
J. Math. Biol. (2011) 62:925–973
DOI 10.1007/s00285-010-0359-3 Mathematical Biology

Expansion or extinction: deterministic and stochastic
two-patch models with Allee effects

Yun Kang · Nicolas Lanchier

Received: 8 February 2010 / Revised: 9 July 2010 / Published online: 3 August 2010
© Springer-Verlag 2010

Abstract We investigate the impact of Allee effect and dispersal on the long-term
evolution of a population in a patchy environment. Our main focus is on whether a
population already established in one patch either successfully invades an adjacent
empty patch or undergoes a global extinction. Our study is based on the combina-
tion of analytical and numerical results for both a deterministic two-patch model
and a stochastic counterpart. The deterministic model has either two, three or four
attractors. The existence of a regime with exactly three attractors only appears when
patches have distinct Allee thresholds. In the presence of weak dispersal, the analysis
of the deterministic model shows that a high-density and a low-density populations
can coexist at equilibrium in nearby patches, whereas the analysis of the stochastic
model indicates that this equilibrium is metastable, thus leading after a large random
time to either a global expansion or a global extinction. Up to some critical dispersal,
increasing the intensity of the interactions leads to an increase of both the basin of
attraction of the global extinction and the basin of attraction of the global expansion.
Above this threshold, for both the deterministic and the stochastic models, the patches
tend to synchronize as the intensity of the dispersal increases. This results in either a
global expansion or a global extinction. For the deterministic model, there are only
two attractors, while the stochastic model no longer exhibits a metastable behavior.
In the presence of strong dispersal, the limiting behavior is entirely determined by the
value of the Allee thresholds as the global population size in the deterministic and the
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stochastic models evolves as dictated by their single-patch counterparts. For all val-
ues of the dispersal parameter, Allee effects promote global extinction in terms of an
expansion of the basin of attraction of the extinction equilibrium for the deterministic
model and an increase of the probability of extinction for the stochastic model.

Keywords Allee effect · Deterministic model · Stochastic model · Extinction ·
Expansion · Invasion · Bistability · Basin of attraction · Metastability
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1 Introduction

Biological invasions of alien species are commonly divided into three stages: arrival,
establishment, and expansion (Liebhold and Tobin 2008). The precise circumstances
of an alien species’ arrival, which refers to the transport of an alien species to new
areas outside of its native range, are generally not known and are not the purpose of
this article. The establishment stage refers to a growth phase of the population den-
sity up to some threshold above which it is usually assumed that natural extinction is
highly unlikely. However, if during the expansion stage, which refers to the spreading
of the alien species to nearby new areas, the population expands in space through
dispersal without significantly increasing its size, thus leading to a drop of its density,
there might be a risk of extinction for species subject to an Allee effect. The Allee
effect refers to a certain process that leads to decreasing net population growth with
decreasing density, thus inducing the existence of a so-called Allee threshold below
which populations are driven toward extinction (Courchamp et al. 2009). The causes
of Allee effect identified by ecologists are numerous. They include failure to locate
mates (Hopper and Roush 1993; Berec et al. 2001), inbreeding depression (Lande
1998), failure to satiate predators (Gascoigne and Lipcius 2004), lack of cooperative
feeding (Clark and Faeth 1997), etc. Stochasticity, e.g., demographic and/or environ-
mental stochasticity, may also play an important role during the critical time period
when an alien species already established in one area starts to spread its popula-
tion into a new area through dispersal. In this article, we think of the establishment
stage as a local expansion of the population in a given geographical location, which
involves an increase of population density in this location, while we think of the
expansion stage as a global expansion of the population in space into nearby geo-
graphical locations regardless of its density. We call a global expansion successful
if it leads to the population being established in nearby geographical locations, and
unsuccessful if on the contrary the population fails to get established in new loca-
tions which may also lead to a global extinction (the population goes extinct in all
patches). The main purpose of this article is to study the critical time period when a spe-
cies already established in a specific geographical location starts to expand in space,
and determine whether the expansion stage is successful or not. Both Allee effect
and stochasticity are central to better understand why some alien species successfully
expand into new geographical areas, and there has been recently a growing recognition
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of the importance of these two components in biological invasions (Drake 2004;
Leung et al. 2004; Taylor and Hastings 2005; Ackleh et al. 2007; Courchamp et al.
2009). Understanding their role and strength is of critical importance to gain some
insight into why some species are more invasive than others, and may suggest some
proper biological control strategies to regulate some populations (Liebhold and Tobin
2008).

If an alien species subject to an Allee effect establishes its population in one area,
i.e., its population is above the Allee threshold in this area, then the first step of pop-
ulation expansion is to spread to a nearby new area where the population is either
absent or at least below the Allee threshold. A natural way to model this situation is
to consider a two-patch model with heterogeneous initial conditions such that

1. both patches are coupled by interacting through dispersal, and
2. in the absence of interactions, i.e., when the patches are uncoupled, the initial

conditions lead to establishment in one patch and extinction in the other patch.

This approach has been used previously by Adler (1993) and Kang and Armbruster
(2010). In this article, we follow this modeling strategy to study the global expansion
and global extinction of an alien species subject to an Allee effect during the critical
time period between the establishment stage and the expansion stage by employing
both a deterministic two-patch model and a stochastic counterpart. The objectives of
our study are twofold: the first is to study the consequences of the inclusion of dispersal
and Allee effect on the extinction and expansion for both deterministic and stochastic
models with heterogeneous initial conditions; the second is to understand the effects
of stochasticity by comparing the results based on both models.

There is a copious amount of literature on the invasion and extinction of populations
subject to Allee effects (e.g., Dennis 1989, 2002; Veit and Lewis 1996; McCarthy 1997;
Shigesada and Kawasaki 1997; Greene and Stamps 2001; Keitt et al. 2001; Fagan et al.
2002; Wang et al. 2002; Liebhold and Bascompte 2003; Schreiber 2003; Zhou et al.
2004; Petrovskii et al. 2005; Taylor and Hastings 2005) which also includes various
models in patchy environment (e.g., Amarasekare 1998a,b; Gyllenberg et al. 1999;
Ackleh et al. 2007; Kang and Armbruster 2010).

In the deterministic side, Amarasekare (1998a,b) investigated how an interaction
between local density dependence, dispersal, and spatial heterogeneity influence pop-
ulation persistence in patchy environments. In particular, she studied how Allee (or
Allee-like) effects arise from these patchy models. Gyllenberg et al. (1999) studied
a deterministic model of a symmetric two-patch metapopulation to determine con-
ditions that allow the Allee effect to conserve and create spatial heterogeneities in
population densities. Rather than exploring the global dynamics of their models, both
Amarasekare (1998a,b) and Gyllenberg et al. (1999) studied the influence of an Al-
lee effect on local dynamics, e.g., number of equilibria and local stability. There
are few studies regarding the influence of an Allee effect on the extinction versus
expansion of populations in patchy environments (e.g., Ackleh et al. 2007; Kang and
Armbruster 2010). Kang and Armbruster (2010) studied the influence of an Allee-
like effect for a discrete-time two-patch model on plant-herbivore interactions where
patches are coupled through a dispersal. Their study suggests that for a certain range
of dispersal parameters the population of herbivores in both patches drops under the
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Allee threshold, thus leading to an extinction of the herbivores in both patches, for the
majority of positive initial conditions.

In the stochastic side, the recent work by Ackleh et al. (2007) focuses on a multi-
patch population model combining stochasticity and Allee effect. Their numerical
simulations show that populations with initial sizes below but near their Allee thresh-
old in each patch can still become established and invasive if stochastic processes
affect life history parameters. The closer the population to its Allee threshold, the
greater the probability of invasion. A more theoretical approach based on interacting
particle systems can be found in Krone (1999). In his model, each site of the infinite
integer lattice has to be thought of as a patch which is either empty, occupied by a
small colony with a high risk of going extinct, or occupied by a full colony with a
longer life span. If successful, a small colony gets established to become a full colony,
while empty patches get colonized by a small colony due to invasions from adjacent
full colonies, making space explicit.

In this paper, although we model the population dynamics deterministically fol-
lowing the approach of Amarasekare (1998a,b), Gyllenberg et al. (1999) and Ackleh
et al. (2007), our stochastic process as well as analytical results for both models are
new. For the deterministic model, our focus is on the global dynamics of the system
combining dispersal and Allee effects. In particular, we give analytical results on how
Allee threshold and dispersal affect the geometry of the basins of attraction of the
stable equilibria. The stochastic model is closely related to the deterministic one and
consists of a process that has two absorbing states corresponding to global extinction
and global expansion, which allows to have a rigorous definition of successful inva-
sion. In particular, our model is designed to study analytically the probability that a
fully occupied patch successfully invade a nearby empty patch. To gain insight into
the effects of stochasticity on the population dynamics, we will compare in detail the
results obtained for both models.

The rest of the article is organized as follows. In Sect. 2, we introduce the determin-
istic two-patch model with Allee effect coupled by dispersal. Based on the analysis
of the invariant sets, we give a complete picture of the global dynamics of the system
including the existence of the nontrivial locally stable equilibria and the geometry
of their basin of attraction. Numerical solutions of the deterministic model are given
to gain some insight into how dispersal and Allee threshold affect the exact basin
of attraction of the equilibria. In Sect. 3, we introduce and analyze mathematically
the stochastic model focusing on the time to absorption of the process, the existence
of metastable states and the probability of a successful invasion when starting from
heterogeneous initial conditions. Numerical simulations of the stochastic model have
also been performed to better understand these aspects. In Sect. 4, we introduce, along
with additional numerical results, more general deterministic and stochastic models
including environmental heterogeneities as the Allee thresholds are different in each
patch. In Sect. 5, we compare the predictions based on both models, and describe the
biological implications of our analytical and numerical results. Finally, Sects. 6 and
7 are devoted to the proofs of the results related to the deterministic and stochastic
models, respectively.
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2 A simple deterministic two-patch model with Allee effects

The first step in constructing the deterministic two-patch model is to consider
single-species dynamics including an Allee affect as potential candidates to describe
the evolution in a single patch. The two-patch model is then naturally derived by
looking at a two-dimensional system in which both components are coupled through
dispersal. The ecological dynamics of a single species’ population subject to an Allee
effect that can mimic the dynamics in the absence of dispersal is usually described by
the model

x ′ = G(x) x − H(x) (1)

where x(t) denotes the population density at time t . The function G measures the
logistic component of population growth, which is given by

G(x) = r − ax (2)

where r is the per capita intrinsic growth rate and a measures the extra mortality caused
by intraspecific competition. In general, the bistability of the differential equation (1)
is triggered by combining the negative density-dependence of the logistic growth G
with the positive density-dependence of an additional demographic factor represented
here by the function H . The decreasing reproduction due to a shortage of mating
encountered in low population density and the decreasing mortality due to the weak-
ening predation risk in higher population density are two important examples of such
factors (Stephens and Sutherland 1999) which, following Dercole et al. (2002), can
be modeled by a Holling type II functional response: H(x) = cx/(x + d). This gives
the following population model

x ′ = x(r − ax) − cx

x + d
(3)

which can be rewritten as

x ′ = ax

x + d

(
x − r − ad − √

(r + ad)2 − 4ac

2a

)

×
(

r − ad + √
(r + ad)2 − 4ac

2a
− x

)
(4)

provided (r + ad)2 − 4ac > 0. By using the new variable

u = mx where m = r − ad + √
(r + ad)2 − 4ac

2a
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Eq. (4) can be rewritten as

u′ = a m u (u − θ) (1 − u)

u + d/m
where θ =

(
r − ad − √

(r + ad)2 − 4ac
)2

4a(c − rd)
. (5)

The population model (5) creates, under suitable parameter values, i.e., (r + ad)2 −
4ac > 0, a threshold θ below which the population goes extinct eventually and above
which the population density approaches a positive equilibrium. The simplest and
generic model that captures the population dynamics of a single species with Allee
effects, e.g., population model (5), can be described by

x ′ = r x (x − θ)(1 − x) (6)

where r is the per capita intrinsic growth rate after rescaling and θ is a threshold
that lies between 0 and 1 after rescaling. The latter, called Allee threshold, determines
whether the population goes extinct or establishes itself. More precisely, the population
dynamics of (6) can be summarized as follows.

Lemma 1 (Single species dynamics with Allee effects) If the population of a single
species is described by (6), then it goes extinct when x(0) < θ while its density goes
to 1 when x(0) > θ .

Thinking of model (6) as describing the population dynamics in one patch, the dynam-
ics of two interacting identical patches with dispersal μ can be modeled by

x ′ = r x (x − θ)(1 − x) + μ (y − x) (7)

y′ = r y (y − θ)(1 − y) + μ (x − y) (8)

where μ ∈ [0, 1] is a dispersal parameter, representing the fraction of population
migrating from one patch to another per unit of time. Although the system (7)–(8)
is symmetric in x and y, asymmetry will be introduced by considering different ini-
tial conditions in each patch, i.e., x(0) �= y(0), but also in Sect. 4 by looking at the
interactions between patches with different Allee thresholds. We will pay particular
attention to situations where one patch is initially below and the other patch above
the Allee threshold, in which case, in the absence of dispersal, the population goes
extinct in the first patch but establishes itself in the second one. The main objective is
to understand, based on analytical and numerical results, how the dispersal parameter
μ and the Allee threshold θ affect the global dynamics, i.e., the limit sets of the system
(7)–(8) and the geometry of their basin of attraction.

Our analytical results suggest the following picture of the global dynamics. Recall
first that, in the absence of dispersal, the system has four locally stable equilibrium
points, which correspond to cases when the population in each patch either goes extinct
or gets established. In the presence of dispersal, the existence of (stable) limit cycles is
also excluded: starting from almost every initial condition in R

2+, the system converges
to an equilibrium point. This is partly proved analytically in Theorem 1 and supported
by the numerical solutions of Fig. 1. Therefore, we focus our attention on the existence,
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stability and basins of attraction of the equilibrium points. The effects of the dispersal
parameter and the value of the Allee threshold are as follows. First, the dynamics of
the deterministic two-patch model in the presence of weak dispersal are similar to that
of the uncoupled system, having four locally stable equilibria (Theorem 4), i.e., the
extinction state (0, 0), the expansion state (1, 1) and two asymmetric interior equilibria
(xs, ys), (ys, xs), which is not retained after the inclusion of demographic stochastic-
ity, which induces two absorbing states and two metastable states. While increasing
the dispersal parameter from 0, the basin of attraction of the extinction state (0, 0) and
expansion state (1, 1) increase until a certain critical value at which both patches inter-
act enough to synchronize, which drives the system to either global extinction (0, 0)

or global expansion (1, 1): there are only two attractors (Theorems 2 and 4). Above
this critical value, dispersal promotes extinction when the Allee threshold is below one
half but promotes survival when the Allee threshold is above one half (Theorems 2 and
3). Finally, in the presence of strong dispersal, both patches synchronize fast enough
so that the global dynamics reduce to that of a single-patch model: if the initial global
density, i.e., the average of the densities in both patches, is below the Allee threshold
then the population goes extinct whereas if it exceeds the Allee threshold then the
population expands globally (Theorem 3). In other respects, for any value of the dis-
persal parameter, increasing the Allee threshold promotes extinction, and populations
initially below the Allee threshold in both patches are doomed to extinction, whereas
populations initially above the Allee threshold in both patches expand globally. These
results are stated rigorously in the following two subsections. Simulation results and
detailed summary are given in the last subsection.

2.1 Global dynamics and basins of attraction

This subsection and the next one are devoted to the statement of analytical results
(see Theorems 1–4) that apply to the deterministic model described by (7)–(8).
In order to understand the global dynamics of the deterministic two-patch model,
the first step is to identify its omega limit sets. Since the model is simply a two-
dimensional ODE, its omega limit sets are either equilibrium points or limit cycles
according to the Poincaré-Bendixson Theorem (Guckenheimer and Holmes 1983).
As stated in the next theorem, when the dispersal parameter is sufficiently large, an
application of the Dulac’s criterion (Guckenheimer and Holmes 1983) reveals sim-
ple dynamics by excluding the existence of limit cycles: for any initial condition, the
system converges to an equilibrium point.

Theorem 1 (Simple dynamics) Let r > 0 and θ ∈ (0, 1). If

μ ≥ r θ (c − 1) + r (2 − c)2 (1 + θ)2

4 (3 − c)
(9)

holds for a nonnegative number c ∈ [0, 3), then every trajectory of (7)–(8) converges
to an equilibrium point.

Theorem 1 indicates for instance that every trajectory of the system (7)–(8) converges
to an equilibrium point under the condition μ ≥ r(θ2 − θ + 1)/3 if one takes c = 0.
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In addition, Theorem 2 below implies that if limit cycles emerge for smaller values of
the dispersal parameter then each of them is included in one of the two regions of the
phase space in which the population lies above the Allee threshold in one patch but
below the Allee threshold in the other patch, i.e.,

{(x, y) ∈ �0 : 0 ≤ x ≤ θ and θ ≤ y ≤ 1} and

{(x, y) ∈ �0 : 0 ≤ y ≤ θ and θ ≤ x ≤ 1}

where �0 = R
2+. Although the condition (9) is not a necessary condition to guarantee

that the solution of (7)–(8) converges to an equilibrium point, numerical solutions
(see Fig. 1) further strongly suggest that, for any value of the dispersal parameter,
there is no stable limit cycle, which implies that locally stable equilibria are the only
possible attractors of the system, so we focus our attention on the existence, stability
and basins of attraction of the equilibrium points. We also would like to point out
that if the system has no Allee effect, e.g., a metapopulation model coupled by both
competition and migration with uniparental reproduction, then this system admits no
periodic solutions (Proposition 1 in Gyllenberg et al. 1999).

It can be easily seen that the system (7)–(8) has three symmetric equilibria for all
positive values of the parameters: one boundary equilibrium given by E0 = (0, 0)

and two interior equilibria given respectively by Eθ = (θ, θ) and E1 = (1, 1). For
obvious reasons, we call E0 the extinction state of the system and E1 the expansion
state. Theorem 2 below indicates that, for all parameter values, these two trivial equi-
libria are locally stable whereas the interior equilibrium point Eθ is unstable. Hence,
to understand the global dynamics of the system, the next step is to study the geometry
of the basins of attraction of the two trivial equilibria, i.e.,

B0 = {(x(0), y(0)) ∈ �0 : limt→∞(x(t), y(t)) = E0}
B1 = {(x(0), y(0)) ∈ �0 : limt→∞(x(t), y(t)) = E1}.

Letting �0,θ and �θ denote the subsets

�0,θ = {(x, y) ∈ �0 : 0 ≤ x ≤ θ and 0 ≤ y ≤ θ}
�θ = {(x, y) ∈ �0 : x ≥ θ and y ≥ θ}

Lemma 1 indicates that, in the absence of dispersal, the basins of attraction of E0 and
E1 for the (uncoupled) system are given by B0 = �0,θ \ Eθ and B1 = �θ \ Eθ .
The following theorem gives some valuable insight into the geometry of the basins of
attraction in the presence of dispersal.

Theorem 2 (Local stability and basins of attraction)

1. The extinction state E0 and expansion state E1 are always locally stable whereas
the interior fixed point Eθ is always unstable.

2. If 2μ > rθ(1 − θ) then Eθ is a saddle while if 2μ < rθ(1 − θ) then Eθ is a
source.
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3. �0,θ \ Eθ ⊂ B0. If in addition θ < 1/2 then

B0 ⊂ {(x, y) ∈ �0 : x + y < 2θ}.

4. �θ \ Eθ ⊂ B1. If in addition θ > 1/2 then

B1 ⊂ {(x, y) ∈ �0 : x + y > 2θ}.

Theorem 2 indicates that the inclusion of dispersal promotes both global extinction
and global expansion of the system, as the basins of attraction of both equilibrium
points E0 and E1 are larger in the presence than in the absence of dispersal. Numeri-
cal solutions further suggest that, up to a certain critical value, increasing the dispersal
parameter translates into an increase of B0 and B1. The value of the Allee threshold
θ also plays an important role in the global dynamics. When the Allee threshold lies
below one half, which seems to be common in nature (for data about Allee thresholds,
see Johnson et al. 2006; Berec et al. 2007; Tobin et al. 2007; Chapter 5 in Courchamp
et al. 2009), the largest possible basin of attraction of E0 is

{(x, y) ∈ �0 : x + y < 2θ}.

Moreover, according to the numerical solutions (see Fig. 1), increasing the Allee
threshold promotes extinction of the system in the sense that, the dispersal param-
eter being fixed, the smaller the Allee threshold, the smaller the basin of attraction
of the extinction state E0 and the larger the basin attraction of the expansion state
E1. Finally, we would like to point out that parts 1 and 2 of the theorem hold for
the system (7)–(8) but not always for two-patch models with Allee effect. A counter
example is provided by the metapopulation model coupled by both competition and
migration with biparental reproduction studied by Gyllenberg et al. (1999). The first
step to prove parts 3 and 4 of Theorem 2 will be to identify the positive invariant sets
which are included in the upper right quadrant �0 = R

2+. Recall that a set is called
positive invariant if any trajectory starting from this set stays in this set at all future
times. Since we are interested in the global dynamics of the system, our objective will
be to find all the possible invariant sets in �0. Notice that the union and the intersection
of positive invariant sets are also positive invariant. All these positive invariant sets
have an important role in understanding the dynamics in regions of the phase space
where the population is below the Allee threshold in one patch but above the Allee
threshold in the other patch. In particular, they will give us means of decomposing the
phase space by restricting our attention to the dynamics on each invariant set and then
sewing together a global solution from the invariant pieces.

2.2 Dispersal effects and multiple attractors

In this subsection, we study the effects of the dispersal parameter on the dynamics
of the two-patch model when the Allee threshold is fixed. Theorem 1 suggests that
the number of attractors is also equal to the number of locally stable equilibria. Our
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study shows that the value of the dispersal parameter determines the number of equi-
libria, thus the possible number of attractors. Let Sθ denote the stable manifold of the
unstable interior equilibrium Eθ , i.e.,

Sθ = {(x(0), y(0)) ∈ �0 : lim
t→∞(x(t), y(t)) = Eθ }.

The following theorem indicates that, when the dispersal is sufficiently large, both
patches interact enough to synchronize, which drives the system to either global extinc-
tion or global expansion: there are only two stable equilibria, the extinction state E0
and the expansion state E1.

Theorem 3 (Large dispersal) Assume that

μ >
r(θ2 − θ + 1)

6
. (10)

Then, the system (7)–(8) has only two attractors: E0 and E1. Moreover,

1. If θ < 1/2 and (10) holds then

{(x, y) ∈ �0 \ Sθ : x + y ≥ 2θ} ⊂ B1.

2. If θ > 1/2 and (10) holds then

{(x, y) ∈ �0 \ Sθ : x + y ≤ 2θ} ⊂ B0.

If the inequality (10) holds, we can consider that the system has very strong dispersal.
Then Theorem 3 indicates that, when θ < 1/2, both patches synchronize fast enough
so that the global dynamics reduce to the ones of a single-patch model: if the initial
global density, i.e., the average of the densities in both patches, is below the Allee
threshold then the population goes extinct whereas if it exceeds the Allee threshold
then the population expands globally. In addition, the theoretical results in Theorems
2 and 3 suggest that the smaller the Allee threshold, the smaller the basin of attraction
of the extinction state and the larger the basin of attraction of the expansion state. This
agrees with the simulation results of Fig. 1.

Finally, in order to explore the number of locally stable equilibria when the dispersal
is small, we now look at the nullclines of the system. Define

f (x) = x − r x(x − θ)(1 − x)

μ
.

Then, the nullclines of the system (7)–(8) are given by x = f (y) and y = f (x). The
interior equilibria are determined by the positive roots of x = f ( f (x)), which is a
polynomial with degree 9. This implies that the system has at most 8 interior equilibria
since 0 is always a solution.

According to the expression of the nullclines y = f (x) and x = f (y) (see Fig. 7
page 964), we can see that the number of interior equilibria strongly depends upon
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the value of the dispersal parameter: in the presence of strong dispersal, both patches
synchronize and the system has only two positive interior equilibria Eθ and E1, which
is confirmed by Theorem 3, while in the presence of weak dispersal, there is enough
independence between both patches so that the system has 8 positive interior equi-
libria. We are interested in the locally stable equilibria since the possible number of
attractors is intimately connected to the number of stable equilibria. The following
theorem gives a summary of the results related to the local and the global stability of
the equilibria for different values of the parameters.

Theorem 4 (Multiple attractors)

1. If r > 0, θ, μ ∈ [0, 1] then every trajectory converges in [0, 1]2 so all the equi-
libria (x∗, y∗) ∈ [0, 1]2.

2. If 6μ > r(θ2 − θ + 1) then there are only three equilibria: E0, Eθ and E1, with
E0 and E1 locally stable and Eθ saddle.

3. If 4μ < r(1 − θ)2 then the nullcline

y = f (x) := x − r x(x − θ)(1 − x)

μ

has exactly two positive roots that we denote by 0 < x1 < x2. Let M =
max0≤x≤x1 f (x).
(a) If x1 < M < x2 then the system has five fixed points with only two locally

stable: E0 and E1.

(b) If M ≥ 1 then the system achieves its maximum number of equilibria which
is equal to 9; only four of them are locally stable: two symmetric equilibria
E0 and E1 and two asymmetric interior equilibria (xs, ys) and (ys, xs).

Part 1 of Theorem 4 suggests that we can restrict our analysis of the basins of attraction
to the compact space [0, 1]2. Thus, when we introduce an approximation of stochastic
model in the next section, we restrict the state space to be [0, 1]2. Moreover, from The-
orem 4, we can see that when the dispersal parameter is small enough, the system has
9 equilibria, including four locally stable equilibria. In the presence of an Allee effect,
small dispersal may promote survival: patches that are below the Allee threshold are
rescued by immigrants from adjacent patches above the Allee threshold. This implies
that when dispersal is introduced to a system with an Allee effect, populations can
exist at intermediate densities, corresponding to the equilibria (xs, ys) and (ys, xs), as
a source-sink system, or expand to high density E1. Moreover, according to pertur-
bation theory (Levin 1974; Amarasekare 2000), both asymmetric interior equilibria
appear from the equilibria (0, 1) and (1, 0) of the uncoupled system, i.e., in the absence
of dispersal, caused by the small perturbation μ. Therefore, we have xs = O(μ) and
ys = 1 − O(μ). Finally, note that the absence of limit cycles given by Theorem 1
when (9) holds combined with Theorem 4 implies that

Corollary 1 (Four attractors) If the system (7)–(8) has four locally stable equilibria
and inequality (9) holds for some c ∈ [0, 3), then the system has exactly four attractors.

When the system has four attractors as stated in Corollary 1, the numerical solutions
in Fig. 1 suggest that the smaller the dispersal, the smaller the basin of attraction of
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Fig. 1 Solution curves and basins of attraction of the deterministic model with r = 1 and θ < 1/2. The
values of the Allee threshold and fraction parameter, θ and μ, are indicated at the bottom of each simulation
pictures. The dark dots are locally stable equilibria. The solid lines are trajectories with arrows pointing to
its converging state. The dashed line is the straight line: x + y = 2θ . The grey region is the basin attraction
of the expansion state E1. The white region is the basin attraction of (xs , ys ) and (ys , xs ). The dark grey
region is the basin attraction of the extinction state E0. Based on Theorem 4, it is enough to restrict the
system (7)–(8) to the compact space [0, 1]2

the extinction state and the expansion state, but the larger the basin attraction of the
asymmetric interior equilibria. In particular, if μ → 0, then

B0 → �0,θ , B1 → �θ, Bs → R
2+ \ (�0,θ ∪ �θ)

where Bs denotes the basin of attraction of the asymmetric interior equilibria.

2.3 Simulations and summary

Theorem 3 suggests that the larger the Allee threshold, the larger the basin of attraction
of the extinction state and the smaller the basin of attraction of the expansion state
when inequality (10) holds. The numerical solutions shown in Fig. 1 confirm this and
give us a more complete picture of how the dispersal μ and Allee threshold θ affect the
exact basin of attraction of the locally stable equilibria including asymmetric interior
equilibria:

1. Effects of dispersal μ – Fix Allee threshold θ and growth rate r , let dispersal μ

vary.
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Fig. 2 Solution curves and basins of attraction of the deterministic model with r = 1 and θ > 1/2. The
values of the Allee threshold and fraction parameter, θ and μ, are indicated at the bottom of each simulation
pictures. The dark dots are locally stable equilibria. The solid lines are trajectories with arrows pointing to
its converging state. The dashed line is the straight line: x + y = 2θ . The grey region is the basin attraction
of the expansion state E1. The white region is the basin attraction of (xs , ys ) and (ys , xs ). The dark grey
region is the basin attraction of the extinction state E0

1. When μ is small so that the system has four locally stable equilibria (μ smaller
than some critical value μc), the smaller the dispersal, the smaller the basin of
attraction of the extinction state and the expansion state, but the larger the basin
of attraction of the asymmetric interior equilibria (see (e) and (f) of Fig. 1). This
indicates that smaller dispersal promotes persistence of the populations in both
patches by creating sink-source dynamics.

2. When μ is large so that the system has only two attractors E0 and E1 (μ larger
than the critical value μc), the larger the dispersal, the larger the basin of attrac-
tion of the extinction state but the smaller the basin of attraction of the expansion
state when θ < 1/2 (see (a) and (b) of Fig. 1). When θ > 1/2, the monotonicity
is flipped due to the symmetry of the system (see Fig. 2).

3. Extreme cases: when μ is very small, the two-patch model behaves nearly like
the uncoupled system, having four attractors and almost the same basins of
attraction, while when μ/r→∞, the global population behaves according to a
one-patch system with Allee threshold 2θ , in particular

B0 −→ {(x, y) ∈ R
2+ : x + y < 2θ}.

2. Effects of Allee threshold θ – Fix dispersal μ and growth rate r , let Allee threshold
θ vary.

Regardless of the number of locally stable equilibria, the larger the Allee thresh-
old, the larger the basin of attraction of the extinction state but the smaller the
basin of attraction of the expansion state (see (a), (c), (d) and (f) of Fig. 1).

3. Effects of Growth rate r – Fix dispersal μ and Allee threshold θ , let growth rate r
vary.
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Table 1 Summary for the deterministic model when θ < 1/2 and variations of the parameters are restricted
to the case when the system has only two attractors E0 and E1

Parameters Basin of attraction of E0 Basin of attraction of E1

Two attractors and θ < 1/2

Dispersal μ ↑ B0 ↑ B1 ↓
Allee threshold θ ↑ B0 ↑ B1 ↓

In particular, if μ/r → ∞ then B0 → {(x, y) ∈ R
2+ : x + y ≤ 2θ}.

Table 2 Summary for the deterministic model when θ < 1/2 and variations of parameters are restricted
to the case when the system has four attractors: E0, E1 and (xs , ys ), (ys , xs )

Parameters Basin of attr. of E0 Basin of attr. of asymmetric equilibria Basin of attr. of E1

Four attractors and θ < 1/2

Dispersal μ ↓ B0 ↓ Bs ↑ B1 ↓
Allee threshold θ ↓ B0 ↓ no monotonicity B1 ↑
μ → 0 B0 → �0,θ Bs → R

2+ \ (�0,θ ∪ �θ ) B1 → �θ

By introducing the new time τ = t/r , we can scale off the parameter r of the
system (7)–(8) so the dispersal μ becomes μ/r . This implies that the growth
rate r and the dispersal parameter μ have opposite effects on the basin of attrac-
tion of the locally stable equilibria, i.e., increasing the value of r is equivalent
to decreasing the value of μ.

Tables 1, 2 give a complete picture, based on our analytical and numerical results, of
how dispersal and Allee threshold affect the basin of attraction of the locally stable
equilibria. We only focus on the case θ < 1/2 but similar results can be deduced when
θ > 1/2 using the symmetry of the system (7)–(8).

3 Definition of the stochastic model and main results

While the deterministic model is similar to the one in Ackleh et al. (2007), our stochas-
tic model differs from theirs. Their model is derived from the deterministic model by
including independent Poisson increments, i.e., variability in birth, death and migra-
tion events. This gives rise to a multi-patch individual-based model for which they
study numerically the probability of a successful invasion. In their article, successful
invasion is defined as the event that the population size in one patch exceeds a certain
threshold. However, well-known results about irreducible Markov chains imply that
the population is driven almost surely to extinction which corresponds to the unique
absorbing state of their stochastic process. In contrast, we model stochastically the
two-patch system via a process that has two absorbing states corresponding to a global
extinction and a global expansion, respectively. This allows to have a definition of suc-
cessful invasion more rigorous and more tractable mathematically. In particular, while
their stochastic model is designed to study numerically the probability that a popu-
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lation starting near the Allee threshold in each patch gets successfully established,
our model is designed to study analytically the probability that a fully occupied patch
successfully invade a nearby empty patch. More precisely, to understand the effect of
stochasticity on the interactions between both patches, we introduce a Markov jump
process that, similarly to the deterministic model, keeps track of the evolution of the
population size in each patch. To obtain a Markov process, the state is updated at
random times represented by the points of a Poisson process with a certain intensity
making the times between consecutive updates independent exponentially distributed
random variables. Motivated by the fact that the unit square S = [0, 1]2 is positive
invariant for the deterministic model, we will choose this set as the state space, i.e.,
the state at time t is a random vector ηt = (Xt , Yt ) ∈ S, where the first and second
coordinates represent the population size in the first and second patch, respectively.
Following the deterministic model, the stochastic dynamics involve three mechanisms:
expansion, extinction, and migration. To model the presence of an Allee affect, we
again introduce a threshold parameter θ ∈ (0, 1) that can be seen as a critical size
under which the population undergoes extinction and above which the population
undergoes expansion, i.e., Allee threshold. This aspect is modeled by assuming that
each component of the stochastic process jumps independently at rate r > 0 to either
0 (extinction) or 1 (expansion) depending on whether it lies below or above the Allee
threshold. Recall that an event “happens at rate r” if the probability that it happens
during a short time interval of length �t approaches r(�t) as �t→0. In particular,
expansion and extinction are formally described by the conditional probabilities

P (Xt+�t = 1|Xt > θ) = P (Yt+�t = 1|Yt > θ) = r�t + o(�t)

P (Xt+�t = 0|Xt < θ) = P (Yt+�t = 0|Yt < θ) = r�t + o(�t). (11)

This is also equivalent to saying that the waiting time for an expansion or an extinction
is exponentially distributed with mean 1/r . Given that the population size in a given
patch is at the Allee threshold, we flip a fair coin to decide whether an expansion event
or an extinction event occurs at that patch which, in view of well-known properties of
Poisson processes, implies that

P (Xt+�t = 1|Xt = θ) = P (Yt+�t = 1|Yt = θ) = (r/2)�t + o(�t)

P (Xt+�t = 0|Xt = θ) = P (Yt+�t = 0|Yt = θ) = (r/2)�t + o(�t). (12)

To understand the effects of inter-patch interactions on the evolution of the system,
we also include migration events consisting of the displacement of a fraction μ of the
population of each patch to the other patch. We assume that these events occur at the
normalized rate 1, therefore migrations are described by

P ((Xt+�t , Yt+�t ) = (1 − μ) (Xt , Yt ) + μ (Yt , Xt )) = �t + o(�t), (13)

We refer to Fig. 3 for a schematic illustration of the dynamics, where dark rectangles
represent parts of the populations which are interchanged in the event of a migra-
tion. To analyze mathematically the stochastic process, it will be useful to look at the
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Fig. 3 Schematic representation of the stochastic model ηt = (Xt , Yt ). The dark rectangles represent parts
of the populations which are exchanged in the event of a migration

model as a simple example of interacting particle system. Interacting particle systems
are continuous-time Markov processes whose state space maps the vertex set of a con-
nected graph into a set representing the possible states at each vertex. The evolution
is described by local interactions as the rate of change at a given vertex only depends
on the configuration in its neighborhood. In particular, the Markov process {ηt }t can
be seen as an interacting particle system evolving on a very simple graph that consists
of only two vertices, representing both patches, connected by one edge, indicating
that patches interact. The reason for looking at the stochastic model as an example of
interacting particle system is that this will allow us to construct the process graphically
from a collection of independent Poisson processes based on an idea of Harris (1972),
which is a powerful tool to analyze the process mathematically.

We now describe in details the behavior of the process along with our main results.
Note that, considering a stochastic model rather than a deterministic one, the long-
term behavior is described by a set of invariant measures on the state space rather than
single point equilibria. To the two trivial equilibria of the deterministic model, E0
and E1, correspond two invariant measures which are Dirac measures that concentrate
on those two points, respectively. These two measures are two absorbing states: the
configuration in which both patches are empty and the configuration in which both
patches are fully occupied. We call global extinction and global expansion the events
that the process eventually gets trapped into the first and the second absorbing state,
respectively. Interestingly, to the two asymmetric equilibria of the deterministic model
in the presence of weak dispersal correspond two quasi-stationary distributions rep-
resenting two metastable states of the stochastic process (see Theorem 7): depending
on the initial configuration, the transient behavior might be described by one of these
two quasi-stationary distributions, but after a long random time in the presence of
weak dispersal (see Theorem 6), the system gets trapped into one of the two absorbing
states, suggesting that situations predicted by the deterministic model in which a small
population can live next to a large population are artificially stable. Another important
question is how stochasticity affects the geometry of the basins of attraction of the
two absorbing states, although strictly speaking there is no basin of attraction for the
stochastic model since the limiting behavior might be unpredictable, and how fast
the system reaches absorption. We will see that there is a set of initial configurations
for which the limiting behavior of the stochastic process is predictable, and absorption
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to one of the two absorbing states occurs quickly (see Theorem 5). Starting from any
other configuration, the limiting behavior becomes unpredictable in the sense that the
process may reach any of the two absorbing states with positive probability. In the
presence of weak dispersal, however, the limit is almost predictable in the sense that
the probability that the system undergoes a global expansion after exiting one of its
metastable states approaches zero or one (see Theorem 8). Whether the system gets
trapped into one or the other absorbing state strongly depends on the value of the Allee
threshold. The limit is less and less predictable and the time to absorption shorter and
shorter as the dispersal parameter increases.

3.1 Predictable behavior

This subsection and the next one are devoted to the statement of analytical results
(see Theorem 5–8) that apply to the stochastic model described by the transition rates
(11)–(13). In order to describe rigorously the behavior of the stochastic model, our
main objective is to estimate the times to absorption

τ+ = inf {t ≥ 0 : Xt = Yt = 1} and τ− = inf {t ≥ 0 : Xt = Yt = 0},

and the corresponding probabilities of absorption,

P (τ = τ+) and P (τ = τ−) where τ = min(τ+, τ−),

as a function of the initial configuration and the three parameters of the system. As pre-
viously explained, in contrast with the deterministic model which can have up to four
distinct attractors, with probability one, either global expansion or global extinction
occurs for the stochastic process, i.e.,

P (τ < ∞) = P (τ = τ+) + P (τ = τ−) = 1.

The state space can be divided into four subsets. Starting from only two of these subsets
the limit is predictable in the sense that

P (τ = τ+) ∈ {0, 1}.

We call an upper configuration any configuration of the system in which the popu-
lation size in each patch exceeds the Allee threshold, and a lower configuration any
configuration in which the population size in each patch lies below the Allee threshold.
These sets are denoted respectively by

�+ = {(x, y) ∈ S : min(x, y) > θ} = �θ,1 \ {(x, y) : x = θ or y = θ}
�− = {(x, y) ∈ S : max(x, y) < θ} = �0,θ \ {(x, y) : x = θ or y = θ}.

Note that the set of upper configurations is closed under the dynamics, i.e., once the
system hits an upper configuration, the configuration at any later time is also an upper
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configuration. This implies that, starting from an upper configuration, global expan-
sion occurs with probability one. Similarly, starting from a lower configuration, global
extinction occurs with probability one. By representing the process graphically, the
time to absorption can be computed explicitly, as stated in the following theorem.

Theorem 5 (time to absorption) We have

E [ τ+ |(X0, Y0) ∈ �+] = E [ τ− |(X0, Y0) ∈ �−] = 6r + 1

2r2 .

The previous theorem indicates that, starting from an upper configuration, the system
converges with probability one to the absorbing state (1, 1), whereas starting from
a lower configuration, it converges with probability one to the other absorbing state
(0, 0). This result can be seen as the analog of Theorem 2 which states that the sets of
upper and lower configurations are included in the basin of attraction of the equilibrium
points E1 and E0, respectively. Theorem 5 also indicates that, when the rates at which
expansions, extinctions, and migrations occur are of the same order, the expected time
to absorption is quite short.

3.2 Metastability

The long-term behavior of the process starting from a configuration which is neither
an upper configuration nor a lower configuration is more difficult to study as the prob-
abilities of global expansion and global extinction are both strictly positive, which we
shall refer to as unpredictable behavior. We will prove that, in any case, the system
hits either an upper or a lower configuration at a random time which is almost surely
finite, after which it evolves as indicated by Theorem 5. Hence, the time to absorption
and probabilities of global expansion and extinction can be determined by estimating
the hitting times

T + = inf {t ≥ 0 : (Xt , Yt ) ∈ �+} and T − = inf {t ≥ 0 : (Xt , Yt ) ∈ �−}

and the corresponding hitting probabilities

P (T = T +) and P (T = T −) where T = min(T +, T −),

since Theorem 5 implies that

E [τ ] = E [T ] + 6r + 1

2r2 and P (τ = τ+) = P (T = T +).

Even though our next results hold for all values of the parameters, they indicate that
interesting behaviors emerge when the dispersal parameter μ is small. In contrast with
the deterministic model which, in this case, has four attractors, as indicated by Theo-
rem 4, the stochastic model first exhibits a metastable behavior by oscillating for an
arbitrarily long time around one of the two nontrivial equilibria of the deterministic
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model, and then gets trapped into one of its two absorbing states. The limit is almost
predictable as the probability of global expansion approaches either 0 or 1 depending
on the value of the threshold parameter. For simplicity and since the system is sym-
metric, we shall assume that X0 = 0 and Y0 = 1 but the proofs of our results easily
extend to the more general case when

0 < μ � min{|X0 − θ |, |Y0 − θ |}.

Recall that, starting from an upper configuration or a lower configuration, the time
to absorption is rather small. In contrast, when X0 = 0, Y0 = 1 and μ is small, the
stochastic process converges to a quasi-stationary distribution in which the population
size at patch X is relatively close to 0 and the population size at patch Y relatively
close to 1, and stays at its quasi-stationary distribution for a very long time, i.e., the
expected value of time T is large. However, due to stochasticity, the system reaches
eventually an upper or a lower configuration, and then gets trapped rapidly. The next
theorem gives an explicit lower bound of the expected value of the hitting time, which
is the time the system stays at its quasi-stationary distribution.

Theorem 6 (metastability) For any initial configuration, we have

P (T < ∞) = P (τ < ∞) = 1.

Moreover,

E [ T | (X0, Y0) = (0, 1)] ≥ n0

2 + 4r

(
1 + 2r

1 + r

)n0

where

n0 = 1

2

⌊
min(ln(1 − θ), ln(θ))

ln(1 − μ)

⌋
.

Note that, when the Allee threshold is bounded away from 0 and 1, and the dis-
persal parameter is small, n0 is large, and so is the expected value of the hitting time
T . Starting from one patch empty and the other patch fully occupied, the time to
reach either an upper or a lower configuration can be divided into independent trials,
each of them having a small probability of success when μ is small. In particular,
when properly rescaled, the time to absorption is stochastically larger than a geo-
metric random variable with small parameter, which is the key to proving Theorem
6. This strongly suggests that, similarly to the geometric random variable, the var-
iance of the time to absorption is of the order of the square of its expected value.
This indicates that, over a large number of independent realizations, a large frac-
tion of these realizations will result in time to absorption much smaller than the
expected value, though still very large, whereas a smaller fraction of the realiza-
tions will result in time to absorption much larger than the expected value, which
is also supported by numerical simulations of the stochastic model. Now, note that,
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before the hitting time, no expansion event can occur at patch X while no extinc-
tion event can occur at patch Y . To gain insight into the metastable state of the sto-
chastic model, it is thus natural to look at the stationary distribution of the Markov
process η̄t = (X̄t , Ȳt ) with state space S = [0, 1]2, and whose evolution is given
by

P (X̄t+�t = 0|X̄t �= 0) = P (Ȳt+�t = 1|Ȳt �= 1) = r�t + o(�t)

P ((X̄t+�t , Ȳt+�t ) = (1 − μ) (X̄t , Ȳt ) + μ (Ȳt , X̄t )) = �t + o(�t),

where �t is a small time interval. In other words, the new process {η̄t }t is
obtained from the original two-patch model by assuming that only extinction
events at patch X and only expansion events at patch Y can occur. Note that,
strictly speaking, the stationary distribution, say ν, of the new process is not
the quasi-stationary distribution of the two-patch model. However, it is a good
approximation of the quasi-stationary distribution when the process is metasta-
ble, i.e., when the dispersal parameter μ is very small. In particular, the follow-
ing theorem gives a good approximation of the behavior before the hitting time.

Theorem 7 (metastable state) Under the measure ν we have

Eν (X̄t ) ≤ μ

r + μ
and Eν (Ȳt ) ≥ 1 − μ

r + μ
.

This indicates that, when μ is small, the population size at patch X is close to 0
(i.e., O(μ)) and the population size at patch Y close to 1 (i.e., 1 − O(μ)). The
expected values above have to be thought of as the analog of the two asymmetric
equilibria of the deterministic model: (xs, ys) and (ys, xs). After evolving a long
time according to its quasi-stationary distribution, the process hits either an upper
or a lower configuration, so the last question we would like to answer is whether
global expansion or global extinction occurs after the system exits its metastable
state. Starting from an upper or a lower configuration, the answer is given by The-
orem 5. Starting from X0 = 0 and Y0 = 1, the symmetry of the model implies
that

P (τ = τ+) = P (τ = τ−) = 1/2 whenever θ = 1/2.

Our last result shows that, when θ �= 1/2 and μ > 0 is small, the limiting behavior of
the system is almost predictable in the sense that the probability of global expansion
approaches either 0 or 1.

Theorem 8 (hitting probabilities) Assume that θ < 1/2. Then

P (T = T −|(X0, Y0) = (0, 1))

P (T = T +|(X0, Y0) = (0, 1))
≤

(
1

1 + r

)m0
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where

m0 =
⌊

ln(2θ)

ln(1 − μ)

⌋
.

The previous theorem indicates that, when μ > 0 is small,

P (τ = τ+|(X0, Y0) = (0, 1)) = P (T = T +|(X0, Y0) = (0, 1))

= 1 − P (T = T −|(X0, Y0) = (0, 1)) ≥ 1 − (1 + r)−m0 ≈ 1.

In particular, in contrast with the deterministic model for which the limit depends on
the initial condition and the geometry of the basins of attraction, starting from any
initial configuration but an upper or a lower configuration, the limiting behavior of
the stochastic model is only sensitive to the value of the parameters, with the Allee
threshold θ playing a central role.

3.3 Simulation results

While Theorem 5 gives an exact estimate of the time to absorption starting from par-
ticular initial conditions, the other results provide theoretical lower and upper bounds
that allows us to gain a valuable insight into the long-term behavior of the stochastic
two-patch model in the presence of weak dispersal. To better understand the combined
effect of the Allee threshold and dispersal parameter when starting from heterogeneous
initial conditions, we refer the reader to the numerical simulations of Fig. 4. The left
panel of the figure represents the probability of a global extinction, with the probability
increasing with the darkness, and the right panel the expected time to absorption, with
time increasing with the darkness, as a function of the dispersal parameter and the Allee
threshold. The tables provide some numerical values of the probability of extinction
and expected time to absorption averaged over 10,000 independent realizations of
the stochastic process for specific values of the parameters. The predictions based on
Theorems 6 and 8 that the time to extinction blows up and the probability of extinction
approaches either zero or one in the presence of weak dispersal appears clearly looking
at the left side of both panels and the left column of the tables for which μ = 0.02.
The left picture and first table of Fig. 4 further indicate that the probability of a global
extinction depends non-monotonically upon the dispersal parameter: when the Allee
threshold is below one half, the probability of extinction first increases with the dis-
persal parameter and then decreases after the dispersal reaches a critical value that
depends on θ , which can be easily seen in the row θ = 0.45 of the table. When the
Allee threshold exceeds one half, the monotonicity is flipped. Simulations also indi-
cate that, the dispersal parameter being fixed, the probability of extinction increases
as the Allee threshold increases. Although we omit the details of the proof, this can
be easily shown analytically invoking a standard coupling argument to compare two
processes, the first one with Allee threshold θ1 and the second one with θ2 > θ1,
the other parameters being the same for both processes. The black triangle labeled 1
delimited by the white dashed line in the upper right corner of the left picture reveals
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Fig. 4 Simulation results for the probability of a global extinction and the time to absorption of the stochastic
model starting with one empty patch and one fully occupied patch and with growth parameter r = 0.25. Left
the gradation of grey represents the probability of a global extinction ranging from 0=white to 1=black.
Right the gradation of grey represents the time to absorption ranging from 0=white to 100 or more=black.
In both pictures, the probability and time are computed from the average of 10,000 independent simulation
runs for 200 different values of the Allee threshold ranging from 0.25 to 0.75. These are further computed
for 190 different values of the dispersal parameter ranging from 0.02 to 0.50, and 76 different values of the
dispersal parameter ranging from 0.02 to 0.20, respectively. The tables give the values of the probability of
a global extinction and the time to absorption for particular values of the parameters μ and θ
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that global extinction occurs almost surely when θ > 1 − μ. Indeed, starting from
the heterogeneous condition X0 = 0 and Y0 = 1, after the first migration event, we
have

Xt = μ and Yt = 1 − μ and so max (Xt , Yt ) = 1 − μ < θ.

In particular, both patches are below the Allee threshold from which it follows that
the population goes extinct eventually. Almost sure global expansion in the parameter
region corresponding to the lower right white triangle labeled 2 can be proved simi-
larly. Finally, as suggested by Theorem 6, the right picture and second table of Fig. 4
indicate that the expected value of the time to absorption increases as the dispersal
parameter decreases but also as the Allee threshold gets closer to one half, which can
again be proved analytically based on standard coupling arguments even though we
omit the details of the proof.

4 Asymmetric two-patch models

In this section, we investigate the dynamics of more general asymmetric deterministic
and stochastic models, focusing on the case where the Allee thresholds in both patches
are different.

4.1 The asymmetric deterministic model

The asymmetric deterministic two-patch model is naturally derived from the sym-
metric one (7)–(8) by considering different Allee thresholds in both patches, in the
following manner:

x ′ = r x (x − θ1)(1 − x) + μ (y − x) (14)

y′ = r y (y − θ2)(1 − y) + μ (x − y) (15)

where the Allee thersholds θi ∈ (0, 1) for i = 1, 2 and where the parameters r, μ > 0
are defined as in the system (7)–(8). To fix the ideas, we assume that θ1 < θ2 through-
out this section, but in view of the obvious symmetry of the model, results in this case
are easy to generalize to the case when θ1 > θ2. The main dynamics of (14)–(15)
are similar to the ones of the symmetric system (7)–(8). Although we omit the proofs
here, the proofs related to the symmetric model in Sect. 6 can be extended to give the
following results:

1. Positively invariant and bounded: Starting from any initial condition in R
2+, the

solution is attracted to the compact space [0, 1]2 so the system (14)–(15) can also
be restricted to the set [0, 1]2.

2. Local stability: The system (14)–(15) always has three equilibria given by

E0 = (0, 0), Eθ1,2 = (θ1, θ2), E1 = (1, 1),

123



948 Y. Kang, N. Lanchier

0

1

0 1

patch X

pa
tc

h 
Y

(a)

0

1

0 1

pa
tc

h 
Y

patch X

(b)

0

1

0 1

pa
tc

h 
Y

patch X

(c)

0

1

0 1

pa
tc

h 
Y

patch X

(d)

0

1

0 1

patch X

pa
tc

h 
Y

(e)

0

1

0 1

patch X
pa

tc
h 

Y

(f)

Fig. 5 Solution curves and basins of attraction when r = 1 and θ1 = 0.3 < 0.4 = θ2. The value of
the dispersal parameter μ appears at the bottom of each picture. The dashed line is the straight line with
equation x + y = θ1 + θ2. The color code, dots and arrows have the same interpretation as in Fig. 1

with E0 and E1 always locally stable whereas the interior fixed point Eθ1,2 is always
unstable.

3. Multiple attractors: The number of attractors may differ from the symmetric case.
More precisely, the growth rate r and Allee threshold θ1 < θ2 being fixed, we
observe the following behavior as the dispersal parameter μ varies. As in the sym-
metric case, there are only two attractors, namely E0 and E1, for sufficiently large
values of μ (see (d)-(f) in Fig. 5 for numerical results). Also, there are four attractors,
the two symmetric attractors E0 and E1, and two asymmetric attractors

Eas1 = (xs1, ys1) with xs1 > ys1 and Eas1 = (xs2, ys2) with xs2 < ys2

for sufficiently small values of the dispersal parameter μ (see panels (a)–(b) in
Fig. 5). However, in contrast with the symmetric case, the asymmetric system has
three attractors for intermediate values of the dispersal parameter μ. In the case
when θ1 < θ2 these attractors are E0 and E1, and the asymmetric attractor Eas1
(see panel (c) in Fig. 5 for a picture).

4. Basins of attraction of E0 and E1: By modifying the proof of Theorem 3, we expect
the asymmetric system (14)–(15) to have only the two attractors E0 and E1 under
a condition similar to (10). Moreover, our numerical results suggest that
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Table 3 Summary for the deterministic model when θ1 + θ2 < 1 and variations of the parameters are
restricted to the case when the system has only two attractors: E0 and E1

Parameters Basin of attraction of E0 Basin of attraction of E1

Two attractors and θ1 + θ2 < 1

Dispersal μ ↑ B0 ↑ B1 ↓
In particular, if μ/r → ∞ then B0 → {(x, y) ∈ R

2+ : x + y ≤ θ1 + θ2}

Table 4 Summary for the asymmetric deterministic model when θ1 + θ2 < 1 and variations of parameters
are restricted to the case when the system has four attractors: E0, E1, Eas1 and Eas2

Parameters Basin of attr. of E0 Basin of attr. of Es1 Basin of attr. of Es2 Basin of attr. of E1

Four attractors and θ1 + θ2 < 1

Dispersal μ ↓ B0 ↓ Bs1 ↑ Bs2 ↑ B1 ↓
μ → 0 B0 → �0 Bs1 → �s1 Bs2 → �s2 B1 → �1

1. If θ1 + θ2 < 1 and the system (14)–(15) only has the two attractors E0 and E1,
then

B0 ⊂ {(x, y) : x + y ≤ θ1 + θ2} \ Sθ1,2

where Sθ1,2 denotes the stable manifold of the unstable interior equilibrium
Eθ1,2 = (θ1, θ2). We again refer to the panels (d)–(f) of Fig. 5 for an illustra-
tion.

2. If θ1 + θ2 > 1 and the system (14)–(15) only has the two attractors E0 and E1,
then

B1 ⊂ {(x, y) : x + y ≥ θ1 + θ2} \ Sθ1,2 .

Numerical results also suggest that for all values of the parameters, there is no stable
limit cycle, which implies that locally stable equilibria are the only possible attrac-
tors of the system (14)–(15). Tables 3, 4 give a complete picture, based on numerical
results, of how the dispersal parameter affects the basins of attraction of the locally
stable equilibria when the asymmetric system (14)–(15) has two or four attractors. In
these tables, Bs1 and Bs2 denote the basins of attraction of Eas1 and Eas2, respectively,
and

�0 := {(x, y) ∈ R
2+ : 0 ≤ x ≤ θ1 and 0 ≤ y ≤ θ2}

�s1 := {(x, y) ∈ R
2+ : θ1 ≤ x ≤ 1 and 0 ≤ y ≤ θ2}

�s2 := {(x, y) ∈ R
2+ : 0 ≤ x ≤ θ1 and θ2 ≤ y ≤ 1}

�1 := {(x, y) ∈ R
2+ : θ1 ≤ x ≤ 1 and θ2 ≤ y ≤ 1}.
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In conclusion, the main differences between the symmetric and the asymmetric
systems are the number of attractors and the geometry of their basin of attraction.
Whereas there can only be two or four attractors when θ1 = θ2, for fixed values of
r > 0 and θ1 < θ2, there are two critical values μc1 < μc2 that depend on the other
parameters such that the (asymmetric) system has

Two attractors when μ > μc2
Three attractors when μc1 < μ < μc2
Four attractors when μ < μc1.

Numerical results suggest in addition that, in the case when θ1 < θ2, the basin of
attraction of Eas2 is always smaller than the basin of attraction of Eas1 in the sense
that if (x, y) ∈ Bs2 then (y, x) ∈ Bs1. They also give us some information on how
the dispersal parameter affects the basins of attraction of the locally stable equilib-
ria at each phase transition, i.e., from two to three, and from three to four attractors.
Although we only focus on the case θ1 + θ2 < 1, similar results can be deduced from
the numerical results when θ1 + θ2 > 1. In conclusion, our investigation indicates that
the heterogenous environment, i.e., patches with different Allee thresholds, promotes
more complicated dynamics, e.g., multiple attractors. For μ = 0.04 and r = 1, by
comparing panels (b) and (c) in Fig. 1 (symmetric model) for which θ = 0.3 and
0.4, respectively, to panel (c) in Fig. 5 (asymmetric model) for which θ1 = 0.3 and
θ2 = 0.4, we see that the dynamics of the asymmetric system are a mixture of the
dynamics of the symmetric systems with θ = θ1 and θ = θ2.

4.2 The asymmetric stochastic model

The asymmetric stochastic two-patch model is derived from the symmetric one (11)–
(13) by assigning different Allee thresholds to both patches. Migration events occur
at the same rate and are described by (13). However, we now assume that expansion
and extinction events occur at rate r in patch X depending on whether the population
at that patch lies above or below some threshold θ1 whereas the threshold in patch Y
is given by an additional parameter θ2. That is, expansion and extinction are formally
described by the rates

P (Xt+�t = 1|Xt > θ1) = P (Yt+�t = 1|Yt > θ2) = r�t + o(�t)

P (Xt+�t = 0|Xt < θ1) = P (Yt+�t = 0|Yt < θ2) = r�t + o(�t).
(16)

Similarly to the symmetric model, when the population size in a given patch is at the
Allee threshold for that patch, we flip a fair coin to decide whether an expansion event
or an extinction event occurs, which is formally described by the transition rates

P (Xt+�t = 1|Xt = θ1) = P (Yt+�t = 1|Yt = θ2) = (r/2)�t + o(�t)

P (Xt+�t = 0|Xt = θ1) = P (Yt+�t = 0|Yt = θ2) = (r/2)�t + o(�t).
(17)

Note that the set of stationary distributions reduces, as for the symmetric model, to
the two absorbing states corresponding to a global expansion and a global extinction,
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respectively. Note also that when θ1 �= θ2 the set of configurations in which the popu-
lation lies above θ1 in patch X and above θ2 in patch Y , which corresponds to the set of
upper configurations in the symmetric case, is no longer closed under the dynamics.
In order to obtain sets which are closed under the dynamics, one has to define the sets
of upper and lower configurations in the asymmetric case by setting

�+ = {(x, y) ∈ S : min(x, y) > max(θ1, θ2)}
�− = {(x, y) ∈ S : max(x, y) < min(θ1, θ2)}.

Defining in addition τ+ and τ− as in the symmetric case, Theorem 5 easily extends to
the asymmetric model: starting from an upper configuration, global expansion occurs
almost surely and the time to absorption is rather short. To understand the long-
term behavior starting from a heterogeneous initial condition, we assume as before
that initially patch X is empty and patch Y fully occupied, but also that μ ≤ 1/2.
For the asymmetric model, we distinguish two cases depending on whether θ1 > θ2
or θ1 < θ2.

In the case θ1 > θ2, it can be proved that, starting from the initial condition men-
tioned above, the population size is always smaller in patch X than in patch Y before
the system reaches either an upper or a lower configuration. This, together with stan-
dard coupling arguments, implies that the hitting time is stochastically larger than for
the symmetric model with Allee threshold θ ∈ (θ2, θ1). In particular, the metastable
behavior observed in the symmetric case, i.e., convergence of the time to absorption
to infinity as the parameter μ tends to zero, still holds in this case. More precisely,
Theorem 6 is satisfied for

n0 = 1

2

⌊
min(ln(1 − θ1), ln(θ2))

ln(1 − μ)

⌋
>

1

2

⌊
min(ln(1 − θ), ln(θ))

ln(1 − μ)

⌋
whenever θ ∈ (θ2, θ1).

Theorem 8 also extends to the asymmetric case: as the migration parameter μ tends
to zero, the probability of a global expansion tends to one when θ1 + θ2 < 1 and to
zero when θ1 + θ2 > 1. Note that when θ1 = θ2 one recovers the critical condition
θ1 = 1/2 obtained for the symmetric model.

The asymmetric model with θ1 < θ2 exhibits a more interesting behavior as realiza-
tions can be divided into two very different types. Simulation results for the probability
of a global extinction and the time to absorption are given in the pictures and tables
of Fig. 6. The white rectangle labeled 3 corresponds to the parameters’ region where
θ1 < μ < 1− θ2. For such parameters, the first migration event leads the system to an
upper configuration, therefore global expansion occurs almost surely. Not surprisingly,
the simulation results further indicate that the same metastable behavior appears for
small values of the migration parameter, with a phase transition for the probability of
a global expansion around the critical point θ1 + θ2 = 1. However, while increasing
the Allee threshold θ2 should a priori promote global extinction in a shorter time,
we observe that the time to absorption increases significantly with θ2 for values of μ

ranging from 0.03 to 0.10. This somewhat unexpected behavior follows from the fact
that when θ1 < θ2 there is a positive probability that migration events lead the system

123



952 Y. Kang, N. Lanchier

Fig. 6 Simulation results for the probability of a global extinction and the time to absorption of the asym-
metric stochastic model starting with one empty patch with Allee threshold θ1 = 0.30 and one fully
occupied patch with Allee threshold θ2 ranging from 0.25 to 0.75. The growth parameter is r = 0.25 for
both patches. The color code and the meaning of the two tables are the same as in Fig. 4
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to a configuration in which the population size is above θ1 in patch X and below θ2
in patch Y and then to the configuration in which patch X is fully occupied and patch
Y empty. For such realizations, the effects of θ1 and θ2 are exchanged: the time to
absorption is stochastically decreasing with respect to θ1 and stochastically increasing
with respect to θ2. In particular, there are two types of realizations: realizations for
which the population size is always smaller in patch X than in patch Y before hitting
an upper or a lower configuration with a time to absorption shorter than in the case
when θ1 > θ2, and realizations for which patch X becomes fully occupied and patch
Y empty, which strongly contributes to increase the expected value of the time to
absorption.

In conclusion, analytical and numerical results of the stochastic two-patch model
can be summarized as follows. In any case, there are only two possible limiting behav-
iors: global expansion or global extinction. Locally stable asymmetric equilibria of
the deterministic model when μ is small become metastable states for the stochastic
model: as the migration parameter μ tends to zero, the time to absorption tends to
infinity and the probability of a global expansion tends to one when θ1 + θ2 < 1 and
to zero when θ1 + θ2 > 1, which is consistent with the symmetric case for which the
phase transition occurs at 2θ = 1, and the metastable states are partly described by
Theorem 7. In addition, we have the following dichotomy.

1. The Allee threshold θ1 being fixed with θ1 ≥ θ2, metastability is more pronounced
(the time to absorption is larger) when the heterogeneity θ1 − θ2 is larger, and less
pronounced in the symmetric case.

2. In contrast, the Allee threshold θ1 being fixed with θ1 < θ2, metastability tends
to be more pronounced when θ2 − θ1 is larger due to the existence of realizations
for which patch X becomes fully occupied and patch Y empty. The larger θ2 − θ1,
the larger the probability of such realizations.

Putting 1 and 2 together, we obtain that, the Allee threshold being fixed in one patch,
the expected time to absorption does not depend monotonically on the Allee threshold
in the other patch. Instead, the expected time seems to be increasing with respect to
the absolute value |θ1 − θ2|, which measures the heterogeneity between both patches,
although the reasons for that are quite different depending on whether θ1 − θ2 is
positive or negative (Table 5).

5 Comparison and biological implications

Recall that, in the absence of dispersal, the deterministic model and the stochastic
model result in the same predictions: the population expands in patches where the ini-
tial population size is above the Allee threshold but goes extinct in patches where the
initial population size is below the Allee threshold. This induces the existence of four
locally stable equilibria for the deterministic model, and four absorbing states for the
stochastic model, which correspond to cases when the population in each patch either
goes extinct or gets established. Including interactions between patches, our results
for the symmetric deterministic model indicate that, in the presence of weak dispersal,
the dynamics retain four attractors, just as in the absence of interactions, up to a
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Table 5 Comparison between deterministic and stochastic models

Deterministic model Stochastic model

Dispersal parameter θ < 1/2 | θ > 1/2 θ < 1/2 | θ > 1/2

No dispersal μ = 0 4 Attractors 4 Absorbing states

Weak dispersal μ > 0 4 Attractors 2 Absorbing states

B0 and B1 ↑ as μ ↑ μc + 2 metastable states

P (expansion)≈1 | P (extinction)≈1

Critical dispersal μ = μc Both patches synchronize

4 Attractors → 2 Attractors 2 Absorbing states

Stronger dispersal μ > μc 2 Attractors 2 Absorbing states

B0 ↑ as μ ↑ | B1 ↑ as μ ↑ Unpredictability + quick absorption

Very strong dispersal μ/r
large

Same behavior as one-patch
model

Same behavior as one-patch model
when starting from (0, 1)

critical value μc when the patches synchronize: the two asymmetric equilibrium points
are lost so that only global expansion and global extinction can happen. The dynam-
ics are more complicated for the asymmetric deterministic model which has exactly
three attractors for intermediate values of the dispersal parameter μ ∈ (μc1, μc2). In
contrast, including both stochasticity and even weak interactions, only the two absorb-
ing states corresponding to global expansion and global extinction are retained. The
most interesting behaviors emerge when the dispersal is weak, in which case, to the
two asymmetric locally stable equilibria of the deterministic model, correspond two
metastable states for the stochastic model.

Looking at the global dynamics, the predictions based on the analysis of the deter-
ministic two-patch model indicate that below the critical value μc1 dispersal promotes
global expansion and global extinction in the sense that the basins of attraction of
the two trivial fixed points expand while increasing the dispersal parameter. Above
the critical value μc2 dispersal promotes a global expansion when the sum of the
Allee thresholds θ1 + θ2 exceeds one but promotes global extinction in the more
realistic case when θ1 + θ2 lies below one. As mentioned above, in the presence of
weak dispersal, both asymmetric equilibrium points become two metastable states,
i.e., quasi-stationary distributions, after the inclusion of stochasticity, suggesting that
situations in which a small population lives next to a large population are artificially
stable: in such a context, the two-patch system evolves first as dictated by one of the
two quasi-stationary distributions then, after a long random time, experiences either a
global expansion or a global extinction. The Allee threshold θ1 being fixed, analytical
and numerical results suggest that the metastable behavior of the stochastic model is
more pronounced as the heterogenity |θ1 − θ2| increases. In addition, the long-term
behavior of the stochastic model becomes almost predictable in the sense that, with
very high probability, the system will undergo a global expansion when θ1 + θ2 lies
below one and a global extinction when θ1 + θ2 exceeds one, which is of primary
importance to predict the destiny of heterogeneous two-patch systems in the presence
of weak dispersal. While increasing the dispersal parameter, the stochastic model
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no longer exhibits a metastable behavior, the time to absorption decreases, and the
long-term behavior becomes more and more unpredictable. In the presence of a very
strong dispersal, however, the analysis of the deterministic model and the stochastic
model starting from a heterogeneous configuration give the same predictions. In this
case, both patches synchronize enough so that the global dynamics reduce to that of a
single-patch model: if the initial global density, i.e., the average of the densities in both
patches, is below (θ1 + θ2)/2 then the population goes extinct whereas if it exceeds
(θ1 + θ2)/2 then the population expands globally.

Our analysis of idealized two-patch models is an important first step to understand
more realistic multi-patch systems. Empirical data indicate that Allee thresholds in
nature vary across species and habitat types but are typically much smaller than one half
(see Johnson et al. 2006; Berec et al. 2007; Tobin et al. 2007; Chapter 5 in Courchamp
et al. 2009). The predictions, based on the deterministic model in the presence of
enough dispersal so that patches synchronize and on the stochastic model in the gen-
eral case, that populations usually expand successfully when the Allee thresholds are
small is due to the fact that only two patches interact. Literally, the critical threshold
θ = 1/2 in the symmetric case has to be thought of as one divided by the number
of patches. Looking at a symmetric multi-patch model in which n patches interact
all together, our analytical results suggest that a critical behavior should emerge for
Allee thresholds near θ = 1/n when starting with a population established in only
one patch, and more generally the number of patches where the population is initially
established divided by the number of interacting patches. The analogous critical condi-
tion in the asymmetric case is certainly more complicated. Therefore, even for realistic
values of the Allee threshold, the long-term behavior is no longer straightforward in
the presence of a large number of patches. Numerical simulations can also provide
a valuable insight into the long-term behavior of multi-patch models including addi-
tional refinements such as density-dependent dispersals, heterogeneous environments
with possibly different growth parameters in different patches, and more importantly
the inclusion of a spatial structure through a network of interactions represented by a
two-dimensional regular lattice or more general planar graphs rather than a complete
graph where patches interact all together.

6 Proofs for the deterministic model

Preliminary results

As explained in Sect. 2, the key to proving our main results for the determinisic model
is to identify some sets which are positive invariant for the system (7)–(8). This will
give us means of decomposing the phase space by restricting our attention to the
dynamics on each invariant set and then sewing together a global solution from the
invariant pieces. Our first preliminary result indicates that, starting from any biologi-
cally meaningful initial condition, that is any condition belonging to �0 := R

2+, the
trajectory of the system stays in the upper right quadrant and is bounded.

Lemma 2 The system (7)–(8) is positive invariant and bounded in �0.
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Proof Let � denote the boundary of �0, i.e.,

� = {(x, y) ∈ R
2 : x = 0 and y ≥ 0} ∪ {(x, y) ∈ R

2 : x ≥ 0 and y = 0},

and observe that, if (x(t), y(t)) ∈ �, then we have the following alternative:

1. x(t) = y(t) = 0 and then x(t + s) = y(t + s) = 0 for all s > 0.
2. x(t) = 0 and y(t) > 0 and then x ′(t) = μ y(t) > 0.
3. x(t) > 0 and y(t) = 0 and then y′(t) = μ x(t) > 0.

This indicates that trajectories starting from an initial condition in �0 cannot cross �.
Since in addition each trajectory is continuous, the intermediate value theorem implies
that trajectories with initial condition in the quadrant �0 stay in this quadrant, i.e.,
�0 is positive invariant. The fact that the system is bounded follows from the positive
invariance of �0 by observing that, starting from any initial condition in �0,

x ′ + y′ = r x (x − θ)(1 − x) + r y (y − θ)(1 − y)

= r [−(x3 + y3) + (1 + θ)(x2 + y2) − θ(x + y)] < 0

whenever x + y is larger than some M(θ) > 0. This completes the proof. ��
It follows from the proof of the previous lemma that, excluding the initial con-

dition in which both patches are empty, the population densities in both patches are
simultaneously positive at any positive time. This implies in particular that the trivial
equilibrium E0 is the only boundary equilibrium.

Lemma 3 If (x(0), y(0)) ∈ R
2+ \ {(0, 0)} then x(t) > 0 and y(t) > 0 for all t > 0.

Proof By symmetry, we may assume that x(0) > 0 and y(0) ≥ 0. By Lemma 2,
x(t), y(t) ∈ [0, M] at all times t > 0 for some constant M that depends on the initial
condition. In particular,

x ′(t) = r x (x − θ)(1 − x) + μ (y − x) ≥ [r(x − θ)(1 − x) − μ]x ≥ −K x

for some constant K < ∞, from which it follows that x(t) > 0 at all times t > 0. If
y(0) > 0 then the same holds for y(t), while if y(0) = 0 then

y′(0) = μ x(0) > 0

and so y(t) > 0 for all t ∈ (0, ε) for some small ε > 0. The fact that this holds at all
times follows from the same reasoning as before based on the fact that both functions
are bounded. ��
The next lemma, which also follows from Lemma 2, is our main tool to prove Theorems
1–4. It lists some of the invariant sets of the system.
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Lemma 4 The following sets are positive invariant for the system (7)–(8).

�θ := {(x, y) ∈ �0 : x ≥ θ and y ≥ θ}
�1 := {(x, y) ∈ �0 : x ≥ 1 and y ≥ 1}

�0,θ := {(x, y) ∈ �0 : 0 ≤ x ≤ θ and 0 ≤ y ≤ θ}
�θ,1 := {(x, y) ∈ �0 : θ ≤ x ≤ 1 and θ ≤ y ≤ 1}

�x<y := {(x, y) ∈ �0 : x < y}
�x>y := {(x, y) ∈ �0 : x > y}
�x=y := {(x, y) ∈ �0 : x = y}.

Moreover, the dynamics along the invariant set �x=y are described by

1. If x0 = y0 ∈ (0, θ) then x(t) = y(t)→0 as t→∞.

2. If x0 = y0 ∈ (θ,∞) then x(t) = y(t)→1 as t→∞.

Proof The positive invariance of the set �θ is a straightforward consequence of the
positive invariance of the quadrant �0 for the new system (u, v), where

u(t) = x(t) − θ and v(t) = y(t) − θ,

which follows from the same arguments as in the proof of Lemma 2. The positive
invariance of �1 can be proved similarly looking at the new system (u, v), where

u(t) = x(t) − 1 and v(t) = y(t) − 1.

To deal with the set �0,θ we first observe that if (x(t), y(t)) belongs to the boundary
of this set then either one of the conditions 1–3 in the proof of Lemma 2 or one of the
following three conditions is satisfied.

1. x(t) = y(t) = θ and then x(t + s) = y(t + s) = θ for all s > 0.
2. x(t) = θ and 0 ≤ y(t) < θ and then x ′(t) = μ (y(t)− x(t)) = μ (y(t)− θ) < 0.
3. 0 ≤ x(t) < θ and y(t) = θ and then y′(t) = μ (x(t)− y(t)) = μ (x(t)− θ) < 0.

In particular, the same arguments as in the proof of Lemma 2 imply that �0,θ is
positive invariant. The positive invariance of �θ,1 can be proved similarly. To estab-
lish the positive invariance of the last three sets, we introduce the new functions

u(t) = x(t) + y(t)

2
and v(t) = x(t) − y(t)

2
.

A straightforward calculation shows that

u′ = r u (u − θ)(1 − u) + r v2 (1 + θ − 3u) (18)

v′ = r v (−3u2 + 2(1 + θ)u − v2 − θ − 2μ/r). (19)

From (19), we see that v = 0 is an invariant manifold of v, which implies that the
set �x=y is positive invariant for the original system (7)–(8). Note also that if v0 = 0
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then (18) reduces to

u′ = r u (u − θ)(1 − u).

Therefore, by applying Lemma 1, we can conclude that

lim
t→∞ u(t) = 0 when u(0) ∈ (0, θ) and lim

t→∞ u(t) = 1 when u(0) ∈ (θ,∞),

which is equivalent to the last two statements of Lemma 4 in view of the definition
of u and v, and the fact that �x=y is positive invariant. Finally, since for any initial
condition u(t) and v(t) are both bounded uniformly in time, Eq. (19) and the same
argument as in the proof of Lemma 3 imply that

x(t)−y(t) = 2 v(t) ≥ (x0 − y0) exp(−K t) > 0 for all t >0 and for some K <∞.

The positive invariance of �x>y follows. By symmetry, the same holds for the set
�x<y . ��
With Lemmas 2–4 in hands, we are now ready to prove the main results for the deter-
ministic two-patch model described by the system (7)–(8).

Proof of Theorem 1

By Poincaré-Bendixson Theorem (Guckenheimer and Holmes 1983), the omega limit
set of the system (7)–(8) is either a fixed point or a limit cycle. If the inequality (9) holds,
we can use Dulac’s criterion (Guckenheimer and Holmes 1983) to exclude the exis-
tence of a limit cycle. Let c ∈ [0, 3) and define the scalar function pc(x, y) = (xy)−c

on R
2+. Then,

∂

∂x
[(r x (x − θ)(1 − x) + μ (y − x)) pc(x, y)]

+ ∂

∂y
[(r y (y − θ)(1 − y) + μ (x − y)) pc(x, y)]

= (xy)−c[r(c − 3)(x2 + y2) + r(2 − c)(1 + θ)(x + y)

+2rθ(c − 1) − 2μ + cμ(2 − xy−1 − yx−1)]

≤ (xy)−c

[
r(c − 3)

(
x + (2 − c)(1 + θ)

2(c − 3)

)2

− r(2 − c)2(1 + θ)2

4(c − 3)

+r(c − 3)

(
y+ (2 − c)(1 + θ)

2(c − 3)

)2

− r(2 − c)2(1 + θ)2

4(c − 3)
+ 2rθ(c − 1) − 2μ

]
.

In particular, if (9) holds then the equation above is strictly negative for any (x, y) ∈
� \ E0. Therefore, by Dulac’s criterion, the system has no limit cycle, i.e., any
trajectory of (7)–(8) starting with a nonnegative initial condition converges to a fixed
point. ��
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Proof of Theorem 2

Parts 1 and 2 of Theorem 2 about the local stability of the three symmetric equilibria
follow from the analysis of the Jacobian matrices. For each of the three equilibria, we
have

1. E0 – The Jacobian matrix associated with this equilibrium is

J0 =
(−rθ − μ μ

μ −rθ − μ

)
(20)

with eigenvalues λ1 = −rθ and λ2 = −rθ −2μ associated with (1, 1) and (−1, 1)

as their eigenvectors, respectively. We can easily conclude that the trivial boundary
equilibrium E0 is locally stable since both eigenvalues of (20) are negative.

2. Eθ – The Jacobian matrix associated with this equilibrium is

Jθ =
(

rθ(1 − θ) − μ μ

μ rθ(1 − θ)

)
(21)

with eigenvalues λ1 = rθ(1−θ) and λ2 = rθ(1−θ)−2μ associated with (1, 1) and
(−1, 1) as their eigenvectors, respectively. We can easily conclude that the equilib-
rium Eθ is always unstable on the invariant set �x=y . Moreover, if 2μ > rθ(1−θ)

then Eθ is a saddle, while if 2μ < rθ(1 − θ) then Eθ is a source.

3. E1 – The Jacobian matrix associated with this equilibrium is

J1 =
(−r(1 − θ) − μ μ

μ −r(1 − θ) − μ

)
(22)

with two negative eigenvalues λ1 = −r(1− θ) < 0 and λ2 = −r(1− θ)−2μ < 0
since θ < 1. Therefore, the equilibrium E1 is also locally stable.

To prove the third part of the theorem, we first define the function u(t) = x(t) + y(t).
Then

u′ = x ′ + y′ = r x (x − θ)(1 − x) + r y (y − θ)(1 − y).

To prove that

�0,θ \ {(θ, θ)} ⊂ B0 (23)

we first assume that

(x0, y0) ∈ �0,θ \ {E0, Eθ }.

Since the set �0,θ is positive invariant, we have u′(t) ≤ 0 for all t ≥ 0. Using in
addition that

u′(t) = 0 if and only if u(t) = 0,
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we can conclude that u(t) converges to zero. Recalling the definition of u and invoking
again the positive invariance of �0,θ , we can deduce that x(t) and y(t) converge to
zero so (23) holds. To prove that

�θ \ {(θ, θ)} ⊂ B1 (24)

we now assume that

(x0, y0) ∈ �θ \ {Eθ , E1}.

Then, we have the following alternative.

1. (x0, y0) ∈ �θ,1 \ {Eθ , E1}. Since �θ,1 is positive invariant, we may use the same
argument as before to see that the derivative of u is nonnegative and the system
converges to the equilibrium point E1.

2. (x0, y0) ∈ �1 \ {E1}. Repeating again the same argument but with the positive
invariant set �1 implies that the system converges to E1.

3. (x0, y0) ∈ �θ \ (�θ,1 ∪ �1). We may assume that x0 < y0 without loss of gener-
ality since the system is symmetric. Then, using the positive invariance of the set
�x<y we have x(t) < y(t) for all t ≥ 0 so

x ′ = r x (x − θ)(1 − x) + μ (y − x) > 0 if x ≤ 1

y′ = r y (y − θ)(1 − y) + μ (x − y) < 0 if y ≥ 1.

This indicates that the trajectory starting at (x0, y0) can only exit the infinite rect-
angle [θ, 1] × [1,∞) by crossing its bottom or right side. Therefore, we have the
following three possibilities.

a. No exit: (x(t), y(t)) /∈ �θ,1 ∪ �1 for all t ≥ 0. In this case, the sign of the
derivatives implies convergence to E1.

b. Bottom side: (x(t), y(t)) ∈ �θ,1 for some time t ≥ 0. In this case, point 1
above implies convergence to the equilibrium point E1.

c. Right side: (x(t), y(t)) ∈ �1 for some time t ≥ 0. In this case, point 2 above
implies convergence to the equilibrium point E1.

Combining 1-3 above implies (24). Now assume that θ < 1/2. Defining

u(t) = x(t) + y(t)

2
and v(t) = x(t) − y(t)

2

recall that the system (7)–(8) can be rewritten as

u′ = r u (u − θ)(1 − u) + r v2 (1 + θ − 3u)

v′ = r v (−3u2 + 2(1 + θ)u − v2 − θ − 2μ/r).
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To prove that

B0 ⊂ {(x, y) ∈ �0 : x + y < 2θ} (25)

it suffices to prove that

x0 + y0 ≥ 2θ implies x(t) + y(t) ≥ 2θ for all t ≥ 0. (26)

Assume by contradiction that (26) is not satisfied. Then, there exists an initial condition
with x0 + y0 ≥ 2θ and a time T > 0 such that

x(0) + y(0) = x0 + y0 ≥ 2θ and x(T ) + y(T ) < 2θ.

By continuity of the trajectories, the intermediate value theorem implies the existence
of a time t < T such that u(t) = 2θ therefore

S := sup {t < T : u(t) = 2θ}

is well defined and u(t) < 2θ for all t ∈ (S, T ]. To prove that this leads to a contra-
diction, we consider the following two cases.

1. If x0 �= y0, the invariance of �x<y and �x>y implies that x(t) �= y(t) at any time,
from which it follows that

u′(S) = r v2(S) (1 + θ − 3θ) = (r/4) (x(S) − y(S))2(1 − 2θ) > 0.

In particular, there exists ε > 0 such that u(t) > 2θ for all t ∈ (S, S + ε), which
contradicts the existence of time S.

2. If x0 = y0 the result directly follows from the fact that �θ ∩�x=y is positive invari-
ant, as it is the intersection of two invariant sets.

Combining 1 and 2 above yields (25). The proof of the last inclusion in Theorem 2
follows from similar arguments. ��

Proof of Theorem 3

Define as previously the functions

u(t) = x(t) + y(t)

2
and v(t) = x(t) − y(t)

2
.

Using (19) above, we obtain

v′ = r v

(
−3

(
u − 1 + θ

3

)2

− 2

r

(
μ − r(θ2 − θ + 1)

6

)
− v2

)
.
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Assume first that x0 > y0. Using the fact that the set �x>y is positive invariant by
Lemma 4, we deduce that x(t) > y(t) at all positive times t . In particular, recalling
the definition of v, and using the expression of the derivative v′ above and the fact that
(10) holds, we obtain that

v(0) > 0 implies v(t) > 0 and v′(t) < 0 for all t ≥ 0.

Since v′ = 0 if and only if v = 0, we deduce that v(t) converges to 0. By symmetry,
the same can be proved of the system starting with any initial conditions such that
x0 < y0. Since �x=y is positive invariant, we have the same conclusion when the
initial condition satisfies x0 = y0, which can also be seen from the expression of the
derivative v′. Therefore, if (10) holds then

for all(x0, y0) ∈ R
2+, lim

t→∞ v(t) = 0,

so for any (x0, y0) ∈ R
2+ and any ε > 0, there exists k > 0 such that

|x(t) − y(t)| < ε for all t > k.

It follows that any trajectory of the system converges to one of the symmetric equilibria
E0, Eθ or E1. Now, observing that

r(θ2 − θ + 1)

6
− rθ(1 − θ)

2
= r(2θ − 1)2

6
≥ 0,

we obtain that

μ >
r(θ2 − θ + 1)

6
≥ rθ(1 − θ)

2
.

In view of the expression of the Jacobian matrix (21), this implies that the equilibrium
(θ, θ) is a saddle with unstable manifold

�x=y \ {E0, Eθ , E1}.

In particular, it follows from Hartman-Grobman Theorem and the second part of
Lemma 4 that there are only two attractors: E0 and E1. Hence, the system starting
from any initial condition not belonging to the manifold Sθ converges to either E0 or
E1. To conclude the proof, it suffices to observe that, by (26) in the proof of Theorem
2, if θ < 1/2 then the set

{(x, y) ∈ �0 \ Sθ : x + y ≥ 2θ}

is positive invariant so the system starting from any initial condition in this set con-
verges to E1, the only attractor in this invariant set. Similarly, the last statement follows
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from the fact that, if θ > 1/2 then the set

{(x, y) ∈ � \ Sθ : x + y ≤ 2θ}

is positive invariant and contains only one attractor: E0. ��

Proof of Theorem 4

We first prove that all the equilibria of the system (7)–(8) belong to the unit square
[0, 1] × [0, 1]. Since the system is symmetric and, by Lemma 4, the omega limit set
of any initial condition (x0, y0) ∈ �0,θ ∪�θ belongs to the unit square (either E0, Eθ

or E1), it suffices to focus on the case

(x0, y0) ∈ {(x, y) ∈ �0 : 0 ≤ x ≤ θ ≤ y}.

Since x0 = y0 only happens when starting from (θ, θ), to avoid trivialities, we shall
assume in addition that x0 < y0. Then, applying Lemma 4, we obtain that x(t) < y(t)
for all t ≥ 0 which, together with (8), implies that

y′ = r y (y − θ)(1 − y) + μ (x − y) < 0 ify ≥ 1. (27)

Excluding the trivial case when the initial condition belongs to the stable manifold
of (θ, θ), in which case its omega limit set reduces to (θ, θ), we have the following
alternative.

1. If (x(t), y(t)) ∈ �θ for some t ≥ 0 then, by the second part of Theorem 2, the
omega limit set of the initial condition is E1.

2. If (x(t), y(t)) /∈ �θ for all t ≥ 0 then (27) and the fact that �x<y is positive
invariant imply that x(T ) < y(T ) ≤ 1 for some T > 0. Using as previously the
continuity of the trajectories and the fact that

y′ = μ (x − y) < 0 if y = 1

allows to invoke the intermediate value theorem and prove by contradiction that
x(t) < y(t) ≤ 1 at any time t ≥ T .

This establishes the first part of Theorem 4. The second part follows directly from the
proof of Theorem 3. To prove the third part, we first observe that the equation of the
nullcline y = f (x) can be rewritten as

y = r x

μ

[(
x − 1 + θ

2

)2

− (1 − θ)2

4
+ μ

r

]
.
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Fig. 7 Schematic presentations of nullclines of the system with black dots representing locally stable equi-
libria. In the rightmost two pictures, x1 and x2 are the only two roots of f (x) = 0 such that θ < x1 < x2 < 1

In particular, if (1 − θ)2 > 4μ/r then the nullcline intersects the x-axis at the three
points with coordinates (0, 0), (x1, 0) and (x2, 0) where

x1 = 1 + θ

2
−

√
(1 − θ)2

4
− μ

r

x2 = 1 + θ

2
+

√
(1 − θ)2

4
− μ

r
.

Finally, a phase-plane analysis based on Fig. 7 shows that

1. If x1 < M < x2 then the system has five fixed points with only two locally stable
equilibria: E0 and E1.

2. If M ≥ 1 then the system achieves maximum number of equilibria which is nine,
with only four locally stable equilibria.

3. If the system has less than nine equilibria, then it has only two local stable
equilibria: E0 and E1.

Notice that f (x) is a polynomial with degree 3. Moreover, provided 4μ < r(1−θ)2, it
has two distinct roots 0 < x1 < x2. Thus M can be computed explicitly: M = f (x∗)
where

x∗ = 1

3

(
(1 + θ) −

√
θ2 − θ + 1 − 3μ/r

)

is the smallest root of the quadratic function

f ′(x) = 1 + rθ

μ
− 2r(1 + θ)x

μ
+ 3r x2

μ
.

This completes the proof. ��
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7 Proofs for the stochastic model

Proof of Theorem 5

The first step is to prove that the set of upper configurations is closed under the
dynamics. We observe that, condition on the event that the configuration is an upper
configuration, only expansions and migrations can occur. Furthermore, migration
events can only result in an increase of the lowest density and a decrease of the
highest density, i.e., if a migration event occurs at time t and the configuration at time
t − �t is an upper configuration then

min(Xt−�t , Yt−�t ) ≤ min(Xt , Yt )

≤ max(Xt , Yt ) ≤ max(Xt−�t , Yt−�t ).

It follows that the set of upper configurations (and similarly the set of lower configu-
rations) is closed under the dynamics, i.e.,

P ((Xt , Yt ) ∈ �+|(X0, Y0) ∈ �+)

= P ((Xt , Yt ) ∈ �−|(X0, Y0) ∈ �−) = 1

for all times t . Since, starting from an upper configuration, the system jumps to (1, 1)

whenever two expansion events at X and Y occur consecutively (they are not separated
by a migration event), we deduce that the stopping time τ+ is almost surely finite. The
same holds for the stopping time τ− when starting from a lower configuration. Hence,

P (τ = τ+ < ∞|(X0, Y0) ∈ �+)

= P (τ = τ− < ∞|(X0, Y0) ∈ �−) = 1.

To compute the expected value of the time to absorption, we now construct the stochas-
tic process graphically from a collection of Poisson processes, relying on an idea of
Harris (1972). Two Poisson processes, each with parameter r , are attached to each of
the patches X and Y , and an additional Poisson process with parameter one is attached
to the edge connecting the patches. All three processes are independent. Let

�X = {T X
n : n ≥ 1}, �Y = {T Y

n : n ≥ 1}, �e = {T e
n : n ≥ 1}

denote these Poisson processes. At any time of the process �X the population size at
patch X jumps to either 0 or 1 depending on whether it is smaller or larger than θ

by this time, respectively. The evolution at patch Y is defined similarly but using the
Poisson process �Y . At each time in �e, a fraction μ of the population at each patch is
displaced to the other patch. To compute the expected value, we let t ≥ 0 and introduce
the stopping times

TZ = min {�Z ∩ (t,∞)} for Z = X, Y, e.
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Then, P (max(TX , TY ) < Te) is the probability that two consecutive migration events
are separated by at least one extinction-expansion event at patch X and one extinc-
tion-expansion event at patch Y . To compute this probability, we first observe that TX

and TY are independent exponentially distributed random variables with parameter r ,
from which it follows that

P (max(TX , TY ) < u) = P (TX < u, TY < u) = (1 − exp(−ru))2.

Since Te is exponentially distributed with parameter 1,

P (max(TX , TY ) < Te) =
∞∫

0

∞∫
u

e−v d

du

(
(1 − exp(−ru))2

)
dv du

=
∞∫

0

e−u d

du

(
(1−exp(−ru))2

)
du = 2r

r +1
− 2r

2r + 1
= 2r2

(r + 1)(2r +1)
:= ps .

Hence, the last time a migration event occurs before absorption is equal in distribution
to T e

J−1 where the random variable J is geometrically distributed with parameter ps

from which we deduce that

E [ τ+|θ < X0, Y0 < 1] = E [Te] × E [J − 1] + E [max(TX , TY )]

= (r + 1)(2r + 1)

2r2 − 1 +
∞∫

0

P (max(TX , TY ) > u) du

= 3r + 1

2r2 +
∞∫

0

1 − (1 − exp(−ru))2 du = 6r + 1

2r2 .

The same holds for the stopping time τ− when starting the process from a lower
configuration. This completes the proof of Theorem 5. ��

Proof of Theorem 6

We first prove that P (T < ∞) = P (τ < ∞) = 1. Let ε > 0 small. Then, for almost
all realizations of the process, there exists an increasing sequence of random times
T1 < · · · < Ti < · · · such that

lim
i→∞ Ti = ∞ and |XTi + YTi − 2θ | > ε for all i ≥ 1.

Moreover, there exists K < ∞ that does not depend on i such that, if after Ti a
sequence of K migration events occur before any expansion or extinction events then
the system hits either an upper configuration or a lower configuration. Since K is
finite, such an event has a strictly positive probability, so the Borel-Cantelli Lemma
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implies that the process hits either an upper configuration or a lower configuration
after a random time which is almost surely finite: P (T < ∞) = 1. Theorem 5 then
implies that

P (τ < ∞) = P (τ+ < ∞) + P (τ− < ∞)

≥ P (τ+ < ∞|(X0, Y0) ∈ �+) P (T + < ∞)

+P (τ− < ∞|(X0, Y0) ∈ �−) P (T − < ∞)

= P (T + < ∞) + P (T − < ∞) = P (T < ∞) = 1.

To estimate the expected value of T , we observe that the transition rates of the process
indicate that if at time t exactly n migration events but neither expansion nor extinction
events have occurred then

(Xt , Yt ) = f n(0, 1) where f (a, b) = (1 − μ) (a, b) + μ (b, a),

so that Xt ≤ un and Yt ≥ vn where un and vn are defined recursively by

un+1 = (1 − μ) un + μ with u0 = 0,

vn+1 = (1 − μ) vn with v0 = 1.

A straightforward calculation shows that

un =
n−1∑
k=0

(uk+1 − uk) =
n−1∑
k=0

(1 − μ)k (u1 − u0) = 1 − (1 − μ)n

and vn = 1 − un = (1 − μ)n , therefore

un > θ if and only if n > n1 := �ln(1 − θ)/ ln(1 − μ)�
vn < θ if and only if n > n2 := �ln(θ)/ ln(1 − μ)�

where �·� is for the integer part. Now, let {(Ut , Vt )}t be the Markov process with state
space

E = {(ui , v j ) : i, j ≥ 0}

and transition rates

P ((Ut+�t , Vt+�t ) = (0, v j )|(Ut , Vt ) = (ui , v j )) = r�t + o(�t)

P ((Ut+�t , Vt+�t ) = (ui , 1)|(Ut , Vt ) = (ui , v j )) = rh + o(h)

P ((Ut+�t , Vt+�t ) = (ui+1, v j+1)|(Ut , Vt ) = (ui , v j )) = �t + o(�t)

and starting at (U0, V0) = (0, 1). We call W -, N -, and SE-jumps, the jumps described
by the three transition rates above, respectively, and refer the reader to the left-hand
side of Fig. 8 for an illustration of the process.
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Fig. 8 Schematic representation of the stochastic process (Ut , Vt )

By construction of the sequences (un)n and (vn)n , we have

P (Xt ≥ a|T > t) ≤ P (Ut ≥ a)

P (Yt ≥ a|T > t) ≥ P (Vt ≥ a)

for all a ∈ [0, 1], i.e., before the process hits an upper or a lower configuration, Xt is
stochastically smaller than Ut while Yt is stochastically larger than Vt . This implies
that E [T ] ≥ E [T ∗] where

T ∗ = inf {t ≥ 0 : Ut > un1or Vt < vn2}.
E1 = {(ui , v j ) : i, j ≤ n0} and E2 = {(ui , v j ) : i ≤ n1 and j ≤ n2}.

Then, T ∗ is the first time (Ut , Vt ) exits the set E2, i.e.,

T ∗ = inf {t ≥ 0 : (Ut , Vt ) /∈ E2}.

So, to bound E [T ∗] from below, it suffices to prove that (Ut , Vt ) ∈ E2 for an arbi-
trarily long time. The idea is to prove that, when starting from the smaller rectangle
E1, the process stays in E2 and comes back to E1 after n0 jumps with probability
close to 1. Using in addition the Markov property, we obtain that the number of jumps
required to exit E2 is stochastically larger than n0 times a geometric random variable
with small success probability. To make this argument precise, we let (Un,Vn) denote
the embedded discrete-time Markov chain associated with the process (Ut , Vt ). To
count the number of steps needed to exit the rectangle E2, we define a sequence of
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Bernoulli random variables {Zk : k ≥ 1} associated to (Un,Vn) by setting

Zk =
⎧⎨
⎩

0 if there is at least one N -jump and one W -jump between times
(k − 1)n0 + 1 and kn0

1 if there is no N -jump or no W -jump between times (k − 1)n0+1 and kn0

Since (Un,Vn) is a discrete-time Markov chain, the random variables Zk are inde-
pendent Bernoulli random variables, and a straightforward calculation shows that the
success probability is given by

P (Zk = 1) ≤ 2

(
1 − r

1 + 2r

)n0

= 2

(
1 + r

1 + 2r

)n0

.

Moreover, since n0 = (1/2) min(n1, n2), we have that

(Ukn0 ,Vkn0) ∈ E1 and Zk+1 = 0 implies that
(Un,Vn) ∈ E2 for all kn0 ≤ n ≤ (k + 1)n0 and (U(k+1)n0 ,V(k+1)n0) ∈ E1.

See the right-hand side of Fig. 8. This indicates that

Z1 = Z2 = · · · = Zk = 0 �⇒ (Un,Vn) ∈ E2 for all n ≤ kn0.

Finally, using that (Ut , Vt ) jumps at rate 1 + 2r and that inf {k : Zk = 1} is stochasti-
cally larger than a geometric random variable Z with success probability P (Zk = 1)

we can conclude that

E [T ] ≥ E [T ∗] ≥ n0

1 + 2r
E [Z ] = n0

2 + 4r

(
1 + 2r

1 + r

)n0

.

This completes the proof. ��

Proof of Theorem 7

First, we observe that the process Ut introduced in the proof of Theorem 6 is stochas-
tically larger than X̄t so to prove the first inequality it suffices to establish its analog
for the expected value Eπ (Ut ) where π is the stationary distribution of the stochastic
process Ut . Note that the infinitesimal matrix of the Markov process Ut expressed in
the basis (u0, u1, u2, . . .) is given by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 · · ·
r −(r + 1) 1 0 · · ·
r 0 −(r + 1) 1

r 0 0
. . .

. . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
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By solving π · Q = 0, we find that

π = r

(
1

r + 1
,

(
1

r + 1

)2

,

(
1

r + 1

)3

, . . . ,

(
1

r + 1

)n

, . . .

)
.

This implies that

Eν (X̄t ) ≤ Eπ (Ut ) = r
∞∑

n=0

un

(
1

r + 1

)n+1

= r
∞∑

n=0

(1 − (1 − μ)n)

(
1

r + 1

)n+1

= r

r + 1

∞∑
n=0

(
1

r + 1

)n

− r

r + 1

∞∑
n=0

(
1 − μ

r + 1

)n

= 1 − r

r + μ
.

The proof of the second inequality is similar. ��

Proof of Theorem 8

We first observe that the processes (Xt , Yt ) and (X̄t , Ȳt ) can be constructed on the
same probability space starting from the same initial configuration in such a way that
Xt = X̄t and Yt = Ȳt until the hitting time T , which we assume from now on. Let
T0 = 0 and, for all i ≥ 1, let Ti denote the time of the i th jump of the process
ξt := X̄t + Ȳt . Since migration events do not change the value of ξt , time Ti corre-
sponds to the time of an extinction event at X or an expansion event at Y , therefore
we have

T = T + if and only if there exists i ≥ 0

such that T ∈ (Ti , Ti+1) and ξTi > 2θ.

T = T − if and only ifthere exists i ≥ 0

such that T ∈ (Ti , Ti+1) and ξTi < 2θ.

Let ε > 0 small such that 1 − ε > 2θ , and consider the events

D−
i,n = {X̄Ti = 0 and ȲTi ∈ 2θ − [nε, (n + 1)ε)}

D+
i,n = {ȲTi = 1 and X̄Ti ∈ [nε, (n + 1)ε)}.

First, since 1 − (n + 1)ε > 2θ − nε, migration events between Ti and Ti+1 displace
less individuals on the event D−

i,n than on D+
i,n so

P (T ∈ (Ti , Ti+1)|D−
i,n) ≤ P (T ∈ (Ti , Ti+1)|D+

i,n).
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Second, note that vn = (1 − μ)n < 2θ if and only if we have

n > m0 := �ln(2θ)/ ln(1 − μ)�.

In particular, if Ti is the time of an extinction event at X then ȲTi < 2θ only if at least
m0 migration events have occurred since the last expansion event at patch Y . This
implies that

P (ȲTi < 2θ) ≤
(

1

1 + r

)m0

.

Since by symmetry the random variables X̄t and 1− Ȳt are identically distributed, and
2θ − X̄t is stochastically smaller than Ȳt , we deduce that

P (D−
i,n) ≤ P (ȲTi < 2θ)P (D+

i,n) ≤
(

1

1 + r

)m0

P (D+
i,n).

Finally, observing that

{T = T −} =
∞⋃

i=0

�ε−1�⋃
n=0

{T ∈ (Ti , Ti+1)} ∩ D−
n,i

and {T = T +} ⊃
∞⋃

i=0

�ε−1�⋃
n=0

{T ∈ (Ti , Ti+1)} ∩ D+
n,i

we can conclude that

P (T = T −) =
∞∑

i=0

�ε−1�∑
n=0

P (T ∈ (Ti , Ti+1)|D−
n,i )P (D−

n,i )

≤
∞∑

i=0

�ε−1�∑
n=0

P (T ∈ (Ti , Ti+1)|D+
n,i )P (D+

n,i )(P (D−
n,i )/P (D+

n,i ))

≤
(

1

1 + r

)m0 ∞∑
i=0

�ε−1�∑
n=0

P (T ∈ (Ti , Ti+1) ; D+
n,i )

≤
(

1

1 + r

)m0

P (T = T +).

This completes the proof. ��
Acknowledgment The authors would like to thank two anonymous referees for comments that helped to
improve the article.
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