TITLE：

Expansion of Intronic GGCCTG Hexanucleotide Repeat in NOP56 Causes SCA36，a Type of Spinocerebellar Ataxia Accompanied by Motor Neuron Involvement．

AUTHOR（S）：

Kobayashi，Hatasu；Abe，Koji；Matsuura，Tohru；Ikeda， Yoshio；Hitomi，Toshiaki；Akechi，Yuji；Habu，Toshiyuki；Liu， Wanyang；Okuda，Hiroko；Koizumi，Akio

[^0]
ISSUE DATE：

2011－06－15
URL：
http：／／hdl．handle．net／2433／141931

RIGHT：

©2011 by The American Society of Human Genetics．；This is not the published version．Please cite only the published version．；この論文は出版社版でありません。引用の際には出版社版をご確認ご利用くださ い。

Expansion of Intronic GGCCTG Hexanucleotide Repeat in NOP56 Causes a Type of Spinocerebellar Ataxia (SCA36) Accompanied by Motor Neuron Involvement

Hatasu Kobayashi ${ }^{1,4}$, Koji Abe ${ }^{2,4}$, Tohru Matsuura ${ }^{2,4}$, Yoshio Ikeda ${ }^{2}$, Toshiaki Hitomi ${ }^{1}$, Yuji Akechi ${ }^{2}$, Toshiyuki Habu ${ }^{3}$, Liu Wanyang ${ }^{1}$, Hiroko Okuda ${ }^{1}$ and Akio Koizumi ${ }^{1 *}$
${ }^{1}$ Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
${ }^{2}$ Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan.
${ }^{3}$ Radiation Biology Center, Kyoto University, Kyoto, Japan.

${ }^{4}$ These authors contributed equally to this work *Correspondence: Prof. Akio Koizumi M.D., Ph.D.

Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.

Tel: +81-75-753-4456; Fax: +81-75-753-4458

E-mail: koizumi.akio.5v@kyoto-u.ac.jp

Abstract

Autosomal dominant spinocerebellar ataxias（SCAs）are a heterogeneous group of neurodegenerative disorders．In this study，we performed genetic analysis of a unique form of SCA（SCA36）that is accompanied by motor neuron involvement． Genome－wide linkage analysis and subsequent fine mapping for three unrelated Japanese families in a cohort of SCA cases，in whom molecular diagnosis had never been done，mapped the disease locus to the region of a 1.8 Mb stretch（LOD score of 4．60）on 20p13（D20S906－D20S193）harboring 37 genes with definitive open reading frames．We sequenced 33 of these and revealed a large expansion of an intronic GGCCTG hexanucleotide repeat in NOP56 and an unregistered missense variant （Phe265Leu）in C20orf194，but no mutations in PDYN and TGM6．The expansion showed complete segregation with the SCA phenotype in family studies，whereas Phe265Leu in C20orf194 did not．Screening the expansions in the SCA cohort cases revealed additional four occurrences，but none in the cohort of 27 Alzheimer＇s cases， 154 ALS cases，or 300 controls．Totally nine unrelated cases were found in 251 cohort SCA patients（3．6\％）．A founder haplotype was confirmed in these cases．RNA foci formation was detected in lymphoblastoid cells from affected subjects by fluorescence in situ hybridization．Double－staining and gel shift assay showed that（GGCCUG）n binds the RNA－binding protein SRSF2，but that（CUG）$)_{6}$ did not．In addition， transcription of MIR1292，a neighboring microRNA，was significantly decreased in lymphoblastoid cells of SCA patients．Our finding suggests that SCA36 is caused by hexanucleotide repeat expansions through RNA gain－of－function．

Autosomal dominant spinocerebellar ataxias（SCAs）are a heterogeneous group of neurodegenerative disorders characterized by loss of balance，progressive gait，and limb ataxia ${ }^{1-3}$ ．We recently encountered two unrelated patients with intriguing clinical symptoms from a community in the Chugoku region in western mainland Japan ${ }^{4}$ ．These patients both showed complicated clinical features with ataxia as the first symptom， followed by characteristic late－onset involvement of the motor neuron system，with symptoms similar to amyotrophic lateral sclerosis（ALS［MIM 105400］）${ }^{4}$ ．Some SCAs （SCA1［MIM 164400］，SCA2［MIM 183090］，SCA3［MIM 607047］，and SCA6［MIM 183086］）are known to slightly affect motor neurons；however，their involvement is minimal and the patients usually do not develop skeletal muscle and tongue atrophies ${ }^{4}$ ． Of particular interest is that RNA foci have been recently demonstrated in hereditary disorders caused by microsatellite repeat expansions／insertions in the non－coding region of their responsible gene ${ }^{5-7}$ ．The unique clinical features in these families have seldom been described in previous reports；therefore，we undertook a genetic analysis．

A similar form of SCA was observed in five Japanese cases from a cohort of 251 patients with SCA，in whom molecular diagnosis had not been performed，and who were followed by the Department of Neurology，Okayama University Hospital．These five cases originated from a city of 450,000 people in the Chugoku region．Thus，we suspected the presence of a founder mutation common to these five cases，prompting us to recruit these five families（Pedigrees 1－5）（Figure 1，Table 1）．This study was approved by the Ethics Committee of Kyoto University and the Okayama University Institutional Review Board．Written informed consent was obtained from all subjects． An index of cases per family was investigated in some depth：IV－4 in Pedigree 1，II－1 in Pedigree 2，III－1 in Pedigree 3，II－1 in Pedigree 4，and II－1 in Pedigree 5．Mean age at
onset of cerebellar ataxia was 52.8 ± 4.3 years，and the disease was transmitted by an autosomal dominant mode of inheritance．All affected individuals started their ataxic symptoms，such as gait and truncal instability，ataxic dysarthria，and uncoordinated limbs，in their late forties to fifties．Magnetic resonance imaging revealed relatively confined and mild cerebellar atrophy（Figure 2A）．Unlike previously known SCAs，all affected individuals with longer disease duration showed obvious signs of motor neuron involvement（Table 1）．Characteristically，all affected individuals exhibited tongue atrophy with fasciculation to a greater or lesser extent（Figure 2B）．Despite severe tongue atrophy in some cases，their swallowing function was relatively preserved，and they were allowed oral intake even at a later point after onset．In addition to tongue atrophy，skeletal muscle atrophy and fasciculation in the limbs and trunk appeared in advanced cases ${ }^{4}$ ．Tendon reflexes were generally mild－to－severely hyperreactive in most affected individuals，without severe lower limb spasticity and extensor plantar response． Electrophysiological studies were performed in an affected individual．Nerve conduction studies revealed normal findings in all the cases examined；however，an electromyogram showed neurogenic changes only in cases with skeletal muscle atrophy， indicating that lower motor neuropathy existed in this particular disease．Progression of motor neuron involvement in this SCA was typically and limited to the tongue and main proximal skeletal muscles in both upper and lower extremities，which is clearly different from typical ALS，which usually involves most skeletal muscles in a few years，leading to fatal results within several years．

We conducted genome－wide linkage analysis for nine affected subjects and eight unaffected subjects in three informative families（Pedigrees 1－3；Figure 1）．For genotyping，we used an ABI Prism Linkage Mapping Set（Version 2；Applied

Biosystems，Foster City，CA，USA）with 382 markers， 10 cM apart，for 22 autosomes． Fine－mapping markers（approximately 1 cM apart）were designed according to information from the uniSTS reference physical map in the NCBI database．A parametric linkage analysis was carried out using GENEHUNTER ${ }^{8}$ ，assuming an autosomal dominant model．The disease allele frequency was set at 0.000001 and a phenocopy frequency of 0.000001 was assumed．Population allele frequencies were assigned equal portions for individual alleles．We performed multipoint analyses for autosomes and obtained logarithm of the odds（LOD）scores．We considered LOD scores above 3.0 to be significant ${ }^{8}$ ．Genome－wide linkage analysis revealed a single locus on chromosome 20p13 with a LOD score of 3．20．Fine mapping increased the LOD score to 4.60 （Figure 3）．Haplotype analysis revealed two recombination events in pedigree 3，delimiting a1．8－Mb region（D20S906－D20S193）（Figure 1）．We further tested whether the five cases shared the haplotype．As shown in Figure 1，pedigrees 4 and 5 were confirmed to have the same haplotype as pedigrees 1,2 ，and 3 ，indicating that the 1.8 Mb region is very likely to be derived from a common ancestor．

The $1.8-\mathrm{Mb}$ region harbors 44 genes（NCBI，Build 37．1）．We eliminated two pseudogenes and five genes（LOC441938，LOC100289473，LOC100288797， LOC100289507 and LOC100289538）from the candidates．Evidence view showed that the first，fourth，and fifth genes were not found in the contig in this region，while the second and third of these genes had mismatches over the mouse genes．Sequence similarities among paralogue genes defied direct sequencing of four genes：SIRPD ［NM 178460．2］，SIRPB1［NM 603889］，SIRPG［NM 605466］，and SIRPA［NM 602461］．Thus，we sequenced 33 of 37 genes（PDYN［MIM 131340］，STK35［MIM 609370］，TGM3［MIM 600238］，TGM6［NM＿198994．2］，SNRPB［MIM 182282］，

SNORD119［NR＿003684．1］，ZNF343［NM＿024325．4］，TMC2［MIM 606707］，NOP56 ［NM＿006392．2］，MIR1292［NR＿031699．1］，SNORD110［NR＿003078．1］，SNORA51 ［NR＿002981．1］，SNORD86［NR＿004399．1］，SNORD56［NR＿002739．1］，SNORD57 ［NR＿002738．1］，IDH3B［MIM 604526］，EBF4［MIM 609935］，CPXM1 ［NM＿019609．4］，C20orf141［NM＿080739．2］，FAM113A［NM＿022760．3］，VPS16 ［MIM 608550］，PTPRA［MIM 176884］，GNRH2［MIM 602352］，MRPS26［MIM 611988］，OXT［MIM 167050］，AVP［MIM 192340］，UBOX5［NM＿014948．2］， FASTKD5［NM＿021826．4］，ProSAPiP1［MIM 610484］，DDRGK1［NM＿023935．1］， ITPA［MIM 147520］，SLC4A11［MIM 610206］，and C20orf194［NM＿001009984．1］） （Figure 2C）．All noncoding and coding exons，and the 100 bp up－and down－stream of the splice junctions of these genes were sequenced in two index cases（IV－4 in pedigree1 and III－1 in pedigree 3 ）and in three additional cases（II－1 in pedigree 2，II－1 in pedigree 4 and II－1 in pedigree 5）using specific primers（Supplemental Table 1）． Eight unregistered variants were found among the two index cases．Among these，there was a coding variant（Phe265Leu），g． $3324373 \mathrm{C}>\mathrm{G}$ of C20orf194，while the other seven included one synonymous variant（Leu565Leu in ZNF343；g． 2463912 T＞A）and six non－splice－site intronic variants（supplemental Table 2）．We tested segregation by sequencing exon 11 of C20orf194 in IV－2 and III－5 in the pedigree 1．Neither IV－2 nor III－5 had this variant．We thus eliminated C20orf194 as a candidate．Missense mutations in PDYN and TGM6，which have been recently reported as causes of SCA， mapped to $20 \mathrm{p} 12.3-\mathrm{p} 13^{9 ; 10}$ ，but none were detected in the five index cases studied here （Supplemental Table 2）．

Possible expansions of repetitive sequences in these 33 genes were investigated when intragenic repeats were indicated in the database（UCSC Genome

Bioinformatics）．Expansions of the hexanucleotide repeat GGCCTG（rs68063608） were found in intron 1 of NOP56（Figure 2D）in all five index cases，using a repeat－primed PCR method ${ }^{11-13}$ ．An outline of the repeat－primed PCR experiment is described in Figure 2D．Briefly，the fluorescent dye－conjugated forward primer corresponded to the region upstream of the repeat of interest．The first reverse primer consisted of four units of the repeat（GGCCTG）and a 5^{\prime}－tail used as an anchor．The second reverse primer was an＂anchor＂primer．These primers are described in Supplemental Table 3．Complete segregation of the expanded hexanucleotide was confirmed in all pedigrees，and the maximum repeat size in nine unaffected members was eight（data not shown）．

In addition to the SCA cases in five pedigrees，four unrelated cases （SCA\＃1－SCA\＃4）were found to have a（GGCCTG）n allele by screening in the cohort SCA patients（Table 1）．Neurological examination was reevaluated in these four cases， revealing both ataxia and motor neuron dysfunction with tongue atrophy and fasciculation（Table 1）．Totally nine unrelated cases were found in the 251 cohort patients with SCA（3．6\％）．To confirm the repeat expansions，Southern blot analysis was conducted in six affected subjects（Ped2＿II－1，Ped3＿III－1，Ped3＿III－2，Ped5＿I－1， Ped5＿II－1 and SCA\＃1）．The data showed＞10 kb of repeat expansions in the lymphoblastoid cell lines（LCLs）obtained from the SCA patients（Figure 2E）． Furthermore，the numbers of GGCCTG repeat expansion were estimated by Southern blotting in other 11 cases．The expansion analysis revealed approximately 1500 to 2500 in 17 cases（Table 1）．There was no negative association between age of onset and the number of GGCCTG repeats（ $\mathrm{n}=17, \mathrm{r}=0.42, \mathrm{p}=0.09$ ；Supplemental Figure 1）， and no obvious anticipation in the current pedigrees．

To investigate the disease specificity and disease spectrum of the hexanucleotide repeat expansions，we tested the repeat expansions in an Alzheimer＇s disease［MIM 104300］cohort and an ALS cohort followed up by the Department of Neurology， Okayama University Hospital．We also recruited Japanese controls，who were confirmed to be free from brain lesions by magnetic resonance imaging and magnetic resonance angiography，as described previously ${ }^{14}$ ．Screening of the 27 Alzheimer＇s disease cases and 154 ALS cases failed to detect further cases with repeat expansions． The GGCCTG repeat sizes ranged from three to eight in 300 Japanese controls（5．9 \pm 0.8 repeats），suggesting that the $>10-\mathrm{kb}$ repeat expansions were mutations．

Expression of Nop56，an essential component of the splicing machinery ${ }^{15}$ ，was examined by RT－PCR using primers for wild－type mouse Nop56 cDNA（Supplemental Table 3）．Expression of Nop 56 mRNA was detected in various tissues including central nervous system，while a very weak signal was detected in spinal cord（Figure 4A）． Immunohistochemistry using an anti－mouse Nop56 antibody（Santa Cruz Biotechnology， Santa Cruz，CA，USA）detected the Nop56 protein in Purkinje cells of the cerebellum as well as motor neurons of the hypoglossal nucleus and the spinal cord anterior horn （Figure 4B），suggesting that these cells may be responsible for tongue and muscle atrophy in the trunk and limbs，respectively．Western blotting also confirmed the presence of the Nop56 protein in neural tissues（Figure 4C），where Nop56 is localized in both the nucleus and cytoplasm．

Alterations of NOP56 RNA expression and protein levels in LCLs from patients were examined by real－time RT－PCR and western blotting．The primers for quantitative PCR of human NOP56 cDNA are described in Supplemental Table 3．Immunoblotting was performed using an anti－human NOP56 antibody（Santa Cruz Biotechnology，Santa

Cruz，CA，USA）．We found no decrease in NOP56 RNA expression or protein levels in LCLs from these patients（Figure 5A）．To investigate abnormal splicing variants of NOP56，we performed RT－PCR using the primers covering the region from the 5＇UTR to exon 4 around the repeat expansion（Supplemental Table 3）；however，no splicing variant was observed in LCLs from the cases（Figure 5B）．Furthermore， immunocytochemistry for NOP56 and coilin，a marker of the Cajal body，where NOP56 functions ${ }^{16}$ ，was carried out．NOP56 and coilin distributions were not altered in LCLs of the SCA patients（Figure 5C），suggesting that qualitative or quantitative changes in the Cajal body did not occur．These results indicated that haploinsufficiency could not explain the observed phenotype．

We performed fluorescent in situ hybridization to detect RNA foci containing the repeat transcripts in LCLs from patients，as previously described ${ }^{17 ; 18}$ ．Lymphoblastoid cells from two SCA patients（Ped2＿II－2 and Ped5＿I－1）and two control subjects were analyzed．An average of 2.1 ± 0.5 RNA foci／cell were detected in 57.0% of LCLs（ $n=$ 100）from the SCA subjects using a nuclear probe targeting the GGCCUG repeat， whereas no RNA foci were observed in control LCLs $(n=100)($ Figure $\mathbf{6 A})$ ．In contrast， a probe for the CGCCUG repeat，another repeat sequence in intron 1 of NOP56， detected no RNA foci in either SCA or control LCLs（ $n=100$ each）（Figure 6A） indicating that the GGCCUG repeat was specifically expanded in the SCA subjects．The specificity of the RNA foci was confirmed by sensitivity to RNase A treatment and resistance to DNase treatment（Figure 6A）．

Several reports have suggested that RNA foci play a role in the etiology of SCA through sequestration of specific RNA－binding proteins ${ }^{5-7}$ ．In silico searches（ESEfinder 3．0）predicted an RNA－binding protein，SRSF2［MIM 600813］，as a strong candidate
for binding the GGCCUG repeat．Double－staining with the probe for the GGCCUG repeat and an anti－SRSF2 antibody（Sigma－Aldrich Inc．，Tokyo，Japan）was performed． The results showed co－localization of RNA foci with SRSF2，while NOP56 and coilin were not co－localized with the RNA foci（Figure 6B），suggesting a specific interaction of endogenous SRSF2 with the RNA foci in vivo．

To further confirm the interaction，gel－shift assays were carried out to investigate the binding activity of SRSF2 with（GGCCUG） ．Synthetic RNA oligonucleotides（200 pmol），（GGCCUG）$)_{4}$ or（CUG）$)_{6}$ ，which is the latter part of the hexanucleotide，as well as the repeat RNA involved in myotonic dystrophy type 1 （DM1）［MIM 160900］${ }^{18}$ and SCA8［MIM 608768］${ }^{5}$ ，were denatured and immediately mixed with different amounts $(0,0.2$, or $0.6 \mu \mathrm{~g})$ of recombinant full－length human SRSF2 protein（Abcam，Cambridge， UK）．The mixtures were incubated and the protein－bound probes were separated from the free forms by electrophoresis on 5－20\％native polyacrylamide gels．The separated RNA probes were detected with SYBR Gold staining（Invitrogen，Carlsbad，CA，USA）． We found a strong association of（GGCCUG）$)_{4}$ with SRSF2 in vitro in comparison to （CUG） 6 （Figure 6C）．Collectively，we concluded that（GGCCUG）n interacts with SRSF2．

It is notable that MIR1292 is located just 19 bp 3 ＇of the GGCCTG repeat （Figure 2D）．MicroRNAs such as MIR1292 are small non－coding RNAs that regulate gene expression by inhibiting translation of specific target mRNAs ${ }^{19 ; 20}$ ．MicroRNAs are believed to play important roles in key molecular pathways by fine－tuning gene expression ${ }^{19 ; 20}$ ．Recent studies have revealed that microRNAs influence neuronal survival and are also associated with neurodegenerative diseases ${ }^{21 ; 22}$ ．In silico searches （Target Scan Human 5．1）predicted glutamate receptors（GRIN2B［MIM 138252］and

GRIK3［MIM 138243］）as potential target genes．Real time RT－PCR using TaqMan probes for miRNA（Invitrogen，Carlsbad，CA，USA）revealed that the levels of both mature and precursor MIR1292 were significantly decreased in SCA LCLs（Figure 6D）， indicating that the GGCCTG repeat expansion decreased the transcription of MIR1292． A decrease in MIR1292 expression may upregulate glutamate receptors in particular cell types，e．g．GRIK3 in stellate cells in the cerebellum ${ }^{23}$ ，leading to ataxia because of perturbation of signal transduction to the Purkinje cells．In addition，it has been suggested，based on ALS mouse models ${ }^{24 ; 25}$ ，that excitotoxicity mediated by a type of glutamate receptor，the NMDA receptor including GRIN2B，is involved in loss of spinal neurons．A very slowly progressing and mild form of the motor neuron disease，i．e．， mostly limited to fasciculation of tongue，limbs and trunk，may also be compatible with such a functional dysregulation rather than degeneration

In the present study，we have conducted genetic analysis to find a genetic cause for the unique SCA with motor neuron disease．With extensive sequencing the 1.8 MB linked region，we found a large hexanucleotide repeat expansions in NOP56，which were completely segregated with SCA in five pedigrees and was found in four unrelated cases with the similar phenotype．The expansion was neither found in 300 controls or other neurodegenerative diseases．We further proved that repeat expansions of NOP56 induce RNA foci and sequester SRSF2．Taken together，we thus concluded that hexanucleotide repeat expansions are considered to cause SCA by a toxic RNA gain－of－function mechanism and name this unique SCA as SCA36．Haplotype analysis indicates that hexanucleotide expansions are derived from a common ancestor．The prevalence of the SCA36 was estimate 3.6% in the SCA cohort in Chugoku district， suggesting that prevalence of SCA36 may be geographically limited to the western part

KYOTO UNIVERSITY
of Japan and is rare even in Japanese SCAs
Expansion of tandem nucleotide repeats in different regions of respective genes （most often the triplets CAG and CTG）has been shown to cause a number of inherited diseases over the past decades．An expansion in the coding region of a gene causes a gain of toxic function and／or reduces the normal function of the corresponding protein at the protein level．RNA－mediated noncoding repeat expansions have been also been identified to cause eight other neuromuscular disorders，namely DM1，DM2［MIM 602668］，fragile X tremor／ataxia syndrome（FXTAS）［MIM 300623］，Huntington＇s disease－like 2 （HDL2）［MIM 606438］，SCA8，SCA10［MIM 603516］，SCA12［MIM 604326］，and SCA31［MIM 117210］${ }^{26}$ ．The repeat numbers in affected alleles of SCA36 are among the largest seen in this group of diseases（i．e．thousands of repeats）． Moreover，SCA36 is not merely a non－triplet repeat expansion disorder after SCA10， DM2，and SCA31，but is now proven to be a human disease caused by a large hexanucleotide repeat expansion．In addition，no or only weak anticipation has been reported for non－coding repeat expansion in SCA，while clear anticipation has been reported for most polyglutamine expansions in SCA^{2} ．As such，absence of anticipation in SCA36 is in accord with previous studies on SCAs with noncoding repeat expansions． The common hallmark in these noncoding repeat expansion disorders is transcribed repeat nuclear accumulations with respective repeat RNA－binding proteins，which are considered to primarily trigger and develop the disease at the RNA level．However， multiple different mechanisms are likely to be involved in each disorder．There are at least two possibilities to explain motor neuron involvement of SCA 36：gene and tissue specific splicing specificity of SRSF2 and involvement of microRNA．In SCA36，there is the possibility that the adverse effect of the expansion mutation is mediated by
downregulation of microRNA expression．The biochemical implication of microRNA involvement cannot be evaluated in this study，because availability of tissue samples from affected cases was limited to LCLs．Given definitive downregulation of microRNA 1291 in LCLs，we should await further study to substantiate its involvement in affected tissues．Elucidating which mechanism（s）play a critical role in the pathogenesis will be required to determine whether cerebellar degeneration and motor neuron disease occur with a similar scenario．

In conclusion，expansion of the intronic GGCCTG hexanucleotide repeat in NOP56 causes a unique form SCA（SCA36），which shows not only ataxia，but also motor neuron dysfunction．This characteristic disease phenotype can be explained by the combination of RNA gain－of－function and MIR1292 suppression．Further studies are required to investigate the roles of each mechanistic component in the pathogenesis of SCA36．

Acknowledgments

This work was supported mainly by grants to AK and partially by grants to MT， IY，HK and KA．We thank Mr．Norio Matsuura，Dr．Kokoro Iwasawa，and Dr．Kouji H． Harada（Kyoto University Graduate School of Medicine）．

Web Resources

NCBI，http：／／www．ncbi．nlm．nih．gov／
UCSC Genome Bioinformatics，http：／／genome．ucsc．edu ESEfinder 3．0，http：／／rulai．cshl．edu／cgi－bin／tools／ESE3／esefinder．cgi？process＝home Target Scan Human 5．1，http：／／www．targetscan．org／

References

1．Harding，A．E．（1982）．The clinical features and classification of the late onset autosomal dominant cerebellar ataxias．A study of 11 families，including descendants of the＇the Drew family of Walworth＇．Brain 105，1－28．

2．Matilla－Duenas，A．，Sanchez，I．，Corral－Juan，M．，Davalos，A．，Alvarez，R．，and Latorre，P． （2010）．Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias．Cerebellum 9，148－166．

3．Schols，L．，Bauer，P．，Schmidt，T．，Schulte，T．，and Riess，O．（2004）．Autosomal dominant cerebellar ataxias：clinical features，genetics，and pathogenesis．Lancet Neurol 3， 291－304．

4．Ohta，Y．，Hayashi，T．，Nagai，M．，Okamoto，M．，Nagotani，S．，Nagano，I．，Ohmori，N．， Takehisa，Y．，Murakami，T．，Shoji，M．，et al．（2007）．Two cases of spinocerebellar ataxia accompanied by involvement of the skeletal motor neuron system and bulbar palsy． Intern Med 46，751－755．

5．Daughters，R．S．，Tuttle，D．L．，Gao，W．，Ikeda，Y．，Moseley，M．L．，Ebner，T．J．，Swanson， M．S．，and Ranum，L．P．（2009）．RNA gain－of－function in spinocerebellar ataxia type 8. PLoS Genet 5，e1000600．

6．Sato，N．，Amino，T．，Kobayashi，K．，Asakawa，S．，Ishiguro，T．，Tsunemi，T．，Takahashi，M．， Matsuura，T．，Flanigan，K．M．，Iwasaki，S．，et al．（2009）．Spinocerebellar ataxia type 31 is associated with＂inserted＂penta－nucleotide repeats containing（TGGAA）n．Am J Hum Genet 85，544－557．

7．White，M．C．，Gao，R．，Xu，W．，Mandal，S．M．，Lim，J．G．，Hazra，T．K．，Wakamiya，M．， Edwards，S．F．，Raskin，S．，Teive，H．A．，et al．（2010）．Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10．PLoS Genet 6，e1000984．

8．Kruglyak，L．，Daly，M．J．，Reeve－Daly，M．P．，and Lander，E．S．（1996）．Parametric and nonparametric linkage analysis：a unified multipoint approach．Am J Hum Genet 58，

9．Bakalkin，G．，Watanabe，H．，Jezierska，J．，Depoorter，C．，Verschuuren－Bemelmans，C．， Bazov，I．，Artemenko，K．A．，Yakovleva，T．，Dooijes，D．，Van de Warrenburg，B．P．，et al． （2010）．Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23．Am J Hum Genet 87，593－603．

10．Wang，J．L．，Yang，X．，Xia，K．，Hu，Z．M．，Weng，L．，Jin，X．，Jiang，H．，Zhang，P．，Shen，L．， Guo，J．F．，et al．（2010）．TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing．Brain 133，3510－3518．

11．Cagnoli，C．，Michielotto，C．，Matsuura，T．，Ashizawa，T．，Margolis，R．L．，Holmes，S．E．， Gellera，C．，Migone，N．，and Brusco，A．（2004）．Detection of large pathogenic expansions in FRDA1，SCA10，and SCA12 genes using a simple fluorescent repeat－primed PCR assay．J Mol Diagn 6，96－100．

12．Matsuura，T．，and Ashizawa，T．（2002）．Polymerase chain reaction amplification of expanded ATTCT repeat in spinocerebellar ataxia type 10．Ann Neurol 51，271－272．

13．Warner，J．P．，Barron，L．H．，Goudie，D．，Kelly，K．，Dow，D．，Fitzpatrick，D．R．，and Brock， D．J．（1996）．A general method for the detection of large CAG repeat expansions by fluorescent PCR．J Med Genet 33，1022－1026．

14．Hashikata，H．，Liu，W．，Inoue，K．，Mineharu，Y．，Yamada，S．，Nanayakkara，S．，Matsuura， N．，Hitomi，T．，Takagi，Y．，Hashimoto，N．，et al．（2010）．Confirmation of an association of single－nucleotide polymorphism rs1333040 on 9p21 with familial and sporadic intracranial aneurysms in Japanese patients．Stroke 41，1138－1144．

15．Wahl，M．C．，Will，C．L．，and Luhrmann，R．（2009）．The spliceosome：design principles of a dynamic RNP machine．Cell 136，701－718．

16．Lechertier，T．，Grob，A．，Hernandez－Verdun，D．，and Roussel，P．（2009）．Fibrillarin and Nop56 interact before being co－assembled in box C／D snoRNPs．Exp Cell Res 315， 928－942．

17．Liquori，C．L．，Ricker，K．，Moseley，M．L．，Jacobsen，J．F．，Kress，W．，Naylor，S．L．，Day，J．W．，
and Ranum，L．P．（2001）．Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9．Science 293，864－867．

18．Taneja，K．L．，McCurrach，M．，Schalling，M．，Housman，D．，and Singer，R．H．（1995）．Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues．J Cell Biol 128，995－1002．

19．Winter，J．，Jung，S．，Keller，S．，Gregory，R．I．，and Diederichs，S．（2009）．Many roads to maturity：microRNA biogenesis pathways and their regulation．Nat Cell Biol 11， 228－234．

20．Zhao，Y．，and Srivastava，D．（2007）．A developmental view of microRNA function．Trends Biochem Sci 32，189－197．

21．Eacker，S．M．，Dawson，T．M．，and Dawson，V．L．（2009）．Understanding microRNAs in neurodegeneration．Nat Rev Neurosci 10，837－841．

22．Hebert，S．S．，and De Strooper，B．（2009）．Alterations of the microRNA network cause neurodegenerative disease．Trends Neurosci 32，199－206．

23．Tsuzuki，K．，and Ozawa，S．（2005）．Glutamate Receptors．Encyclopedia of life sciences． John Wiley and Sons，Ltd．，http：／／onlinelibrary．com／doi／10．1038／npg．els． 0005056

24．Nutini，M．，Frazzini，V．，Marini，C．，Spalloni，A．，Sensi，S．L．，and Longone，P．（2010）．Zinc pre－treatment enhances NMDAR－mediated excitotoxicity in cultured cortical neurons from SOD1（G93A）mouse，a model of amyotrophic lateral sclerosis．Neuropharmacology 60，1200－1208．

25．Sanelli，T．，Ge，W．，Leystra－Lantz，C．，and Strong，M．J．（2007）．Calcium mediated excitotoxicity in neurofilament aggregate－bearing neurons in vitro is NMDA receptor dependant．J Neurol Sci 256，39－51．

26．Todd，P．K．，and Paulson，H．L．（2010）．RNA－mediated neurodegeneration in repeat expansion disorders．Ann Neurol 67，291－300．

KYOTO UNIVERSITY

Figure Legends

Figure 1．Pedigree Charts of the Five SCA Families（Pedigrees 1－5）

Haplotypes are shown for nine markers from D20S906（1，505，576 bp）to D20S193 （3，313，494 bp），spanning 1.8 Mb on chromosome 20p13．NOP56 is located at 2，633，254－2，639，039 bp（Build 37．1）．Filled and unfilled symbols indicate affected and unaffected individuals，respectively．Squares and circles represent males and females， respectively．A slash indicates a deceased individual．The putative founder haplotypes among patients are shown in boxes constructed by GENHUNTER ${ }^{8}$ ．Arrows indicate the index case．The pedigrees were slightly modified for privacy protection．

Figure 2．Motor Neuron Involvement and（GGCCTG）n Expansion in the First Intron of NOP56
（A）Magnetic resonance imaging of an affected subject（SCA\＃3）showed mild cerebellar atrophy（arrow），but no other cerebral or brainstem pathology．（B）Tongue atrophy（arrow）was observed in SCA\＃1．（C）Physical map of the $1.8-\mathrm{Mb}$ linkage region from D20S906（1，505，576 bp）－D20S193（3，313，494 bp），with 33 candidate genes shown，as well as the direction of transcription（arrows）．（D）The upper portion of the panel shows the scheme of primer binding for repeat－primer PCR analysis．In the lower portion，sequence traces of the PCR reactions are shown．Red lines indicate the size markers．The vertical axis indicates arbitrary intensity levels．A typical saw tooth pattern is observed in an affected pedigree．（E）Southern blotting of lymphoblastoid cell lines （LCLs）from SCA cases and three controls．Genomic DNA（10 $\mu \mathrm{g}$ ）was extracted from Epstein－Barr virus immortalized LCLs derived from six affected subjects（Ped2＿II－1， Ped3＿III－1，Ped3＿III－2，Ped5＿I－1，Ped5＿II－1 and SCA\＃1）and digested with 2 units of

KYOTO UNIVERSITY

AvrII overnight（New England Biolabs Inc．，Beverly，MA，USA）．A probe covering exon 4 of NOP56（452 bp）was PCR amplified from human genomic DNA using primers （Supplemental Table 3），and labeled with ${ }^{32} \mathrm{P}-\mathrm{dCTP}$ ．

Figure 3．Multipoint Linkage Analysis with 10 Markers on Chromosome 20p13．

Figure 4．Nop56 in Mouse Nervous System

（A）RT－PCR analysis of Nop56（422 bp）in various mouse tissues．cDNA（25 ng） collected from various organs of C57BL／6 mice were purchased from GenoStaf（Tokyo， Japan）．（B）Immunohistochemical analysis of Nop56 in cerebellum，hypoglossal nucleus，and spinal cord anterior horn in a wild male Slc：ICR mice at 8 weeks of age （Japan SLC Inc．，Shizuoka，Japan）．The arrows indicate anti－Nop56 antibody staining． The negative control was the cerebellar sample without the Nop56 antibody treatment． Bar， $100 \mu \mathrm{~m}$（C）Western blotting of Nop56 protein（ 66 kDa ）in cerebellum and cerebrum．Protein sample（ $10 \mu \mathrm{~g}$ ）was subjected to immunoblotting．LaminB1，a nuclear protein，and beta－tubulin，were used as loading controls．

Figure 5．Analysis of NOP56 in LCLs from SCA patients．

（A）mRNA expression（upper panel）and protein levels（lower panel）in LCLs from cases $(n=6)$ and controls（ $n=3$ ）were measured by RT－PCR and western blotting， respectively．cDNA（10 ng）was transcribed from total RNA isolated from LCLs and used for RT－PCR．Western blotting was performed using protein sample（ $40 \mu \mathrm{~g}$ ） extracted from LCLs．The data indicate the mean \pm SD relative to the levels of $P P 1 A$ and GAPDH，respectively．There was no significant difference between LCLs from
controls and cases．（B）Analysis for splicing variants of NOP56 cDNA．RT－PCR with 10 ng cDNA and primers corresponding to the region from 5＇UTR to exon 4 around the repeat expansion were performed．The PCR product has an expected size of 230 bp ．（C） Immnunocytochemistry for NOP56 and coilin．Green signals represent NOP56 or coilin． Shown are representative samples from 100 observations of controls or cases．

Figure 6．RNA Foci Formation and Decreased Transcription of MIR1292
（A）Cells were fixed on coverslips and then hybridized with solutions containing either a Cy3－labeled $\mathrm{C}(\mathrm{CAGGCC})_{2} \mathrm{CAG}$ or $\mathrm{G}(\mathrm{CAGGCG})_{2} \mathrm{CAG}$ oligonucleotide probe（1 $\mathrm{ng} / \mu \mathrm{l})$ ．For controls，the cells were treated with $1000 \mathrm{U} / \mathrm{ml}$ DNase or $100 \mu \mathrm{~g} / \mathrm{ml}$ RNase for 1 h at $37^{\circ} \mathrm{C}$ prior to hybridization，as indicated．After a wash step，coverslips were placed on the slides in the presence of ProLong Gold with DAPI mounting media （Molecular Probes，Tokyo，Japan），and photographed with a fluorescence microscope． The upper panels indicate LCLs from an SCA case and a control hybridized with $\mathrm{C}(\mathrm{CAGGCC})_{2} \mathrm{CAG}$（left）or $\mathrm{G}(\mathrm{CAGGCG})_{2} \mathrm{CAG}$（right）．Red and blue signals represent RNA foci and the nucleus（DAPI staining），respectively．Similar RNA foci formation was confirmed in LCLs from another index case．The lower panels show RNA foci in SCA LCLs treated with DNAse or RNAse．（B）Double－staining was performed with the probe for $(\mathrm{GGCCUG})_{\mathrm{n}}(\mathrm{red})$ and anti－SRSF2，NOP56，or coilin antibody（green）．（C） Gel－shift assays revealed specific binding of SRSF2 to（GGCCUG） 4 but little t to （CUG） 6 ．（D）RNA samples（ 10 ng ）were extracted from LCLs of controls $(n=3)$ and cases $(n=6)$ ．MicroRNAs were measured using a TaqMan probe for precursor（Pri－） and mature MIR1292．The data indicate the mean $\pm \mathrm{SD}$ ，relative to the levels of $P P 1 A$ or RNU6．＊：P＜ 0.05.

Table 1．Clinical characteristics of affected subjects

Pedigree No．	Patient ID	Gender	Onset age（y）	Current age（y）	Ataxia	Motor neuron involvement			Genotype of GGCCTG repeats
						Skeletal muscle atrophy	Skeletal muscle fasciculation	Tongue atrophy／fasciculation	
1	III－5	M	50	70	＋＋＋	N．D．	N．D．	N．D．	g．263397＿263402［6］＋（1800）
	III－6	F	52	68	＋＋	＋	＋	＋	g．263397＿263402［6］＋（2300）
	IV－2	F	57	63	＋	－	－	＋	g．263397＿263402［6］＋（2300）
	IV－4	M	50	59	＋	－	－	＋	g．263397＿263402［6］＋（2300）
2	II－1	M	55	77	＋＋＋	＋＋	＋	＋	g．263397＿263402［6］＋（2200）
	II－2	F	53	70	＋＋	N．D．	N．D．	N．D．	g．263397＿263402［6］＋（2200）
3	II－3	M	58	77	＋＋	＋＋	＋	＋	g．263397＿263402［3］＋（2300）
	III－1	M	56	62	＋	－	－	\pm	g．263397＿263402［8］＋（2200）
	III－2	M	51	61	＋＋	＋	＋	＋	g．263397＿263402［6］＋（1800）
4	I－1	M	57	died in 2001 at 83	＋＋	N．D．	N．D．	N．D．	g．263397＿263402［5］＋（1800）
	II－1	F	48	61	＋＋	＋	\pm	＋＋	g．263397＿263402［6］＋（2000）
5	I－1	M	57	86	＋＋	＋＋＋	＋	＋	g．263397＿263402［5］＋（2000）
	II－1	F	47	58	＋＋	＋	＋	＋	g．263397＿263402［8］＋（1700）
	SCA\＃1	M	52	69	＋＋＋	＋＋＋	＋＋＋	＋＋＋	g．263397＿263402［5］＋（2200）
	SCA\＃2	F	43	53	＋＋＋	－	－	＋	g．263397＿263402［6］＋（1800）
	SCA\＃3	M	55	60	＋＋	－	－	＋＋	g．263397＿263402［8］＋（1700）
	SCA\＃4	M	57	81	＋＋＋	＋	＋	＋＋＋	g．263397＿263402［5］＋（2200）
Mean			52.8						
SD			4.3						

N．D．：not determined

Figure 1

Figure 2

Figure 3

Figure 4

(A)

(B)
cerebellum

(C)

Figure 5
(A)

(C)

(B)

Figure 6

(C)

(D)

Supplemental Data

Expansion of Intronic GGCCTG Hexanucleotide Repeat in NOP56 Causes a Type of Spinocerebellar Ataxia（SCA36）Accompanied by Motor Neuron Involvement

Hatasu Kobayashi，Koji Abe，Tohru Matsuura，Yoshio Ikeda，Toshiaki Hitomi，Yuji
Akechi，Toshiyuki Habu，Liu Wanyang，Hiroko Okuda and Akio Koizumi

Supplemental Figure 1．Correlation of the Number of Repeats with Age of Onset．

A scatter plot shows no negative correlation between GGCCTG repeat number and onset age（ $\mathrm{n}=17, \mathrm{r}=0.42, \mathrm{p}=0.09$ ）．

Supplemental Table 1．Primers used for amplification of candidate genes（Human build 37．1）

PDYN	exon 3	CTTTGGGCCTCTGCTTTACCT	TCCAGGCCATCTATAGGGCA
	exon 4	тCCCCTACCTTTATGCACCA	aACATACTCCCACGCAGAAGA
STK35	exon 1	CGGA TCACGGGA ATTTCG	ATTGGCTGAAAAGTTCGGCT
	exon 2	tGgcttccatctanamgig	CagGanagga gGgtgictia
	exon 3	gtcectitggagcagttgitt	antcacttganctcgagaggt
	exon 5	TCTCTTTAGAGCTCTGCCCCA	ttGcccacattganttictt
TGM3	exon 1	tTATTATCTGCCCCCTTCTCC	CTCTGGCTAGCACCCTAAAAT
	exon 3	a acaggatgcacagaggttca	tCCCTCTTGATtTGAGGATGG
	exon 4	tgGcctatatgittgitcca	tTGGGGCTTGGAGAGATAGAA
	exon 5	tcaggagaggictaanggt	aggtggccantganagtcti
	exon 6	tTCCTGTGGTTCTTGCCAGT	tgTanagagtatccatgicta
	exon 7,8	ttcantcatggcctttggit	attcagcattgccagcagtt
	exon 9	tgitgtcatgctgcactgitg	ttgitttantcciatcatgca
	exon 10	gGttccagtgitcltgiaa	gCantcctatcattcagcia
	exon 11	tgaa mGtcgantgcctocta	tccaangcattantacatggc
	exon 12	agatcctcccaccagctea	anaactctectttccectetg
	exon 13	тСТССССТТСТТСАТССТСА	CCAAACCAAATGCAAAAGCAG
	exon 14	CTCCATCAGAACAGGACAGGA	CaCTCCCTTTGGACATTGAA
TGM6	exon 1	TGATTTTGTGTCTCGTGGGTG	AGTTCATGTGTTCATGGTGGA
	exons 2,3	atGaacaantgactggccga	taagttcttgcceagctettg
	exon 4	AAGCCCCCTCTTGACCTCT	cCtgacccagtgantagtaga
	exon 5	tTGagGa hgGgtticcaigac	Cagcgat ttanaacangGg
	exons 6，7	anamgCangagtgaccecgat	agattcagga gagctggict
	exons 8,9	gattcacalcatgcagccaca	aftamagciacttgcctcaga
	exon 10	gagantcaah cacangicatg	a GGGCACTGAGCACAATGCT
	exons 11，12	tggccettaggtttcttcat	atagtctatggactgattcct
	exon 13	atgTCAAGCCACAAGGTGAA	agatganggitgga gagacti
SNRPB	exon 1	agcagctetcagtacgiatt	CGCCAAGGTCCTGGTCTTT
	exon 2	gTGGCatgGga gaattccta	agcattcantgiccecattt
	exon 3	gGgctatctiggaatagttig	СстСttgcaggitancctctt
	exon 4	a atggigttgicacacatgGa	СтTtTCACTTGCTTCTAGGGC
	exons 5，6（SNORD119）	tgGtgctgagagttgtagcat	gccccangattatagctcang
	exon 7	acatagganclcagtcagcct	gGgatahaggtangatcaggi
ZNF343	exons 3，4	GATGGAGACTCCGTGTTTGTT	TCAAGAAAGCCTAATGCTTCA
	exon 5	tgtcangggcctagaatgtgt	tagamagtaagccecatggag
	exon 6	tttccanggggaagagatg	ttatggctgcanctcantg
	exon 7－1	gGcatgicagtaanacattc	tcacaanagcttcgtccaca
	exon 7－2	gTgTGgGCaAagctttaga	tacacaggGtctactccccat
TMC2	exons 1,2	aATCTCAAACCAAGAAGCCCC	TCCCATGTTAAACACCTTGCC
	exon 3	tttgGggtatcctgitcta	tTCTGGGatgan gancccac
	exon 4	taganttttgccctccact	agtcctccgagtcttccatg
	exon 6	ttctccctaccatccetgita	a attgicaggatacgattgg
	exon 7	cgttgggaalaganaggtttg	tGgCctgacangitcanaic
	exon 8	ttcactttctaactgtggica	CAATTACTTTTGCACCAGCC
	exon 10	agctgacactgtcctattcia	tGCagagacatggittcca
	exon 11	agGaggtcangGgangatcas	atgGcctggtteatgtcttt
	exon 12	tgtcctgactatcctcaangc	aCCagccacgancattctta
	exon 13	accacgictalacacatggta	gttgTanamgccagttcicaa
	exon 14	Catgitgatgcctttgcca	a acaatggtcatctitggatc
	exon 15	tGaangcctgacangGcaat	CAAAGAGATTTGGAGTTCCCA
	exon 16	tсgCCtctcttcacacacaa	aggagctcagcagacttgitt
	exon 17	tgcaaggectgaangataga	Cagaanctatcctactictea
	exon 18	atgittctggcttgatgatcg	attagitgagcattgiggta
	exon 20	tctggitcttccaghaangca	ССатGCATTTTCCTTTCCCT
	exon 21	cagGaccttctccacattga	tgCatgctgitcaatctcaca
	exon 22	a atcgettga acclagia	attcacctacciancticat
	exon 23	agtGcantccaacagctctea	TCAAGCGATCCACCCACCTT
NOP56	exons 1，2（MIR1292）	tTCCCA AGTCGTTTCGCC	atctaga hctttccagccci
	exons 3，4	tgatghangtggacgagatca	CCTTGAGCTCTGTGAAGACAA
	exons 6,7	tgatggagaggiatctaggra	afcacagcctgtggtangca
	exon 9－1	tGgatctitctcclatttce	tggtcagccatcaccerga
	exon 9－2（SNORD86，SNORD56）	atgctggcagcticaccaa	cagacagttcatcacctccaa
	exon 9－3（SNORD57）	gGagangcticgagatcangt	a amaancacccaccatcctg
	exon 9－4	tgGgCtgaggrantitctcat	actgaghctgtcattoctic
SNORDIIO	exon 1	TCTGCTTTCTGTTCGA TTGG	TCAGGGGAAAGAACACAGTTC
SNORA51	exon 1	CCACCCATAATACTGGAGCCT	TGCAAAGAGCCACAGTCACT
IDH3B	exons 1，2	AAAA GGAGA AACAGGCGTGA	acGGatcctggangtagagat
	exons 3，4	a atctagctggictctetct	tggttgccetggagttaata
	exons 5，6	ttactgatgtggiattgga	tcacaagcacatcanactggt
	exons 7，8，9	CCCCAAAATCAAATTTGAGAC	agatgangancagccetcaga
	exon 12	atcctagctectccttccatt	a AGAGGCGGTTGGCAAGA
EBF4	exon 1，2	GGAAATGCGGGAGTACAGTCA	TCAGAAATCTACCGGGGCA
	exon 3	tcCancattcangccetatca	ttgagtcttcaggagagtcag
	exon 4	tttttgcceanactettggc	gGacangatggcaggatgct
	exon 5，6	a agttggggttaggagangig	tagatcaga gGccanangcca
	exon 7	taggcttggiagatgcca	taameaggccaggctantgg
	exon 8	acatcagcaccticagctca	tecagaamgttgcceact
	exon 9	ccatgatggGatatatggat	acaagtigaganggagctacc
	exon 10，11，12	tttttgtagcgectggiga	a AtGttcagga ggtca catgg
	exon 13，14	gagttttccgaggaactig	tgctganggcgitgatgc
	exon 15，16	agtanccaggtatgicgecti	CGgCanagangactanamgt
	exon 17	a acanagTaccicaggitcca	a agagcaggitagccagcat
	exon 18	a Aagtoctatatcccctace	agGctigaccacagcatgaa
CPXMI	exon 1	TCCTGTTGGTCGACTTGATG	tgTGTGAATGTGTGTGAGTGC
	exon 2	tgctgtggictcacatgic	taaggitgctcctocgeta
	exon 3	a ${ }^{\text {accttaggctcagcttccia }}$	gacacaggacatggtggtca
	exon 4,5	ATGGTCTCAGGGTAGGGA AGG	a a gGcalga mgtcatgigga
	exon 6	tCTAGCTGA GCCCACTAGGGT	a amggtgtatchacagtgaa
	exon 7	agtcaggecaggittgit	tcGatgctetgettgitcla
	exon 8,9	ACTCTGTCCTTCTGCCCTGGT	gatcagacgicagcactgta
	exon 10	tgangtgtccetcagagahg	CCTGTGTGCTTCCAAGACAAT
	exon 11，12	TTCATGTTCCATGGAGCTCA	tgGtacctatagcagangctg
C20orfl4	exon 1	CACCAGCTGCTTATGAGGTCA	TGCTGCCCACTTACCTATGGA
	exon 2	tgGcaggtggicattgia	ttgGictccetgactagtat
FAMII3A	exon 2	TCACCTCCTCCCTTTAGCATT	ACTGGACGGAACAGACCAGAA
	exon 3	tctattccatclagtaggtt	ttgagcagcgaccatatctat
	exon 4－1	atcanctoctgcctetggiat	тtтccactcctcacacccat
	exon 4.2	cGgagcantattcttgicla	tcanaggcctangccatcaa
	exon 43	tgtaacacttggtagccaga	ttgitttaggtaggcttggia
	exon 4.4	a aggancacactttggactig	tccaggtgaccttctctatt
	exon 4.5	tCCTTGTGCCCCTAGCACT	gGaggicacattcaticatt
VPSI6	exon 1	AAGTGAGGCTGCCCACAGT	TGTGCGCTAAGTGGCAGA
	exon 2，3，4	agccttgtggangacanatgia	CGGAACCAAACTCAGTGTGAaA
	exon 5，6，7，8	gacacttcagcatggicaatgTa	Cgattcangcanctgattgicc
	exon 9，10，11	GCTGTCCCGAGACAAAGGATTA	TGGAGGACATAGTGTCTCTTCA
	exon 12	TGGGTTACTATTGGGA GGagttct	TGGA GAATAAGCCCCGCTT
	exon 13，14	tatagccagta tccctgrgcacg	tgitggcattacagccatga
	exon 15，16，17，18	ta agGcctigcagga giga	aACACGA AGCCTAGATTCCT
	$\begin{aligned} & \text { exon } 19,20,21 \\ & \text { exon } 22,23 \\ & \hline \end{aligned}$	atccctctaggacatcagagtgg GGGGTTGGGGGATTATATGTACT	agctgancaggagcatgan GGAACACATGGAGTTTTGCTGT

PTPRA	exons 1，2，3，4	ATCCAGATGTTTGTGACACCC	ACAGTGAGGACCAGATGGAGT
	exons 5，6，7	agCCATCCCTCTAGGACATCA	tgCCTGCCCACAAATGTGTAT
	exons 8,9	tgGtttaggigattictgcce	GCTtTCCTTGGTAACTGTGGA
	exon 12	tgCCtGGCtactttttgtgea	atgccaccacatctgectaat
	exon 15	tGagGatgcatgcatatcag	CAATGCTGAGCATTCAATTCC
	exon 16	tGttga gGgagattgitct	СtTCACTCATGCTAACCCAAA
	exon 17	CCAGACCACTGTCCAAAGTTT	agggatanamCancacanaga
	exon 20－1	CACCTCAATAGCCCTGGCAT	tgGgcttggacagatggaa
	exon 20－2	ttccagtgtaccanggitaa	tgGaggctana CgGggttcta
	exon 21	tcttacaggcttggtccatga	GGTGAGGCAAATCTCACTTCA
	exon 24	TAAGGAGCTTGTGGCTGTtTC	aССТTGGCCTTCCAAAGTTCT
	exon 25	tgGcatctttatacangcgig	aCatGgGa anccataggian
	exon 27	CCTGGCCTGGATTTCTTATT	CAAGGACAGAGGGCCTTATTA
	exon 28	CCTGGCACATACATGGTAGAA	TCTAGGCACACACCTGAGGTT
	exon 29		tttccacagtgcttggteat
	exon 30	ttttagttctaaccetgcca	taatctiggaggactgcceta
	exon 31	ttctagctgaaggtcaggatt	ttgGgactaggittacagatt
	exon 32	TGCATTTCAAGTCCCACTTCA	AGTGATTCCAACGTGCAGGAT
	exons 33,34	CCAGCTGAACATATGGGAACA	AGTGGGTGGGTGAGTATCAAT
	exon 35	Caganagcancca gctigtca	tTGGGAGAAGCTAATGACTGC
	exons 36,37	aCGAagCGTATCAGCGTAAGA	tagcatccaatcctgictigg
	exon 38	tgagtccetccacagcacat	tatgctcclattgctaccat
	exon 39	CAGAGCTCAGGTGAAAGTTCA	tttctcgictga giattica
GNRH2	exon 2,3	GCAGAGAGGGAA GGGCATAA	TGAGAAATGGCTGGGGGT
	exon 4	TAGCTGGATCCTCAGGCTTCT	GGGGCCATCCCTTAGTTACT
MRPS26	exon 1	tTCGGTTCCAGAGGCCACA	TTCCTCTGCACCTCGGACA
	exon 2， 3	tTACCAGCACTACCGCCAGA	TTTGCGCCTGACTGGCACT
	exon 4	agagcaggagctactitctca	tGcgittgaangittctal
OXT	exon 1	AATGAAGAGGAAAGCCCGTA	TCAAAATCCGCTCAGCTCCT
	exon 2， 3	GGAGCTGAGCGGATTTTGA	agatcagcacccactetat
AVP	exon 1	TGTCCCCAGA TGCCTGAAT	atgccatgcctccetct
	exon 2， 3	aAACCAAGGTGCCGAGCAGAT	тСССАССТСТСТСССТТТС
UBOX5	exon 4	AAGGAAAGTCAGTGTGGACCG	TGATTCTAGAGGTGAGCCTGC
	exon 5－1	CCTGATCTGGGACAATTCAGT	tgcgattacacttctccagt
	exon 5－2	agangctggccgagatcatt	TCTGAAGACAAAGCTGAGGGG
	exon 6	tacctcccagtattetgtcat	AGGGTGGGTGTTGGA ACTGA
	exon 7	CCACTCCCCTACCTGATCAGA	agcgcagangcantgTgctat
FASTKD5	exon 2－1	TCATTTGTGA TCCCTGGCTC	ATGCTGCTCTGCAGGCAAA
	exon 2－2	ccgtgttcacagctataatgc	ATGTGATCCACGTGAGTGAAA
	exon 2－3	agGttggtaccatctatttg	ataccacagcanttcagacci
	exon 2－4	agggittgicaggitagctea	aACTCTACCACACGGTAGCCA
	exon 2－5	tagcagatanatcaggiccia	tagctetancctgcctighat
ProSAPiPI	exon 1	ATTCCTTCACCTTGGATGCCT	CACAACCCAACCTCCAAGAA
	exon 2－1	GGGAACCTCAGGGTGGAAAT	agctcctagatgagticactg
	exon 2－2	TCCAGCAAGAGTGGGTCGT	attGatttitgTclccletg
	exon 3	tTGAGTCCAGGCAGGGAAT	agGGa GGAaCCTGGTCACA
DDRKGI	exon 1	GGACATACCGTCTGCTATAATTTCC	TTGGAGTCGAGAGAAAGGGGTA
	exon 2	CCttGccagtcagactgaga	aACAAATGCCAGGTCCCAA
	exons 3，4	agtgacatttgcaggtggit	agGgaccanatanaccagga
	exons 5，6	ttgggchat tgGagaiatg	gGGttGgaggcagaganact
	exons 7，8	tacagtgtttttccagccacc	тССТССТTGTAACTGCATCCA
	exon 9	tgattcgactetcctagcagg	tTATCTAGGTCTTGGGGGCA
ITPA	exon 1	AGAGAAGAGCGAAAGCAGGG	tTCTTGCGCCCCAGCTTTT
	exon 2，3	GTAAGCTtTAGGAGATGGGCA	CGGTCCTAGAAAGCTCAACAA
	exon 4	CCAAAGTTAAGAGATTGGCCG	aAAGAAAGGCATGCTTCTCC
	exon 5	tgctggat tataggcgaga	tacaggatacgagctgcaggt
	exon 6	CCGCTACCCCAATTGAGA	tganamgctgganaggctga
	exon 7	agcanacatttgcaggtact	agattcctagtatccacclca
	exon 8	AСTCCCCTTTCCTTGGGGT	TCCACTTGCCAGAGTTTCTCA
SLC4All	exon 1	AGTCGAACGITTTCCCAGAAG	CAGAGCCCTAATGAAACCA
	exon 2,3	ttttgaaccaacgictcta	agataggcgagcaaticca
	exon 4,5	ttcctcacctatggat	tcctggagacatgagatga
	exon 6,7	tGatgGcttccetgagat	tCTTCTCCCAAGTTGGITGG
	exon 8	tTtTCCCTCCCTAGCAGAGGT	CAACATGITTCTGACACACCCA
	exon 9，10，11	ana ${ }^{\text {acctactgccagitcatg }}$	attgactgcclagaganga
	exon 12	atcgctttcgagtetctcaa	ttgggicagcantatggt
	exon 13	accatattgctgccceaa	ttgatcacgagcacacact
	exon 14，15，16	tTGATCACGGGCACACACT	tTCACCAGCCTGCAGCAGA
	exon 17，18	tTGGTGAATGCACCGGAGAA	accetccogatgragtgigt
	exon 19，20	СТСТАТGGCCTCTTCCTCTACAT	AGTCACCCACACACCTACACCT
C20orfl94	exon 2	tTAAGAAGTGGGGTCCCTGT	TGAGCCGITCAGCAAAGAA
	exon 3	atcCccagcanagtcattcct	aCAAATtTCGGGGGAACAAG
	exon 4	gittctagcacanaactgat	actgggictttgGactattt
	exon 5	tttggittacangGcacagtg	tсСТtttetctccacaggcata
	exon 6	CtTTGGAAACACCTCCTTGGGT	ttgcacaganaagtccciat
	exon 7	ttttgctaggtgagcicct	taacttgctccatgccettgt
	exon 9	tctatatgtacatgtgratatgi	tgaccgangcanactanaatatcc
	exon 10	gagattcatccataggagtagca	gGGgGGa ${ }^{\text {ctactattatgitat }}$
	exon 11	Cactctcctgangcatgrgtgra	gCagaganacagacacatttacag
	exon 12	CTAGCTTGAGTTTAGTTATGTCCC	GGGTTAAATCAACACACTAACTGG
	exon 13	ccatcctacatgacagagtangac	atccagangrantcagagaggang
	exon 14	TGGGCGACAAAGCTAAACTG	ttatgitgcceagictggt
	exon 15	GCCCAGGCATGTGACTTTT	tGgTGTCAAAGAGGCCCAA
	exon 17	tcatgcctaccangtagtcacat	tttgectictangiga gicta
	exon 18，19	afgGatgacacacacctcactgi	tgGgatagGactgagagangatca
	exon 20	aAAGTCACCTCCCAGTTCAAAGA	AGTGCAGTGCTGTGA TCATCA
	exon 21	agctcctgaganggicattt	aACAGCTAGTTCAGGACCTGACAT
	exon 22	acatgGacatggtggangGa	agGGGaghantgcanatagGa
	exon 23	atacattggacatatctgagct	tcatctacanagtggitggit
	exon 24	Cacaggictcagcatacaantc	tGTGCTGGTTCCTGACATACTG
	exon 25	agcacatctatactganccacag	attagangcagicaccciaca
	exon 26	tcaggcctctatttttcaagca	gCahgttggcagcattgana
	exon 27，28	gTGTtttgGaigagttaactcta	afgGangtgGagagtcctgraa
	exon 29	tgGcctanggtcacagagttagt	tacaggangtgctcagangagcat
	exon 30	CCAAGATGGCTTTCTCCTGAATG	CtGctcatgcatgiagagtctatt
	exon 31	agattgcgigctettcctttt	TCCAAAGGGGTCTATTGAGGA
	exon 32	Catggctatccttagtgctcagt	GCTCTTGGAAGAAATGTGCCTA
	exon 33	tattgggitgranggittatct	tGGCTCAAAAACTGACTTCTCC
	exon 34	attacctggctatgatggcaca	TTGCTGCCTACAGGA TGATT
	exon 35，36	GACGGGGTTTCACCTTGTTAG	TTTCTGAGAGTCTGAGCAGCAT
	exon 37	aССТАСТССАТССТTTCTAAGCTG	TCTCTCAAAGTGTCCCTGCAA
	exon 38	ttatatccaggccatagcgia	aAttctatacgiagcticcit
	$\begin{array}{r} \text { exon } 39 \\ \text { exon } 40 \\ \hline \end{array}$	agGcaggactigaggitt ACAAAGAGTCCATCAGGITCCCT	TTTGCCCCTGTGCATTCCT ACAACATGCACTCAAGCCA

Supplemental Table 2．Variants identified by candidate gene sequencing

Cene	$\frac{\text { Position }}{\text { Sant }}$	${ }_{\text {NCBI } 37.1]}^{\text {End }}$	region	posit	Stion	rs	svps	wildtype	Pedl＿IV－4	Peç3－III－1	Peci＿II－1	Pedt＿II－1	Peds＿II－1
$\begin{gathered} \text { PDYN } \\ \hline \text { NM_024411.2 } \\ \hline \hline \end{gathered}$	195940	1974702							No variation				
$\begin{gathered} \text { STK35 } \\ \text { NM_080836.3 } \end{gathered}$	208258	2129201	exon 1	2022732	2082732	${ }^{\text {r66 }} 112857$	Arg96aly	cc	GG	${ }_{\text {c }}$			
				2022767	2082767	${ }_{\text {r6610228 }}$	Gin80GII	GG	${ }_{\text {ag }}$	AA			
			exon 3	2037688	2097688	r11891227	Ala423Aa	тT	ст	cc			
$\begin{gathered} \text { TGM3 } \\ \text { NM_003245.3 } \\ \hline \end{gathered}$	227613	2321725	intron 12	2255929	2315929	${ }^{\text {r2276406 }}$	IvSI2＋10	GG	AA	AA			
			exon 7	223799	229790	r2214814	Str29Asn	GG	${ }_{\text {GG }}$	ga			
$\begin{gathered} \text { TGM6 } \\ \text { NM_198994.2 } \end{gathered}$	2361554	2413399	$5{ }^{\text {＇} \text { near gene }}$	2301505	2361505	${ }^{\text {r9988022 }}$	$5{ }^{5}$ near genc	AA	${ }_{\text {a }}$	GG	${ }_{\text {a }}$	${ }_{\text {a }}$	${ }_{\text {g }}$
			intron 1	2301684	2361684	r2242753	IVSIt 63	cc	ст	cc	ст	cc	cc
			${ }^{\text {exon } 2}$	2315262	2375262	r2076405	M58V	${ }_{\text {тT }}$	тс	cc	cc	тс	cc
			intron 2	2315440	2375440	rs7269002	IvS2＋169	GG	бт	${ }_{\text {тT }}$	өт	өт	тT
			${ }^{\text {exon } 6}$	${ }^{2320323}$	${ }^{2380323}$	r66114033	Ly：263Lys	GG	${ }_{\text {GG }}$	${ }_{\text {GA }}$	${ }_{\text {a }}$	${ }_{\text {GG }}$	${ }_{\text {GG }}$
				2323936	2380396	r2207604	IVS6 +12	cc	тт	ст	ст	ст	ст
				2320628	2380628	－	IVS8＋242	cc	cc	cc	ст	cc	cc
				2320629	2380629	－	IVS80243	GG	${ }_{\text {GA }}$	${ }_{\text {ci }}$	GG	GG	GG
			intron 8	2324151	2384151	ז56137891	${ }^{\text {INS } 8+5}$	${ }_{\text {GG }}$	${ }_{\text {GA }}$				
				2338817	2398017	r2295077	Lys422 Lys	cc	ст	ст	ст	тT	ст
				23511368	2411368	ז2076648	IVSI2＋121	cc	cc	cc	cc	cc	ст
			intron 2	2351737	2411737	rsl1 177465	IVSI2＋64	gala	－ 1 A	－GA	\cdots	\cdots	gaga
				2353125	2413125	r2076653	IvS12－11	GG	GA	GA	GA	GA	${ }_{\text {gG }}$
				2353126	2413126	rs036467	IvS12－10	cc	тT	тT	тT	${ }_{\text {тT }}$	тT
			exon 13	2353320	2413320	r207652	${ }^{3}$ 3－UTR	${ }_{\text {AA }}$	${ }_{\text {a }}$	${ }_{\text {AG }}$	${ }_{\text {AG }}$	${ }_{\text {a }}$	${ }_{\text {g }}$
				2353472	2413472	r45510835	${ }^{\text {3－UTR }}$	${ }^{\text {TT }}$	${ }^{\text {TT }}$	${ }^{\text {TT }}$	тT	тT	${ }^{\text {TG }}$
$\begin{gathered} \text { SNRPB } \\ \text { NM_003091.3 } \end{gathered}$	2442281	2451499	$5{ }^{\text {＇neara gene }}$	2391504	2441504	ri6049290	$5{ }^{5}$ near gene	cc	cc	тC			
			$5{ }^{\text {＇near gene }}$	2391503	2451503	ra4815262	$5^{\text {f }}$ near genc	AA	AA	ga			
			exon 1	2391451	2451451	ri6049288	5 5：UTR	GG	GG	тG			
			intron 3	2384665	2444665	${ }_{\text {rs73606142 }}$	Ivs3－120	тT	ст	тT			
$\begin{gathered} \hline \hline \text { SNORDI19 } \\ \text { NR_003684.1 } \\ \hline \hline \end{gathered}$	2443598	2443693							No variation	No variation			
$\begin{gathered} \text { ZNF343 } \\ \text { NM_024325.4 } \end{gathered}$	2462463	2489778	intron 3	2414176	2474176	－	Ivs3－11	тT	тT	тС			
			intron 4	2413587	2473587	rs41308639	IvS4－22	AA	${ }_{\text {at }}$	${ }_{\text {at }}$			
			exon 7	2463921	2463912	．	Lev665Len	tT	тT	TA			
$\begin{gathered} \text { TMC2 } \\ \text { NM_080751.2 } \end{gathered}$	2517253	2622430	exon 3	2539387	2479387	ris050063	Arg123Lys	AA	${ }_{\text {AG }}$	${ }_{\text {AG }}$			
			intron 3	2539968	2479568	זr4815320	IVS3＋148	тт	TA	TA			
			intron 4	2542669	2482669	rs727027	IVSA＋13	cc	ст	cc			
				2542747	2482747	rs4815323	IvS4 +91	GG	кт	${ }_{\text {cG }}$			
			intron 6	2552926	2492926	rsis83880	IVS6＋11	${ }_{\text {AA }}$	${ }_{\text {ab }}$	${ }_{6}$			
				2559778	249978	ז56087375	IVSS－14	${ }_{\text {GG }}$	gc	cc			
			intron 9	2572816	2512816	ri6050433	IVS9－139	тT	тG	${ }_{\text {cG }}$			
			intron 13	2591005	2531009	r1188378	Ivs13－59	тT	gG	GG			
			exon 14	2591232	2531232	ז56050576	App27App	cc	${ }^{\text {TT }}$	${ }^{\text {TT }}$			
			intron 15	2593306	2533006	rsi015159	IvS15＋20	AA	${ }_{\text {a }}$	${ }_{\text {GG }}$			
			exon 16	2593863	2533869	ri6515646	Strf898．r	тT	тс	тс			
				2594254	2534254	${ }_{\text {r．611 } 15181}$	non－coding	AA	${ }_{\text {a }}$	${ }_{\text {AG }}$			
			intron 16	2596762	2536762	ri6050622	IvS16－21	${ }_{\text {GG }}$	${ }_{\text {GA }}$	${ }_{\text {GA }}$			
			intron 17	2596969	2536969	rs4621228	Ivs17 118	тT	тT	TA			
			exon 18	2597978	2537978	rs4815428	non－coding	${ }_{\text {GG }}$	${ }_{\text {g }}$	${ }_{\text {GA }}$			
				2598819	2588019	ri608366	non－coding	cc	cc	ст			
				2598405	2538405	rs1304075	non－coding	${ }_{\text {GG }}$	${ }_{\text {a }}{ }^{\text {a }}$	${ }_{\text {GA }}$			
			intron 20	2616556	2556556	r9910271	ivs20－26	тT	тс	cc			
			intron 21	2616679	2556679	ri2428888	IvS21＋29	cc	cG	${ }_{\text {GG }}$			
				2616776	2556776	r13038659	IVS21＋126	${ }_{\text {тT }}$	${ }_{\text {тG }}$	${ }_{\text {тG }}$			
				2618994	2588094	ז56037181	Ivs21－26	${ }_{\text {GG }}$	${ }_{\text {GG }}$	AA			
			exon 22	2618140	2558140	rs6083915	Ser802ser	тT	${ }_{\text {тT }}$	cc			
			intron 22	2618308	2558308	rs6050771	Ivs22＋71	cc	cc	${ }_{\text {тT }}$			
			exon 23	2561998	2621998	r6605079	3 \％UTR	тT	тT	ст			
$\begin{gathered} \text { NOP56 } \\ \text { NM_006392.2 } \end{gathered}$	263354	263039	exon 1	2573296	2633296	r66138678	5 5．UTR	GG	GG	cG	${ }_{\text {GG }}$	${ }_{\text {GG }}$	GG
			intron 1	2573397	2633397	r68066308	Ivsl－25	${ }_{8263397-26303 \mid[5]}$	${ }_{8} 263397-263403(6 \mid 1+(230)$			$\left.{ }_{26} 263997-263403(6)+2000\right)$	$\left.{ }_{8} 263397-2663403818\right)+(1770)$
			exn 9	2577071	2637071	${ }_{\text {r } 88998}$	Thr3457r	${ }^{\text {tT }}$	ст	тT	ст	ст	тT
MIR1292， NR． 31699.1	2633423	2633488							No variation				
$\begin{aligned} & \hline \hline \text { SNORDIIO } \\ & \text { NR_003078.1 } \\ & \hline \hline \end{aligned}$	2634858	2634932							No varaition	No varaition			
	2635713	2635844							No variation	No variation			
SNORD86 NR O04399．1	2686743	263688							No variation	No varation			
SNORDS6 NR＿02739．1	2637270	2637340							No variaion	No varation			
SNORDS7 NR＿00278． 1	2637885	2637656							No variation	No variation			
IDH3B MM＿17856．11	2639041	2644843	intron 2	2584407	2644407	r22073193	Iv2－3	GG	cc	cc			
$\begin{gathered} \text { EBF4 } \\ \text { NMOOO110514.1 } \end{gathered}$	2673524	2740754	intron 1	2614174	2674174	rs55820831	Ivsl－133	AA	${ }_{\text {á }}$	${ }_{\text {AG }}$			
			intron 2	2617329	2677329	${ }_{\text {r } 8774888}$	Ivs2－11	тT	тс	cc			
			exon 3	2617566	2677566	r22325900	non－coding	тT	тT	тс			
			intron 3	26112022.2618203	2678202：2678203	rs1147426	IVS3 5 5： 8	\％	IaAag	atagaang			
			intron 12	2670870	2730870	ז56138883	IVSI2＋236	cc	gc	cc			
			intron 15	2672934	2732934	r600014511	IvSI5＋49	GG	${ }_{\text {a }}$	${ }_{\text {g }}$			
			exon17	267104	2736104	rı1304767	non－coding	GG	cG	GG			
	2774715	2781292	intron 6	2717828	2777828	rs742707	ISSo +10	GG	${ }_{\text {ag }}$	${ }_{\text {GG }}$			
	2795657	2735657	exon 1	2736007	2796007	rs12625619	Leusfleu	${ }_{\text {GG }}$	${ }_{\text {ag }}$	AA			
FAM113A NM＿022760．3	2815971	2821332	exon 4	2788801	2818801	${ }^{\text {r2751899 }}$	non－coding	тT	тс	cc			
				2758480	2818480	r23225970	non－coding	AA	${ }_{\text {a }}$	${ }_{6}$			
				2757100	2817100	r57813022	non－coding	тT	${ }_{\text {тG }}$	тT			
				2756821	2816821	r2274669	Pro372Pro	cc	ст	ст			

Supplemental Table 3．Primers used for repeat－primed PCR，Southern blotting，and RT－PCR．

For repeat－primed PCR
Primer name
Primer sequence

Forward primer	TTTCGGCCTGCGTTCGGG
First reverse primer	TACGCATCCCAGTTTGAGACGCAGGCCCAGGCCCAGGCCCAGGCC
Second reverse primer	TACGCATCCCAGTTTGAGACG

For probes for Southern blot analysis．

Primer name	Primer sequence
Forward primer	TTTAAGAGCTTCCAAGGCTGA
Reverse primer	AGTGCCCACAAGGAAACCGTTA

For quantitation of mouse NOP56 cDNA

Primer name	Primer sequence
mouse NOP56 F	GTTGGCGCTGAAGGAAGTGG
mouse NOP56 R	CTTTGGCACGAGAGTAGCTG

For quantitation of human NOP56 cDNA
Primer name Primer sequence
human NOP56
TTGCCTTGGAAAATGCCAAC
TGTATTGCGGCACCAATCTT
human NOP56 cex6R TGTATTGCGGCACCAATCTT

For investigation of human NOP56 cDNA splicing variants

Primer name	Primer sequence
human NOP56 cex1F	TAGCCGCATTGCGAGCCGAA
human NOP56 cex4R	GTTGCCTTGGAAAATGCCAA

AJHG Conflict of Interest Form

Please complete this form electronically and upload the file with your final submission．

AJHG requires all authors to disclose any financial interest that might be construed to influence the results or interpretation of their manuscript．

As a guideline，any affiliation associated with a payment or financial benefit exceeding $\$ 10,000$ p．a．or 5% ownership of a company or research funding by a company with related interests would constitute a financial interest that must be declared．This policy applies to all submitted research manuscripts and review material．

Examples of statement language include：AUTHOR is an employee and shareholder of COMPANY；AUTHOR is a founder of COMPANY and a member of its scientific advisory board．This work was supported in part by a grant from COMPANY．

Please disclose any such interest below on behalf of all authors of this manuscript．

Please check one of the following：

None of the authors of this manuscript have a financial interest related to this work．Please print the following Disclosure Statement in the Acknowledgments section：

Please provide the following information：

\boxtimes Please check this box to indicate that you have asked every author of this work to declare any conflicts of interest．Your answers on this form are on behalf of every author of this work．

Manuscript \＃：AJHG－D－11－00147
Article Title：Expansion of Intronic GGCCTG Hexanucleotide Repeat in NOP56 Causes a Type of Spinocerebellar Ataxia（SCA36）Accompanied by Motor Neuron Involvement

Author List：Hatasu Kobayashi，Koji Abe，Tohru Matsuura，Yoshio Ikeda，Toshiaki Hitomi，Yuji Akechi，Toshiyuki Habu，Liu Wanyang，Hiroko Okuda and Akio Koizumi Your Name：Akio Koizumi

Date：2011／5／15

[^0]: CITATION：
 Kobayashi，Hatasu ．．．［et al］．Expansion of Intronic GGCCTG Hexanucleotide Repeat in NOP56 Causes SCA36，a Type of Spinocerebellar Ataxia Accompanied by Motor Neuron Involvement．．American journal of human genetics 2011，89（1）：121－130

