in S.

Under the above assumptions, the system of Usadel equa-
tions27 describing the behavior of S/N bilayer in a magnetic field
in cylindrical (r, z) coordinates has the form16,43:
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Here θS(N) are complex pairing angles related to the local DOS in
S(N) as NS(N)(r, z, ε)= Re{cosθS(N)}, Ω= (2n+ 1)t are the

Matsubara frequencies, ξN=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hDN=2πkBTc

p

, DN is the diffusion
coefficient in N, k= ξN/ξS, Q is the circular component of the
vector potential Q= (0, Q, 0) normalized to Φ0/2πξS. The pair
potential Δ in (2)–(5) is normalized to πkBTc, and the coordinates
r, z are normalized to ξS. The physical meaning of ξN is discussed
at the end of the paper.

To write down the solution of the Maxwell equation, ∇ ×∇ ×
Q= κ−2J, for the vector potential Q in the form of Eq. (4), we
have assumed that the Ginzburg–Landau parameter
κ ¼ λS?=ξS � 1. This condition allows one to neglect the
magnetic field produced by supercurrents in comparison with
the externally applied field H. The external field is therefore
considered constant inside a circular vortex cell provided that the
reduced cell radius rS= RS/ξS is smaller than λS⊥=
maxðλS; λ2S=dSÞ, where λS is the London penetration depth in S.

Equations (2)–(5) should be supplemented by the boundary
conditions13 at the S/N interface (z= 0):

γBk
dθN
dz

¼ sinθNcosθS � sinθS cosθN; ð6Þ

dθS
dz

¼ γk
dθN
dz

; ð7Þ

where γB and γ are the suppression parameters

γB ¼ RSNASN

ρNξN
; γ ¼ ρSξS

ρNξN
: ð8Þ

Here, RSN, and, ASN, are, respectively, the resistance and the area
of the S/N interface, ρS(N), are the normal state resistivities of S(N)
metals. At the bottom S/Vacuum interface and at the top N/

Vacuum interface the boundary conditions has the form:

dθS
dz

¼ 0; z ¼ �dS; ð9Þ

dθN
dz

¼ 0; z ¼ dN; ð10Þ

In addition, at the vortex unit cell border, r= rS, and in its center,
r= 0, we have, respectively:

dθNðrSÞ
dr

¼ dθSðrSÞ
dr

¼ 0; θNð0Þ ¼ θSð0Þ ¼ 0: ð11Þ

The boundary value problem (2)–(11) has been solved
numerically. Modified Newton method was evaluated to resolve
non-linearity of the differential problem (2)–(10). To improve the
convergency of Newton method we applied a simple dumping44.
This continuous Newton procedure brings us to a set of linear
differential problems which are solved by applying a special form
of the Finite Element Method (FEM), the so-called mixed FEM45,
which solves simultaneously for both, complex angles θS, θN, and
their gradients. Importantly, the developed FEM form enables to
solve problems with discontinuous solutions which may arise
from non-standard interface conditions (6), describing a
discontinuity of anomalous Green’s functions at the S/N inter-
face. We implemented the whole Newton method—FEM
procedure in the framework of finite element package FreeFEM
++ (http://www.freefem.org/ff++)46.

The complete numerical procedure consists of two stages. It
starts with solving the boundary value problem (2)–(11) and with
the determination of the spatial dependence of the pair potential
Δ(r). At the second stage, we perform the analytical continuation
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in the Eqs. (2)–(10) by replacement ω →−iε, and for the already
known Δ(r) dependence, in order to calculate the dependence of
the density of states N(r, z, ε)= Re{cosθN} on energy ε at an
arbitrary position r, z.

Results of numerical calculations. Using the numerical method
described above, we have calculated the spatial evolution of the
LDOS near the vortex core in the Nb/Cu-bilayer. The results of
the calculations are presented in Fig. 3. Figure 3a–c presents the
(r, z)-spatial evolution of ZB-DOS for three different values of the
magnetic field, corresponding to the experimental data presented
in Figs. 1 and 2. The validity of this result is confirmed by an
excellent agreement between the calculated LDOS profiles in
Fig. 3d–f and the experimental ones in Fig. 2b, d, both corre-
sponding to z= 50 nm, i.e. to the LDOS at the surface of Cu-film.
Figure 3g–i shows some of the calculated tunneling conductance
spectra at the surface of the Cu film in between vortices (red
lines), and their comparison with the experimental STS data
(dots), also demonstrating a nice agreement. Importantly, in these
calculations the resistivity ρCu and the Nb/Cu-interface resistivity
RSNASN were taken as the only fitting parameters. Once adjusted,
they were fixed to calculate the excitation spectra for all positions,
fields and temperatures.

The results presented in Fig. 3 were all obtained taking ρCu=
3.7 μΩ cm and RSNASN= 1.5 × 10−11Ω cm2, both values being
typical for in situ fabricated Nb/Cu structures47. All other
parameters of the model were calculated on the basis of these two
fitting parameters and well-established relations. The mean free
path in the Cu-film, lCu= 18 nm, was determined using the well-
known empiric relation (lCuρCu)

−1
= 1.54 × 1011Ω−1 cm−248.

This lCu value corresponds well to the grain size of our Cu-film
estimated from STM images (Supplementary Fig. 3a). The
parameter ξN in Cu, ξCu= 37 nm, was calculated using
DCu ¼ lCuv

Cu
F =3, vCuF = 1.57 × 106m/s. The critical temperature

of the bilayer, Tc= 8.1 K, was extracted from the transport
experiment (see Methods, subsection Sample preparation and
characterization, and Supplementary Fig. 2a). That fixes, in turn,
the proximity parameters, γ= 0.53 and γB= 1.1. The coherence
length in Nb, ξNb= 9 nm, was taken from49.

Discussion
We now turn to the problem of the induced quantum coherence
in N. The parameter ξN we used in Usadel equations is, by a

numerical factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π=1:76
p

’ 1:89, the so-called normal

coherence length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hDN=Δ0

p

, which is often associated in litera-
ture with the quantum coherence length in N (Δ0= 1.76kBTc is
zero-temperature gap in S). On the microscopic level however,
the proximity phenomena in N are described by Andreev qua-
siparticles: pairs of coherent electrons and retro-scattered holes
which are converted into/from Cooper pairs at the S/N interface
(see15). The important point here is that if the energy of an
Andreev electron with respect to the Fermi energy is E (usually,
E ≤ Δ) the hole has the energy −E. Quasiclassically, such
electron–hole pair dephases in time; a typical dephasing time is t
~ ħ/E. In a diffusive metal, this time is associated with a distance

LE ¼ ffiffiffiffiffiffiffiffi

DNt
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hDN=E
p

. It is immediately clear that for an
Andreev quasiparticle of an energy E= Δ the characteristic
dephasing coherence length is indeed LE= 1.89ξN. However,
other Andreev quasiparticles, having energies lower than Δ,
remain coherent over longer distances, LE > ξN. Theoretically, the
coherence length could even be infinite, as LE →∞ for E → 0. In
real systems, thermal excitations ~kBT and the Thouless energy
ETh ¼ �hDN=d

2
N, related to the physical size of N-subsystem, limit

the spatial extent of coherent Andreev quasiparticles in N. At low
temperatures of our STS experiment, the characteristic energy is
the minigap, δ > kBT, and the effective coherence length in N

should be Lδ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hDN=δ
p

. Putting the value for δ obtained both
experimentally and theoretically, we get Lδ ≈ 112 nm, i.e., Lδ ≠
ξN

15.
The parameter ξN rather defines a region near S/N interface

where the DOS strongly evolves from a BCS-like to the minigap.
Far enough from this transition region, the proximity DOS
should not evolve strongly15. Indeed, by analyzing theoretical
evolution of the vortex core inside N (follow, for instance, the
color plot in Fig. 3a) it becomes clear that after a jump at S/N
interface, and a rapid evolution in N over 30–50 nm, the vortex
core size indeed tends to a saturation at the surface. Therefore,
the lateral size of the proximity vortex core measured at the
surface by STS should give a good estimate for the effective
coherence length in N.

The measured ZBC vortex core profiles are presented as color
circles in Fig. 4a. Solid lines are the fits using the approach
developed to fit the vortex cores in superconductors in high
magnetic fields50. The fits are obtained with ξeff= 109 nm.
Dashed lines are fits using the phenomenological formula for
vortices in superconductors suggested in51, σH(r)= 1− (1− σ0)
tanh(r/ξeff), in which σ0 is the normalized ZBC measured far from
the core, and ξeff is the effective coherence length. This empiric
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formula is commonly used in the STM/STS community to extract
the superconducting coherence length from the vortex core
profile. The best fit is obtained with ξeff= 105 nm, i.e., indeed
ξeff ≈ Lδ > ξN. In Fig. 4b we show several vortex core profiles (zero-
bias conductance) calculated for different N-thicknesses and
compare them to fits by the above formula for σH(r). One can see
that the formula works well for the S system alone and qualita-
tively reproduces the overall dependence for S/N bi-layers. By
evaluating ξeff and δ for samples with different Cu-thickness we
found a nearly linear ξ2eff ð1=δÞ dependence, Fig. 4c, as expected
for Lδ(δ). Therefore, the proximity vortex have indeed a char-
acteristic lateral extension ξeff ≈ Lδ. A simplified picture here is
that at distances >ξN from S/N interface, the proximity vortex
cores look like the cores of Abrikosov vortices in super-
conductors. Consequently, the N-electrode of a finite thickness
dN<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hDN=kBT
p

can be thought as a genuine superconductor
with δ and Lδ playing respective roles of the effective super-
conducting gap and coherence length.

The round shape and well-defined size ~ 2Lδ of the observed
proximity vortex cores make them substantially different from the
Josephson vortices predicted in39 and recently observed in N-
parts of lateral SNS junctions22. In these works, the Josephson
vortex cores were found distorted. Their width is fixed by the
width of the N-part of the SNS junction, whereas their length
along S/N interface varies with the applied magnetic field. The
length is defined by a typical distance over which the quantum
phase along each S/N interface accumulates a π-shift. In rising
magnetic field, the phase gradients along S/N interfaces increase,
and the length of the Josephson proximity vortex cores decreases.
The minimum length of thermodynamically stable Josephson
vortex cores is limited by critical currents at S-edges to ~ξS. Up to
now both kinds of vortices were observed only in the diffusive
regime. Extending experimental studies to the ballistic limit52 is a
challenging task for the future.

The variation of Lδ and δ with the N-layer thickness, as well as
the high precision of the Usadel approach enable engineering S/N
bi-layers with desired properties (see also Methods, subsection
Numerical calculations). The critical temperature, currents and
fields can be tuned, providing a route for new functionalities11.
The minigap filling with quasiparticle excitations due to circu-
lating currents can also be optimized—an important point for
engineering superconducting qubits, in studies of Majorana
states, Shiba bands, topological superconductivity. Precisely, we
found that the density of quasiparticle excitations inside the
minigap strongly depends on magnetic field (via orbital effect)
and on N-layer thickness. Figure 5a presents ZB-DOS vortex

profiles at 1.3 and 5 mT in the 50 nm Cu-thick sample. At 1.3 mT
(RS= 400 nm), the minigap continues to exist at the vortex lattice
unit cell boundary, as ZB-DOS is zero there. However, already at
5 mT (RS= 220 nm) the minigap transforms to a pseudo-mini-
gap, ZB-DOS > 0. In Fig. 5b the LDOS at the unit-cell boundary
(r= RS) is plotted as a function of energy, for the same fields. It is
immediately clear that when the the radius RS of the vortex unit
cell becomes comparable or smaller than Lδ, the minigap fills with
quasiparticle excitations (even between vortices). The phenom-
enon takes place first at the minigap edges and extends to all in-
gap states, Fig. 5b. In Fig. 4b we plot radial ZB-DOS profiles for
samples of different Cu-thickness. They demonstrate that as Cu-
thickness is increased and the zero-field minigap becomes smaller
and smaller, the density of in-gap quasiparticle excitations rapidly
increases, thus transforming the hard minigap in a sort of a
pseudo-minigap. This demonstrates the fragility of the minigap
with respect to circulating currents, and puts constraints for
applications.

In conclusion, we experimentally and theoretically demon-
strated the existence of a well-defined core of quantum vortex
induced from a superconductor (Nb) into a diffusive normal
metal (Cu). By mapping the spatial variations of the proximity
minigap in the local tunneling spectra, we measured the core size,
and followed the evolution of the cores with temperature and
magnetic field. We complemented our observations by a self-
consistent model based on quasi-classical Usadel approach. We
developed a numerical method that allowed us to calculate with
high precision the quasiparticle excitation spectra near the vortex
cores at realistic conditions of the scanning tunneling spectro-
scopy experiment, and to discover characteristic spatial and
energy scales which are in play inside S/N bilayers. Our results
extend the microscopic knowledge about quantum vortex, and
enable extracting relevant physical properties of the buried S/N
interface that control the proximity phenomena.

Methods
Proximity phenomena in the diffusive limit. To describe proximity effect in
diffusive superconducting and normal materials, the most complete theoretical
framework is provided by the quasiclassical theory of superconductivity based on
Usadel equations16,18,19,27,53. A general hallmark found for a SN bilayer is that the
superconducting correlations induced in N probed at energy E remain coherent

over a length LE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hDN=E
p

, DN being the diffusion coefficient in N. This makes
naturally appear the coherence length ξN in N associated with the superconducting

energy gap Δ in S, ξN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hDN=Δ
p

16–18. However an important difference should
be made when the thickness dN of the N part is finite or infinite. When the
thickness is finite a characteristic true energy gap appears commonly referred to as
minigap, which is directly linked directly to the Thouless energy of the N part
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ETh ¼ �hDN=d
2
N in the long junction limit dN � ξN . On the other hand, for infinite

thickness there is no more any energy gap and for any energy E the super-
conducting correlations in N decay over LE provided that LE < LΦ, LΦ being the

electronic phase coherence length of N (ref. 54, where Eq. (28) explicitly shows
ffiffiffi

E
p

dependence of DOS for the case of infinite thickness of N-layer).
Local spectral signatures of the proximity effect were experimentally probed by

tunneling for SN junctions with an infinite N system21,55, and a finite N system56,57

and have thoroughly confirmed the theoretical predictions of the quasiclassical
theory. Other important geometries such as Josephson SNS junctions have also
been addressed theoretically13,39,58–61. Recent experimental studies of SNS
junctions20,22 further confirmed the robustness of the Usadel theory in the diffusive
limit.

Sample preparation and characterization. The Cu/Nb-bilayers were elaborated
using the two-step inverted growth/cleavage method, initially suggested by Kar-
apetrov et al.62,63 and Stolyarov et al.33. The method enables the preparation, under
ultrahigh vacuum, of a large variety of complex hybrid systems with clean exposed
surfaces. The latter condition is mandatory for reliable scanning tunneling spec-
troscopy measurements with high spatial and energy resolution.

The Nb/Cu bilayers were first grown at a base pressure of 5 × 10−7mbar by
magnetron sputtering onto a SiO2(270 nm)/Si(0.3 mm) wafer kept at room
temperature. First, a 50 nm thick film of Cu was deposited on SiO2, followed by the
deposition of 100 nm of Nb. The SiO2 layer is essential to avoid a chemical bonding
between Cu and Si, thus preventing a strong mechanical adhesion of the Cu-layer
to the substrate (Supplementary Fig. 1a).

Macroscopic superconducting properties of Cu/Nb-bilayers were measured in
4-probe low temperature transport experiments. A sharp transition to a
superconducting state was detected at Tc= 8.1 K, as demonstrated in
Supplementary Fig. 2a.

Scanning tunneling spectroscopy experiments. At the second stage, the samples
were glued in air using a UHV-compatible conductive epoxy (Epotek H27D
(http://www.epotek.com)), Supplementary Fig. 1. The Nb-side of the sample was
glued onto the stainless steel STM sample holder; a cleaver was glued onto the
opposite (Si) face of the sandwich (see Supplementary Fig. 1b–d). The sandwiches
prepared in this way were introduced into the UHV STM chamber (base pressure
of 3 × 10−11mbar). By softly pushing on the cleaver with the help of a manipulator
(Supplementary Fig. 1e, f), the Nb/Cu/SiO2/Si multilayer structure breaks at the
Cu/SiO2 interface, the weakest part of the sandwich. The obtained sample, a
Cu/Nb-bilayer with Cu as top layer (Supplementary Fig. 1a), was then put into
UHV-STM head (Supplementary Fig. 1g). In-situ STM/STS experiments were
carried out in the temperature range 0.3–5 K64; mechanically etched Pt(80%)/Ir
(20%) tips were used. Topographic STM images were obtained in a constant-
current mode; STS was realized by acquiring local I(V)(x, y) characteristics and
numerically differentiating them to obtain the tunneling conductance dI/dV(V)(x,
y) maps.

Numerical calculations. The details of the numerical method developed within the
Usadel model are presented in the Main Text. As a validity check, the method was
applied to reproduce the experimentally measured temperature dependence of the
tunneling proximity spectra (Supplementary Fig. 2b–f). The temperature evolution
of the Zero-Bias Conductance and their fits by Usadel model are presented in
Supplementary Fig. 2b. The temperature dependence of the tunneling spectra and
their fits are presented in Supplementary Fig. 2c, d. The method gives a detailed
agreement with the experimental data, Supplementary Fig. 2e, f. Remarkably, all
the fits are generated with the same set of parameters (see the discussion in the
Main Text).

Supplementary Figure 3c represents the calculated tunneling DOS of Nb (yellow
line) along with the calculated proximity DOS at Cu-surface for various thickness
of Cu-layer (15 nm, 30 nm, 50 nm, 100 nm, 150 nm, 200 nm). As the thickness of
N-layer increases, the proximity minigap δ decreases. The calculated DOS at the
Cu-surface for different Cu-film thicknesses enables estimating the proximity
minigap.

The developed numerical method enables predicting the evolution of the DOS
in the vicinity of the vortex singularity. Supplementary Figure 3b demonstrates the
calculated evolution of the vortex core inside the N-layer for different Cu-layer
thicknesses at a magnetic field of 5 mT. For small thicknesses the vortex core
mimics the core of the Abrikosov vortex in Nb. As the thickness increases, the
vortex core rapidly expands in the proximity region. Also important, the jump in
the core size at the S/N interface strongly depends on N-layer thickness.
Remarkably, the depth-dynamics of the vortex core expansion is slower near the
surface, as it is clear for all thicknesses up to 100 nm. These calculations
demonstrate the crucial importance of the finite thickness of Cu-layer for the
vortex core shape and expansion.

For thicker N-layers (150 nm, 200 nm) the vortex cores rapidly expand to the
limit of the vortex unit cell. The situation corresponds to the overlap of the
proximity vortex cores which occurs even at low fields of a few mT. This shows
how the superconducting correlations are affected by magnetic fields and super-
currents; it enables one to tune the magnetic field response of S/N-bilayers.

Supplementary Figure 3d presents the comparison between the vortex core
profiles calculated in the framework of Usadel approach and the fits using the
approximate formula suggested in51 (see also in the Main text). The fits enable to
extract the effective coherence length ξeff in the normal layer for different
thicknesses of Cu-film.

Data availability. Authors can confirm that all relevant data are included in the
paper and its Supplementary Information files. Additional data are available on
request from the authors.

Received: 8 February 2018 Accepted: 8 May 2018

References
1. de Gennes, P. G. Superconductivity in Metals and Alloys. (W.A. Benjamin, NY,

1966).
2. McMillan, W. L. Tunneling model of the superconducting proximity effect.

Phys. Rev. 175, 537 (1968).
3. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect (John

Wiley and Sons Inc., 1982).
4. Mukhanov, O. A. Digital Processing, Superconductor Digital Electronics.

In Applied Superconductivity: Hand-book on Devices and Applications
(ed. Seidel, P.) (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,
Germany, 2015).

5. Soloviev, I. I. et al. Beyond Moore’s technologies: operation principles of a
superconductor alternative. Beilstein J. Nanotechnol. 8, 2689–2710 (2017).

6. Cleuziou, J.-P. et al. Carbon nanotube superconducting quantum interference
device. Nat. Nanotechnol. 1, 53–59 (2006).

7. Giazotto, F., Peltonen, J. T., Meschke, M. & Pekola, J. P. Superconducting
quantum interference proximity transistor. Nat. Phys. 6, 254–259 (2010).

8. Bannykh, A. A. et al. Josephson tunnel junctions with a strong ferromagnetic
interlayer. Phys. Rev. B 79, 054501 (2009).

9. Larkin, T. I. et al. Ferromagnetic Josephson switching device with high
characteristic voltage. Appl. Phys. Lett. 100, 222601 (2012).

10. Skryabina, O. V. et al. Josephson coupling across a long single-crystalline Cu
nanowire. Appl. Phys. Lett. 110, 222605 (2017).

11. Blois, A., Rozhko, S., Hao, L., Gallop, J. C. & Romans, E. J. Proximity effect
bilayer nano superconducting quantum interference devices for millikelvin
magnetometry. J. Appl. Phys. 114, 233907 (2013).

12. Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit.
Phys. Rev. Lett. 115, 127001 (2015).

13. Kuprianov, M. Yu & Lukichev, V. F. Influence of boundary transparency on
the critical current of “dirty” SS’S structures. Zh. Eksp. Teor. Fiz. 94, 139–149
(1988)., Sov. Phys. JETP 67, 1163–1168 (1988).

14. Pannetier, B. & Courtois, H. Andreev reflection and proximity effect. J. Low.
Temp. Phys. 118, 599–615 (2000).

15. Cuevas, J. C., Roditchev, D., Cren, T. & Brun, C. The Oxford Handbook of
Small Superconductors. Chapter 4. (Oxford Univ. Press, Oxford, 2016).

16. Golubov, A. A. & Kupriyanov, M. Yu. Theoretical investigation of Josephson
tunnel junctions with spatially inhomogeneous superconducting electrodes. J.
Low. Temp. Phys. 70, 83–130 (1988).

17. Golubov, A. A. & Kupriyanov, M. Yu. Josephson effect in SNlNS and SNIS
tunnel structures with finite transparency of the SN boundaries. Zh. Eksp.
Teor. Fiz. 96, 1420–1433 (1989)., Sov. Phys. JETP 69, 805–812 (1989).

18. Belzig, W., Bruder, C. & Schon, G. Local density of states in a dirty
normal metal connected to a superconductor. Phys. Rev. B 54, 9443–9448
(1996).

19. Belzig, W. et al. Quasiclassical Green’s function approach to mesoscopic
superconductivity. Superlattices Microstruct. 25, 1251–1288 (1999).

20. le Sueur, H., Joyez, P., Pothier, H., Urbina, C. & Esteve, D. Phase controlled
superconducting proximity effect probed by tunneling spectroscopy. Phys.
Rev. Lett. 100, 197002 (2008).

21. Gueron, S. et al. Superconducting proximity effect probed on a mesoscopic
length scale. Phys. Rev. Lett. 77, 3025 (1996).

22. Roditchev, D. et al. Direct observation of Josephson vortex cores. Nat. Phys.
11, 332 (2015).

23. Nishizaki, T., Troyanovski, A. M., van Baarle, G. J. C., Kes, P. H. & Aarts, J.
STM imaging of vortex structures in NbN thin films. Physica C. 388-389,
777–778 (2003).

24. Golubov, A. A. & Hartmann, U. Electronic structure of the Abrikosov vortex
core in arbitrary magnetic fields. Phys. Rev. Lett. 72, 6302 (1994).

25. Golubov, A. A. Abrikosov vortex core structure in a proximity-effect
multilayer. Czech. J. Phys. 46, 569–570 (1996).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04582-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2277 |DOI: 10.1038/s41467-018-04582-1 |www.nature.com/naturecommunications 7

http://www.epotek.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications


26. Kopnin, N. B., Khaymovich, I. M. & Mel’nikov, A. S. Vortex matter in low-
dimentional systems with proximity-induced superconductivity. J. Exp. Theor.
Phys. 144, 486–507 (2013).

27. Usadel, K. D. Generalized diffusion equation for superconducting alloys. Phys.
Rev. Lett. 25, 507 (1970).

28. Kupriyanov, M. Yu. et al. Double-barrier Josephson structures as the novel
elements for superconducting large-scale integrated circuits. Phys C. 326–327,
16–45 (1999).

29. Jabdaraghi, R. N., Peltonen, J. T., Saira, O.-P. & Pekola, J. P. Low-temperature
characterization of Nb-Cu-Nb weak links with Ar ion-cleaned interfaces. Appl.
Phys. Lett. 108, 042604 (2016).

30. Krasnov, V. M., Pedersen, N. F., Oboznov, V. A. & Ryazanov, V. V. Josephson
properties of Nb/Cu multilayers. Phys. Rev. B 49, 12969–12974 (1994).

31. Dubos, P., Courtois, H., Buisson, O. & Pannetier, B. Coherent low-energy
charge transport in a diffusive S-N-S junction. Phys. Rev. Lett. 87, 20 (2001).

32. Kushnir, V. N., Prischepa, S. L., Cirillo, C. & Attanasio, C. Proximity effect
and interface transparency in Nb/Cu multilayers. J. Appl. Phys. 106, 113917
(2009).

33. Stolyarov, V. S. et al. Ex situ elaborated proximity mesoscopic structures for
ultrahigh vacuum scanning tunneling spectroscopy. Appl. Phys. Lett. 104,
172604 (2014).

34. Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. & Waszczak, J. V.
Scanning-tunneling-microscope observation of the Abrikosov flux lattice and
the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214 (1989).

35. Hess, H. F., Robinson, R. B. & Waszczak, J. V. Vortex-core structure observed
with a scanning tunneling microscope. Phys. Rev. Lett. 64, 2711 (1990).

36. Hess, H. F. Scanning tunneling spectroscopy of vortices in a superconductor.
Physica C 259, 185–189 (1991).

37. Suderow, H., Guillamon, I., Rodrigo, J. G. & Vieira, S. Imaging
superconducting vortex core and lattices with a scanning tunneling
microscope. Superc. Sci. Technol. 27, 063001 (2014).

38. Cren, T., Serrier-Garcia, L., Debontridder, F. & Roditchev, D. Vortex fusion
and giant vortex states in confined superconducting condensates. Phys. Rev.
Lett. 107, 097202 (2011).

39. Cuevas, J. C. & Bergeret, F. S. Magnetic interference patterns and vortices in
diffusive SNS junctions. Phys. Rev. Lett. 99, 217002 (2007).

40. Bergeret, F. S. & Cuevas, J. C. The vortex state and josephson critical current
of a diffusive SNS junction. J. Low. Temp. Phys. 153, 304 (2008).

41. Amundsen, M. & Linder, J. General solution of 2D and 3D superconducting
quasiclassical systems: coalescing vortices and nanoisland geometries. Sci. Rep.
6, 22765 (2016).

42. Ihle, D. Wigner-Seitz approximation for the description of the mixed state of
type II superconductors. Phys. Stat. Sol. B 47, 423–428 (1971).

43. Watts-Tobin, R. J., Kramer, L. & Pesch, W. Local structure and
thermodynamic behavior of dirty superconductors in the mixed state at
arbitrary temperature. J. Low. Temp. Phys. 17, 71 (1974).

44. Ermakov, V. V. & Kalitkin, N. N. The optimal step and regularization for
Newton’s method. USSR Comput. Mat. Mat. Phys. 21, 235–242 (1981).

45. Boffi, D., Brezzi, F. & Fortin, M.Mixed finite element methods and applications
(Springer Series in Computational Mathematics, 2013).

46. Hecht, F. New development in freefem++. J. Numer. Math. 20, 251 (2012).
47. Park, W. et al. Measurement of resistance and spin-memory loss (spin

relaxation) at interfaces using sputtered current perpendicular-to-plane
exchange-biased spin valves. Phys. Rev. B 62, 1178 (2000).

48. Chambers, R. G. The anomalous spin effect. Proc. R. Soc. Lond. Ser. A Math.
Phys. Sci. 215, 481–497 (1952).

49. Krasnov, V. M., Kovalev, A. E., Oboznov, V. A. & Ryazanov, V. V. Anisotropy
of the lower critical field in a Nb/Cu multilayer the evidence for 3D-2D
crossover. Physica C. 215, 265–268 (1993).

50. Fente, A. et al. Field dependence of the vortex core size probed by scanning
tunneling microscopy. Phys. Rev. B 94, 014517 (2016).

51. Eskildsen, M. R. et al. Vortex imaging in the band of magnesium diboride.
Phys. Rev. Lett. 89, 187003 (2002).

52. Ostroukh, V. P., Baxevanis, B., Akhmerov, A. R. & Beenaker, C. W. J. Two-
dimensional Josephson vortex lattice and anomalously slow decay of the
Fraunhofer oscillations in a ballistic SNS junction with a warped Fermi
surface. Phys. Rev. B 94, 094514 (2016).

53. Rammer, J. & Smith, H. Quantum field-theoretical methods in transport
theory of metals. Rev. Mod. Phys. 58, 323 (1986).

54. Golubov, A. A. & Kupriyanov, M. Yu. Quasiparticle current in ballistic NcN’S
junctions. Phys C. 259, 27 (1996).

55. Serrier-Garcia, L. et al. Scanning tunneling spectroscopy study of the
proximity effect in a disordered two-dimensional metal. Phys. Rev. Lett. 110,
157003 (2013).

56. Vinet, M., Chapelier, C. & Lefloch, F. Spatially resolved spectroscopy on
superconducting proximity nanostructures. Phys. Rev. B 63, 165420
(2001).

57. Moussy, N., Courtois, H. & Pannetier, B. Local spectroscopy of a proximity
superconductor at very low temperature. Europhys. Lett. 55, 861 (2001).

58. Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 51, 101 (1979).
59. Kupriyanov, M. Yu. & Lukichev, V. F. Influence of the proximity effect in the

electrodes on the stationary properties of S-N-S Josephson structures. Sov. J.
Low. Temp. Phys. 8, 526 (1982).

60. Zaikin, A. D. & Zharkov, G. F. Effect of external fields and impurities on the
Josephson current in SNINS junctions. Sov. Phys. JETP 54, 944 (1981).

61. Zhou, F., Charlat, P., Spivak, B. & Pannetier, B. Density of States in
Superconductor-Normal Metal-Superconductor Junctions. J. Low. Temp.
Phys. 110, 841–850 (1998).

62. Karapetrov, G., Fedor, J., Iavarone, M., Rosenmann, D. & Kwok, W.-K. Direct
observation of geometrical phase transitions in mesoscopic superconductors
by scanning tunneling microscopy. Phys. Rev. Lett. 95, 167002 (2005).

63. Karapetrov, G., Fedor, J., Iavarone, M., Marshall, M. T. & Divan, R. Imaging of
vortex states in mesoscopic superconductors. Appl. Phys. Lett. 87, 162515
(2005).

64. Cren, T., Fokin, D., Debontridder, F., Dubost, V. & Roditchev, D. Ultimate
Vortex Confinement Studied by Scanning Tunneling Spectroscopy. Phys. Rev.
Lett. 102, 127005 (2009).

Acknowledgements
We thank V. Ryazanov, V. Gurtovoy, F. Debontridder for fruitful discussions and advice.

This work was supported by the French National Agency for Research ANR via grants

MISTRAL and SUPERSTRIPES, and by the grant of the Ministry of Education and

Science of the Russian Federation, Grant No. 14.Y26.31.0007. V.S.S. acknowledges the

financial support of the Ministry of Education and Science of the Russian Federation in

the framework of Increase Competitiveness Program of NUST MISiS (No.K3-2017-042).

M.Y.K. acknowledges the partial support by the Program of Competitive Growth of

Kazan Federal University.

D.R., V.S.S., and D.I.K. acknowledge the partial financial support within the framework

of the state competitiveness enhancement program of improving the prestige of leading

Russian universities among world leading research and education centers. Theoretical

formulation of the problem, the development of numerical algorithms and numerical

calculations were carried out with the support of the Russian Science Foundation (project

no 12-17-01079). A.A.G. and D.R. acknowledge the COST project “Nanoscale coherent

hybrid devices for superconducting quantum technologies”—Action CA16218. V.S.S.

acknowledges the partial financial support RFBR 16-02-00815, 16-02-00727.

Author contributions
V.S.S., T.C., and D.R. conceived the project and supervised the experiments; V.S.S., T.C.,

C.B., and O.V.S. performed the sample and surface preparation for STM experiments;

V.S.S., M.Y.K., A.A.G., M.M.K. and D.I.K. performed the theoretical calculations. V.S.S.,

I.A.G. A.A.G., M.Y.K., and D.R. wrote the manuscript with contributions from the other

authors.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-

018-04582-1.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04582-1

8 NATURE COMMUNICATIONS |  (2018) 9:2277 |DOI: 10.1038/s41467-018-04582-1 |www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-018-04582-1
https://doi.org/10.1038/s41467-018-04582-1
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Expansion of a superconducting vortex core into a diffusive metal
	Results
	Experiment
	Theory and numerical method
	Results of numerical calculations

	Discussion
	Methods
	Proximity phenomena in the diffusive limit
	Sample preparation and characterization
	Scanning tunneling spectroscopy experiments
	Numerical calculations
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


