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1. Introduction
The boundary value and expansion problems for the equation of the nth

order with boundary conditions at two points have been studied by Birkhoff. t
BocherJ has suggested the generalization of these results to the equation
with auxiliary conditions at more than two points. Such generalization of
the essential properties of the differential system has been carried out by the
author, and in this paper is given the proof of the convergence of the expansion,
which may be studied quite independently of the other results. The formal
development of the boundary problem and a more detailed discussion of the
form of the series will be presented in other papers.

The differential equation is taken in the form

dn u dn~2 u
-fa¿ +   *  + P2  dx^2   +   ■■■   +PnU+\u=0,

in which p2, p3, • • • , p„, are functions of the real variable x, continuous
together with their derivatives of all orders in the closed interval (a, b).
The auxiliary conditions apply to k points of the interval (a, b), of which
the first and the last are the ends of the interval. These points, arranged in
order of ascending algebraic magnitude, will be denoted by

ay = a, a2,a3, ■• •, Ojt-i, ak = b.

* Presented to the Society, April 29, 1916.
t Birkhoff, Boundary value and expansion problems of ordinary linear differential equations,

these Transactions, vol. 9 (1908), pp. 373-395. See also Tamarkine, Sur quelques
points de la théorie des équations différentielles linéaires ordinaires et sur la généralisation de la
série de Fourier, Rendiconti del Circolo Matemático di Palermo,
vol. 34 (1912), pp. 345-382; and Birkhoff, Note on the expansion problems of ordinary linear
differential equations, Rendiconti del Circolo Matemático di Palermo,
vol. 36 (1913), pp. 115-126.

î Bôcher, Boundary problems in one dimension, Proceedings of the Fifth International Con-
gress of Mathematicians, Cambridge, 1913,vol. 1, pp. 163-195; see p. 166.
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The auxiliary conditions may then be written

Wi(u) m Wu(u) + W2i(u) + ■■■ + Wki(u) = 0     (¿ = 1,2, ...,n),

in which

Wfi(u) m ajiU(aj) +a'Jiu'(aj) + a'/iU" (a¡) + •■• + afrl) u^~^ (oy),

and an, a'ji, a'/i, • • ■, a%ri), are constants, real or complex.
It is possible to define explicitly in terms of the auxiliary conditions and a

fundamental system of solutions of the differential equation, a function
G (x, s; X), having the properties of a Green's function of the system. These
properties will be discussed elsewhere with the exception of a single one,
which forms the subject of this paper, namely that

(1) fix) =lim^.ff G(x,s;\)f(s)dsd\,

where T is a contour in the X-plane enclosing the first r poles of G (x, s; X),
and / ( x ) satisfies certain conditions of continuity, in some cases of the sort
usually imposed, in others more restrictive, according to the nature of the
auxiliary conditions. The auxiliary conditions themselves are subject to
restrictions beyond those found necessary in the two point case. This integral
may be regarded as the sum of the first terms of an infinite series of residues,
corresponding to the series of orthogonal functions in the familiar cases, and
these residues can in many cases be expressed linearly in terms of the char-
acteristic functions of the differential system. Since the integral will be con-
sidered here on its own merits this interpretation will not be considered
further.

2. Preliminary formulas

A fundamental system of solutions of the differential equation may be
chosen analytic in X. Let t/i ( a;, X ), y2(x,'\), •••, yn(x,\), be such a
system. Then let D (X) be the determinant which has Wi(y¡) for the ele-
ment in the ith row and jth column. Its roots are the characteristic numbers
for the system, but will concern us only as points where an expression having
D (X) in its denominator ceases to be analytic. Let D\ (s, X) be the deter-
minant which has the (n — i)th derivative of yj(s) for the element in the
7th row and jth column, and let D2 (x, s; X) be this determinant with the
elements in the first row replaced by the yj(x) with corresponding subscript.
Then let
(2) G(x,s;\) - ±hDî/Di,        + ifa;>s,        - if x < a.

If now N(xys;\) is the determinant formed by bounding D (X) on the
top by the yj(x) with corresponding subscript, and on the right by the IP,- (G)
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with corresponding subscript, and filling in the upper right-hand corner with
G(x, s;\), then the function G(x,s;\) mentioned above is given by the
formula
(3) G(x,s;\) = (- l)nN/D.

The proof of the convergence of the integral is based on the use of the
following asymptotic solutions of the differential equation, due to Birkhoff.*
Make the substitution X = pn. Then on any region S of the p-plane, defined
by the relation

It _ a+lW
— =5 arg p g-,
n n

in which I is a positive integer less than n > 1, there exist n linearly inde-
pendent solutions, analytic in p, and such that

yi(x,p) =Ui(x,p)+e"^-^-^,

dyi = dMi, ep„,i(s-0) _Eß_
(4) dx      dx p™-1' (i-1,2, •■•,»),

dn~x y i     dn_1 Ui ,    ,    En
rn-y  T edxn~l    "   dxn~l    T pm-n+l '

where

Ui(x,p)=e^\l+U^l+...+^
I P P

Here m is any positive integer, the w's are the roots of the equation

wn + 1 = 0,

the functions Un (x) are finite and continuous for all values of x in the interval
(a, b), and P is a generic notation for functions of p (and other variables)
uniformly bounded for large values oí p. In part of the work it will be neces-
sary to use a more explicit form of the functions w,-y (x), due to Milne.t viz.,
Uij(x) = <f>j(x)/(wi)3'. The functions <j> are then the same for all the n
solutions yt(x, X).

By the substitution X = p" the X-plane goes over into two adjacent S
regions, Si and S2.    The integral (1) becomes

(5)    2"~
— í   Í   npn~l G(x,s; pn)f(s)dsdp

+ 2nf J   npn-1G(x,s;pn)f(s)dsdp,

* Birkhoff, loc. cit., p. 381.
f Milne, Note on asymptotic expressions in the theory of linear differential equations, Bulle-

tin of the American Mathematical Society, vol. 23 (1917), pp. 166-169.
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in which 7i and y2 may be taken as arcs of the same circle with center at the
origin.

Before substituting these solutions in the auxiliary conditions, the condi-
tions are normalized as follows:

First, the number of conditions of order n — 1 at the points a and h is re-
duced, by means of linear combinations, to two at most; then, the remaining
conditions of order n — 2 at these points are reduced to two at most; and
so on.

It is convenient to introduce Birkhoff's notation, by which [w] represents
an expression of the form

abc E
W +- + ~2 + -3+   ■•■   +-7n,P        P'        P3 P

in which %o, a, b, etc., are independent of p but need not be constants, and E
is a function of p and other variables bounded for large values of p.

The result of substituting the asymptotic solutions into the auxiliary con-
ditions is

Wu(yj) = (pwj)hli [au],

W2i(yj) = (pwj)h«[a2i]e^^-a\

Wki(yj) = (pw^ia^e^-^.

Because of the normalization of the auxiliary conditions hu = hu = Ay»,
j = 2, 3, • • •, k — 1. So let us set hu — hki = A», and we have Ai_i i= hi
S hi+i, and no three successive h/s are equal.

In the odd order case let n = 2p. — 1. Then the indices 1 to n can be
determined in such a way that for any p in S

R ( pw\ )gfi( pw2 ) =! JR ( piv3 ) S • • • ^ R ( pwn ),

where R(iv) indicates the real part of w.    Hence for S

R(pwi) < 0 «-1,2, •••,m-1),

>0 (t-M + l.M + 2, •••,»»),

= 0 (i=n and arg p = -—- tt j ,

and it follows that

Wi(yj) = (pwj^lau] (j-1,2, ...,M-l),

= ( pu>j )hi [ aki ] e*""^-'0 (j - ß + 1, m + 2, • - -, n),

= (pwjf'íau] + (pWj)Hakl}e<^b-u) + £ (pw¡)»• [au]e"*«-»

(j=m).
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In the even order case let n = 2ß. Then the indices 1 ton can be deter-
mined in such a way that for any p in S

R(pWi) < 0 (¿ = 1,2,3, ...,M-1),

>0 (i-M + 2, ...,n),

= 0      (i=it,p + l, and either arg p = — or arg p =-it J ,

and since — wM = ieM+i, we have

Wi(yj) = (pwj)hi[au] U = 1,2, ...,„-i),

= (pWi)»*!««]««^6-»» (j-m + 2, •••,»),
*-i

= (pœ, )* [au] + (pwu )hi [aki] epw^a) + £ (P«V )A" tok] «'"•'(or~o)
I =2

(i-n),
= ( - pwß )'" [au] + ( - pwM )h< [aki ] e-'w^b-°>

*-i
+ Z ( - P-"V )*" [ a« ] ¿"p""(ai_a)     (i - J- + 1 ).

!=2

3. The function D(\)
Preparatory to taking up the main convergence problem it is necessary to

study the distribution of those points where the function D ( X ) vanishes or
becomes nearly equal to zero. This study is simplified by considering separ-
ately the cases where n is odd and where n is even.

Odd order case. When n is odd, the substitution of the asymptotic ex-
pressions for the W's in the determinant D (X) gives

P(X) = ¿p*' yj ef^A,

in which A is that determinant which has for the element in the tth row and
jth column, [ au ] w*' for j = 1,2, ■ - • , u - 1 ; [ aki ] Wj* for j = p + 1, u + 2,
• • • , n, and finally

Bi m wh;([ayi] + [ab-]^M + E (pwli)h'i-h'[ali]e"w^'-^),

for j — u.    Let v be the highest power to which pw^ enters in any Bi ; then
A can be expanded in the form

(6) A = [6y] + [0*]e<"V6-a> + (pwM)"j¿[0,]e>M«<-»>}.

We shall now prove the
Theorem. // in (6) neither 8y nor 6k is zero, and if for » = 1 neither 02

nor dk-y is zero, then D (X) has an infinite number of roots, and there exist two
absolute constants w and Í2 such that the number of roots of D (X) in any circle
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about the origin of radius r is less than Çlr and greater than œr and, finally, for
values o/X uniformly away from the roots, D (X) remains uniformly away from
zero.

This last statement is made more explicit by inequalities (16) and (21) below.
We assume, then, that neither di nor 6k is zero. The number v may be

negative, zero, or positive.    If it is negative A can be written more simply

[0i] + [flt]ep"*<6"°).

Birkhoff* has shown that the roots of this are asymptotically equal to

_   griPT       l0g("l)
wli(b — a)      wu(b — a) '

and that A remains uniformly away from zero if p is uniformly away from a
root.

When v is zero, A becomes
k-\

(7) [0i] + [8t] e"w^^a) + Z [0i 1 e""*(a<-a),
¡=2

and now at least one other 6 in addition to 0i and 6k is assumed to be different
from zero. In treating this case the distribution of roots of the function
obtained by suppressing the brackets is determined, and then the roots of A
are proved asymptotically equal to these.

It is convenient to make a change of variable. Let pwM (a2 — a) = z,
and divide through by 0i.    The equation to be considered is, then,

(8) /(*) = 1 + Qo «' + Qi e** + Q2 e°* + ■ ■ ■ + Qk-2 ec>~* = 0.

The Q's are complex constants, and in particular Qk-2 and at least one other
are different from zero. The c's are real constants such that 1 < Ci < c2
< • • • < Ck-2■ Let z = x + yi, and let R(d>) denote the real part of <p,
and I (d>) the coefficient of the pure imaginary part. Let e be an arbitrary
small positive quantity, and choose X so large that for a* = — X,f(z) differs
from 1 by less than e, and at the same time for x = X, f(z)/e°k-i" differs
from Q/c_2 by less than e. The region between x = X and x = — X will
be called the region R throughout this paper. We shall suppose that e is
chosen small enough so that / ( 2 ) does not vanish outside of R.

Now /(2) is analytic in any finite region. Hence in any interval, no
matter how small, along the y-axis, it is possible to find a line y = constant
along which/(2) does not vanish. Let y = Yi and y = Y2 be any two such
lines. The number of roots of/ (2) in the rectangle x = X ,y = Yi,x = — X,
y = F2 is determined by following the change in arc/(2) as 2 describes this

* Birkhoff, loc. cit., pp. 383-5.
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rectangle.    Now

arc f(z) = sin     \ir,

and for y constant I (f) has the form

I (f) =d0ex + dy e*x + di e- + • • • + dk-2 «•"",

in which the d's are real constants. The finite roots of I (f) are the same
as those of

h (f) =d0 + dy e^-1* + d2 ¿«-1» + ■ ■ ■ + dk-2 e^-1)x.

But between any two roots of this is a root of the derivative

/i (/) - áx(cx - 1) e^'-1'* + d2 (c2 - 1 ) e^-1)x
+ ••• +aV2(cjfc_2-l)e(c*-2-1)*,

while its roots are the same as those of

Il (f)^dy(Cy-l)+d2(c2-l) e^-°J* + • • •  + 0V2 (Ck-2 - 1 ) /**-*.

The argument is repeated till finally Ik-2 is reached, which has only one term
and does not vanish for x finite. Thus I (f) has at most (k — 2) finite roots.
Should any of the 7's have multiple roots the argument must be slightly
changed, but the result is, of course, the same.

Now as z traces the line x = — X, f(z) remains very nearly equal to 1,
so that the resulting change in arc / ( z ) is less than some small positive quantity
r/i which approaches zero with e. As z traces the line x = X the change in
arc/(z) differs but slightly from c*_2 ( 72 — Ti), as is at once apparent
from the formula

f(z)
arc/(z) = arc e°>-** + arcJ~¿ .

In other words, the change in arc along this line can be written

Ck-2 ( Y2   -   Yy )  ± 772 ,

where r\2 is a small positive quantity which approaches zero with e. Finally
along the lines y = Yy and y = Y2 the function sin {arc/(z)j vanishes at
most k — 2 times, whence arc/(z) increases by less than (k — \)ir -\- nz
and ( k — 1 ) ir + Vi respectively, where 773 and 774 are again small positive
quantities which approach zero with e. To sum up, as z traces the rectangle
the resulting change in arc/(z) is not greater than

Ck-2(Y2- Yy)+2(k-l)rr + n
nor less than

Ck-2(Y2 -  Yy)  - 2(k — 1)7T - T)     (Tî = 7ft + r;2 + !73+T;,),

if Y2 — Y y is large enough to make this expression positive.   Since r¡ can be
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made arbitrarily small by taking e small enough, it can be dropped from these
inequalities. So finally in any interval of R of length I the number of roots of
/ ( 2 ) is not greater than Ck-2 l/2ir + k — 1, nor less than Ck—2 l/2ir — k + 1,
if this number is positive. In particular, by making I very small, one sees
that a multiple root of / ( z ) cannot be of order higher than Ä; — 1.

It is now necessary to prove that if 2 remains uniformly away from a root
of /(2) then /(2) remains uniformly away from zero. This is proved by
means of the following auxiliary theorem:

Theorem. Given f (z, x\, x2, ■ ■ ■ ,xn), continuous in all of its arguments
and analytic in z for a¿ í= a:,- s= 6¿ and z in a closed finite region S of the complex
plane, and such that for no set of values of the x's is the number of roots of f(z)
greater than a given constant N; if for any set of values of the x's, z is a point at a
distance greater than <5 from a zero of f (z) and from the boundary of S, then

\f(z,xx,x2, ••• ,i„)|= X,

where X is a real positive constant independent of the x's.
It is no restriction to assume that ô is small enough so that for-each set of

values of the a:'s the corresponding region of variation for z, defined by the
hypotheses, actually contains points. This follows from the assumption
that for any set of values of the a;'s the number of roots oí f(z) is less than N.
Now for any particular set of values of the a:'s there is a X, such that for these
a:'s and for 2 restricted to its corresponding region of variation,

|/(2, Xi, X2,   ••• ,X„)|SX,

while there is a value of 2 for which the equality holds. We have thus defined
a function of the a;'s, X ( X\, x2, • ■ ■, xn ), which, by means of the easily proved
fact that the zeros of f(z, Xi, x2, • • ■ , xn) are continuous functions of the
x's, can be shown to be continuous in the closed region a,- = Xi = 6¿. Since
X (a*i, Xi, ■ ■ • , xn ) is continuous in a closed region, it has a lower limit which
it attains. Call this limit X. Then for some value of 2 and the x's, |/| = X.
Hence X is not equal to zero, for / does not vanish in any of the regions for
which the function of which X is the lower limit was defined. Hence the
theorem is proved.

First apply this theorem to the function

/(*, fa, <h, • ■ ■, **-») = 1 + Qo e2 + <?i e^*1' + ■ ■ ■ + Qk-2 e^+*«i.

The region S can be that portion of R for which 0 = y = 27r, augmented by a
strip of width Ö surrounding it. Obviously the breadth of R, that is, the
value of X, depends only on the Q's and not on the <p's. It is also clear that
the function satisfies the conditions of the theorem. Let X indicate the
number determined by the theorem corresponding to 5.
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Consider, then, the function (8) in R.    Any interval of R,

2lw^y^2(l + l)w,

can, by a transformation y = y + 2lir be brought to the interval 0 Si y Si 2ir,
and / becomes

f(z + 2hi) = 1 + Qo ez + Qy eClz-2!^< + • • • + Qk-2 e"-«-21"**-*.

But, without changing /, each expression 21-kCj i can be replaced by a <¡>ji
where 0 Si </> = 27r. So /(z + 2lwi) has the form above, and for z at a
greater distance from a root than 8, \f(z + 2lir) | iS X. By giving I all
integral values, all of R is covered by these intervals, and so finally, for z in R
and at a distance from a root of f(z) greater than 5, ]/(z) | g X > 0.

We can now prove that the roots of (7) are asymptotically equal to those
of (8). First it is clear that by choosing e small enough we can be sure that
all the roots of (7) lie within the region R. Let us denote (7) by \p ( p ) and
(8)by/(p).    Then inn

*(p) = 0i/(p)+-, P

from which it is obvious that the roots oi\j/(p) are very nearly equal to those
of / ( p ) for large values of p.    Now

(9) *(')-9'«',(1 + ijTb)'
whence

arc^(p) = arc By + arc/(p) + arc il + fJJ-y- ) ■

Let 5 be an arbitrary small positive quantity. Then according to the
previously determined distribution of the roots of / ( p ), it is possible to
enclose these roots in groups of less than k in simply connected regions of
major diameter less than ko, and such that no point of the boundary is at a
distance from a root of / ( p ) less than Ô. On the boundaries of these regions
we have then |/ ( p ) | = X, where X is determined by the theorem above.
Hence for large values of p, the expression E/( dy f ( p ) p ) is very small on these
boundaries, and so the resulting change in arc (1 + E/(dyf (p) p)) asz traces
the boundary of a region is zero, and the change in arc ip (p) is the same as
the change in arc / ( p ). So the number of roots of \p ( p ) in any such region
is for large values of p the same as the number of roots of f(p) in it; that is,
the roots oí\¡/(p) are asymptotically equal to those of /(p).

From this together with (9) can be deduced the fact that for large values
of p in R the function \J/ ( p ) remains uniformly away from zero when p is
uniformly away from a root of yp ( p ). Outside of R the function \f/ ( p ) of
course remains uniformly away from zero.
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It is convenient to consider next the case in which A reduces to

[0i] + [6k] e'V"-«) + (pw* )' [ ft ] e"V--> ,

which, in particular, it always does if k = 3. It is assumed that none of the
d's are zero, and that v ^ 1.    Then

A m [02]epV**-a)Ao,
where
(10) Ao = ( p«v )' + [ h] e'V6-^ + [ ft, ] e-W*->,.
and in this

la 1 -[ill \a i -[hi

It is necessary to consider separately the part of S in which R ( pw^ ) is positive
and the part in which it is negative.

R ( pwu ) S 0.    It will now be shown that in that part of S where R ( pw„, )
= 0, the roots of A0 are asymptotically equal to those of

f(p) = (pWiiy + 0ae-<""^°K

To find the roots of f(p) set pw^ = x -f yi = re'*, and — 9a = rae"t'".
When / ( p ) is equated to zero the second term may be transposed, and then,
when absolute values and angles are equated, the two following equations
result:
r" = ra e^"*—),        vd> = d>a — y(a2 - a) + 2mw     (m = 0, ± l, ± 2, ± 3, ••■ ).

The zeros of / ( p ) are the points of intersection of these two curves. Since,
in that part of the p plane under consideration, x Si 0, y > 0, the first curve
is equivalent to

y = TJrl» g-**t--)l>> -x2y

and this has but one branch which is in character much like the exponential
curve, and which for large values of p approaches parallelism to the line
R(pwh) = 0, i. e.,

lim (dx/dy) = 0.
It is also easily shown that

lim (x/y)2=0,
p=00

which is to say that for points on this curve

lim <p-= tt/2 + 21tt       (1 = 0, ±1, ±2, ±3, •••)■

When this is substituted in the second curve it is found that the roots of
f(p) are asymptotically equal to points whose y coordinates are given by

4>a + 2mw — v ( \rr + 2lir )
y ~ a2 — a '

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1917] ORDINARY LINEAR DIFFERENTIAL EQUATIONS 425

and since v is an integer this is equivalent to

(¿o + 2m7T — \vk
y —-. a2 — a

So the roots of / ( p ) lie along the curve

(11) \(pwll)r\ = \dae-i"°¿a<-a)\

at intervals whose lengths approach 2w/(a2 — a) as p becomes infinite. For
large values of p these roots are all simple, for it is obvious that / ( p ) and /'( p )
cannot both vanish for the same value of p when p is large.

In order to prove that in that part of S where R ( pw„ ) Si 0 the roots of A0
are asymptotically equal to those of / ( p ), it is necessary to show that |/ ( p ) |
remains uniformly away from zero when p is uniformly away from a root.
For this purpose let T be the region included between the curves defined by
the relation

|(pwM)"| = |Ö0e-,,Va^0)±-|.

Let U be the region between T and the line R(pwll) = 0, and let V be the
remainder of S for which R ( pw^ ) < 0. Choose a as any convenient positive
real number.    The following inequalities are immediate:

for U,        | ( pwM )" | S e" | da e-"V"*-") |,

for V,        | ( pw>„ ) " ¡ Si €-' | ea e-pV"*-") | ;

from which it follows that

iovU,        |/(p)|S(e* - l)|Öae-"V^)|,    or    (1 - e") | (pwM)"|,
(12)

forP", |/(p)|ä(l -e~°)\6ae-<>w^-a)\.

For p in T it is necessary to proceed differently. Let p0 be any root of
f(p] =0, and call those points of T which are at least as near to po as to
any other root of / ( p ) = 0, the domain of p0. Now the strip T is asymp-
totically of constant width, and it is easily shown that this width is 2<r/ ( a2 — a ).
On the other hand the distance between two roots oif(p) — 0 was shown to
be asymptotically equal to 2w/(a2 — a), so that finally if po is far enough
out I he distance of any point of the domain of p0 from p0 will be less than
2 (a + ir)/(a2 — a).    In this dom*in/(p) can be written

Sip) -/(p) -/(po) - (pwßy - (po»,.)' + eae-pv«*-°> - ea*-»•*<»->

(13) =wl(p- Po) (P'~l + P-2 Po + • • • + pr1)
+ da e-'V«2-a> ( 1   - g(P-Po) V"*-«) ) .

In T the absolute value of the first term is less than

2(<T + 7T)

02 — a Po +
2(<r + ir)

a2 — a
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and for sufficiently large values of p this is less than a constant times | po | "_1.
Moreover, since in T, \ pwß \ " is between two constant multiples of | e-p V"2-") \,
it follows that the first term is less than a constant times

I g—[(i'-l)/v]pw(,(.oa-a) I _

In the parenthesis in the last term let

(p — p0)wl¡ = r (cos </> + i sin d>),       where        — 7r Si<p Si 7t.

The parenthesis becomes
/ 1   _  »r(«2— a) (cos ij> + ¡ sin <J>) \

which can vanish only at the points given by
2/tt

cos d> = 0,       sin d> =
r(a2 — a)

and the point p0. In the domain of p0 there is only one of these points, namely
po itself, and for that portion of the domain whose points are at a distance
not less than ô > 0 from p0 the absolute value of the parenthesis as a function
of r and <p is continuous and positive in a closed region. Hence it has a
positive minimum which may be denoted by n. The last term of (13) is then
greater than a constant times

I e-p'°íl(«2-'1) I

for that portion of the domain of p0 at a distance from p0 greater than 5.
This, combined with the inequality on the first term, gives the result that
for large values of p in T and at a distance from a root of / ( p ) = 0 greater
than or equal to ô > 0,
(14) |/(p)|>¡<r>V—>|£0,

where Ko is a positive constant.    Similar inequalities have been proved for
any p in U or V, so that this, with a new constant K\, may be assumed to
hold for all that part of S for which R ( piv^ ) g 0 for large values of p at a
distance from a root greater than or equal to ô.

From (10) is obtained the relation

Ao = /(P) + - e-oV«**) + [Bb] eoV6-"»),
P

which can be factored into

(15) A0=/(p)(l-
E ¿-py*-«)    [ Qb ] epv»-«*> '

iur+'~iU)   .
Consider the portions of T, U, and V, bounded by two circular arcs \p\ = p'
and | p | = p", ( p' < p" ), such that no point of either arc is at a distance
less than ô from a root of / ( p ) = 0.    Call such a region S.    It will be shown,
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by considering the change in arc A0 as p traces the boundary of S, that the
number of roots of A0 and of / ( p ) in S is the same, provided the innermost
boundary of S is taken far enough out. Consider first the last term of the
parenthesis in (15). Throughout the region S the numerator is bounded.
In U the denominator, f(p), can be replaced by (1 — e_<r ) (pww)" from
inequality (12), and so for large values of p in U this last term is small. From
the second of the inequalities (12) it can similarly be shown that this last
term is also small for large values of p in V, while from inequality (14) the
same result is obtained for the boundary lines of S where they cross T, pro-
vided the innermost boundary of S is far enough out. On the other hand,
from inequalities (12) and (14) the expression e~~fV«-0)// ( p ) is bounded on
the boundary of S, and when it is multiplied by E/p the result is small when
the innermost boundary of S is far enough out. Under these conditions,
then, the parenthesis in (15) can be written as 1 + n, where n is small enough
so that the arc of 1 + n will return to its original value when p traces the
boundary of S. It follows that the change in arc A0 is the same as the change
in arc f (p), so that Ao and f (p) have the same number of roots in S.

Now exactly the same result is obtained if p traces the circumferences of
circles of arbitrarily small radius about the roots of / ( p ), and this, combined
with the previous result, shows that in that part of the region S for which
R ( pw^ ) Si 0, the roots of A0 are asymptotically equal to those of / ( p ).

An important inequality for A can be deduced from formula (15). For p
large and at a distance from a root greater than ô inequality (14) holds. For
T and V the exponential can be replaced by a constant times (pw^)", while
for U the resulting inequality for/(p) has already been obtained in (12).
The parenthesis in (15) can be made nearly equal to 1, and in particular,
greater than 1/2, by taking p large enough; so that the inequality is obtained:

\Ao\ >\pwli\'K2,

in which K2 is a constant depending only on 5.    The result of applying this
to A is (see (10))
(16) |A|> |(p».)'«*%.<*-»|Z,,
in which K3 is a constant depending only on 5. This holds for p in that
part of S where R ( pw^ ) is less than or equal to zero and greater than some
fixed p, and at a distance from a root of / ( p ) at least as great as 5. Equally
important is the result, easily deducible from the same formulas, that under
the same conditions A is greater than a constant depending only on S.

R(pwß ) £t 0. By entirely similar reasoning it is found that for that part
of S where R ( pw^ ) = 0 the roots of A are asymptotically equal to those of

(piivY + O.e^"-*,
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which lie along the curve
|(pwJ"! = |Ö6e"V6-^|

at intervals whose lengths approach 2wJ(b — a2), and which are all simple
for large values of p. Inequalities on / ( p ), A0, and A, similar to those above
are found also in this case.

Finally the odd order case with k points is in general, i. e., when certain
constants do not vanish, merely a combination of the cases already con-
sidered. The characteristic equation A = 0 is as given in (6). The coef-
ficient of (pw^Y can be brought to the form (8) by dividing by epV>_a)
and setting pw^ (a3 — a2) = z. It is now assumed that none of the con-
stants ft, ft, Ok-i, 6k, is zero. It follows then, that the roots of this coef-
ficient are all in a certain region R lying along the line R ( pw^ ) = 0, and that
for p at a distance from a root of this coefficient not less than ô the coefficient
is in absolute value greater than |epwi>{a*~a) \Ki, in which K\ is a constant
dependent only on 5. For convenience let this coefficient be denoted by Ai.
Then the inequality is
(17) |Ai|>|epV*->|.ír4>
and A is

A = [ft] + [öfcle'V^») + (pwJ'Ai.

This can be written

(18) A = (pwJ"Ai   1 +"Aif: [0i] + [g*]e-y^
(pwjy Ai

Now in R the exponentials are bounded. Hence, if in R any region be drawn,
such that no part of the boundary is at a distance from a root of Ai less than
5 > 0, then on the boundary Ai remains uniformly away from zero, and if
the region be far enough out the parenthesis in (18) has, on the boundary,
the form 1 + 77, where | tj | < 1 • From this can be deduced the fact that thé
roots of A in R are asymptotically equal to those of Ai.

Outside of R for that part of S in which R ( pw„, ) < 0 the roots of A are
asymptotically equal to those of

/(p)-(pwJ"+|e-"V«-«) =0,

and for that part of S in which R ( pw^ ) > 0 they are asymptotically equal to
those of

(pw^y+'—e"^'-^ =0.
Uk-l

To prove the first of these statements, write

A [0,1     0i        ,     ,      [fltle'V»-0)
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10]-«,£[«,]*<■•>«->   [9ll£,.,(w,

*-i
ñ, y r a • i pfK^n!-a^

f(   ,(,   |        [0] gl¿Lg'J* . [^]e"V^>\
J^p;V    +AiÖ2/(p)"        Ai02/(p)       +    Ai/(p)    /•

The roots of f(p) have already been found, for it is the/(p) of (11). To
prove the roots of A asymptotically equal to those of / ( p ), it is obviously
sufficient to prove that the parenthesis above has the form 1 + v, for p on
the boundary of any region outside of R and in that part of S where R ( pw^ )
< 0, and such that the distance of any point of the boundary from a root of

/ ( p ) is not less than 5 > 0, provided that this region is taken far enough out
from the origin. For such values of p the inequalities (12), (14), and (17)
hold, and they will be used to show that the parenthesis has that form. From
(14) and (17) is obtained \f(p)Ay\>KyK4, and since the symbol [0] is
the same thing as E/p it is evident that the term [0]/Ai 62f(p) is small for p
large. In the next term the same inequality on f(p) Ay is used for T and V,
since in these regions, for p large, R ( pwM ) is large and negative, and the
numerator, and so the whole term, is small. For U the inequality |/(p)|
^ (1 — e~<r)\(pw^)"\ from (12) is used for/(p). The remainder of the
term may be written in the form

Ee~ i*"ii{(a*-a)—("»-"«)} = Eg—p*v(o»-«) [i— (<»s-«2)/(<>«-«)]

Now in U the inequality

\(pwliy\^ea\6aé-'"°¿a^a'>\

holds, from which it follows that
I g—("",,("«-•)[1—(«•-"») /(<>«-«>)] I < I ( pW   \»[1—(«»-«») /(«a—«)]'| ]£

where K is an absolute constant. The exponent of this power of p is cer-
tainly less than v, so that because of the factor [(pw^)"] from f(p) in the
denominator, the term approaches zero as p becomes infinite. By reason of
inequality (17) the last term of the parenthesis can obviously be written
E/f(p). In T and V inequality (16) shows that this is small for large values
of p, while the inequality |/(p)|=t (1 — e~')\(pw^)"\ from (12) serves
the same purpose for U. Thus the parenthesis has been shown to be of the
required form for the values of p in question, and so the roots of A are
asymptotically equal to those of / ( p ) for that part of S outside of R for which
R(pwli) < 0.

The proof for the remaining part of S on the other side of R is similar.
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It is to be noted that the above reasoning applies to the whole of that part
of S in which R(pw^) si 0, even including the strip R, provided that p is
at a distance greater than S from a root of f(p) or Ai, and is large enough.
Hence from (19) can be obtained the following inequality which holds for all
p's in absolute value greater than a certain p and at a distance from a root of A
greater than 5 :
(20) |A|>|Ai|.|/(p)|tf6,

in which K¡ is a constant depending only on 5.
In particular this shows, by reason of inequalities (14) and (17), that if in

this region p remains uniformly away from a root, then A remains uniformly
away from zero.

Another inequality for A can easily be deduced from the above. First
replace |Ai| by | ̂ V**-") |K4 from inequality (17). Then for the region U
replace |/ ( p ) | by ( 1 — e~" ) \ ( pwß ) | " from (12), and for the regions T and V
replace it by | r'V"^1) I Kx from (14). But in the regions T and V the
exponential can be replaced in this inequality by a constant times | ( pwß ) \ ",
so that finally the following is obtained :

(21) \A\>\(pwliye'"°¿ar°>\K6,

in which K$ is a constant depending only on 5, and the inequality holds for
all values of p greater in absolute value than a certain p and at a distance
from a root of A greater than 5.

Even order case. When n is even the substitution of the asymptotic ex-
pressions for the IP's in the determinant D (X) gives

d(\) = nv< n eo»/«-«>A,
i=l ¿=n+2

in which A is that determinant which has for the element in the ith row and
the jth column, [ au ] wf for j = 1,2, ■ • • , p — 1, and [ ati ] w'}' f or j = p + 2,
p + 3, • ■ • , n, and

k-\

Di=w% ([au] + [ aki ] e"V»-°> + £ (p»,)*"-* [an] e>V«-«> )    (j = ß),
(21«) l=2    ,_,

Hi = (-w„)hi ([au] + [aki]e-oV»-«) + £ ( -pW¡í)h"-h<[an]<r»V<"-°) )
1=2

0=i» + l)
where n = 2p.

It is evident from the definition of the bracket symbol that in general this
determinant expression for A can be expanded in the form

(22) a = Pi ( pw. y + p2 ( pw,y + p3,

where the highest and lowest order terms of the P's are
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Pi: [0u]ep*V(<,*J~-°«>       and       [ 0i2] ¿-"V0«-0*);

Pi : [ Ö21 ] e'V6-"')     and     [ 022 ] *-*%<*-*> ,     if     b - a2 > ak _i - a,
(23)

or      [d3y]e"w>'(-'"-1-^      and      [ö32] «-"V"«-0),      if     &-a2<a*-i-a;

P3: [04i]ep^(^a)      and      [042] r^^'.

The number v is the exponent of the highest power of p appearing in a D¡
or Hi.

We shall now prove the
Theorem. If none of the 6's in (23) are zero, then D (X) has an infinite

number of roots, and there exist two absolute constants co and ti such that the
number of roots of D (X) in any circle about the origin of radius r is less than
flr and greater than cor, and finally for values of X uniformly away from its roots,
D (X) remains uniformly away from zero.

This last statement is given more explicitly by inequality (25).
Should the number v be negative, A reduces formally to Birkhoff's even

order case,* and the problem of distribution of roots will not be considered
farther here. If v is zero, A becomes merely a sum of exponentials which
when multiplied through by the non-vanishing factor epwti<-b~a) all have real
parts of the same sign, and so are reduced to the form (8) already treated.
In either of these cases the formal expansion (22) is not needed. But when v
is positive we make use of this expansion, which tacitly assumes that at least
two of the Di's and Hi's actually involve this power of p. This is, of course,
equivalent to assuming that the highest order derivative in the auxiliary
conditions at points other than the end points appears in at least two con-
ditions. We also assume that none of the 0's in (23) are zero, which is to
say that certain of the determinants from the matrix of coefficients of the
auxiliary conditions must not vanish. The method here used can be applied
equally well with very slight modifications to many of the cases thus excluded;
but a detailed study of the more specialized cases is beyond the scope of this
paper.

The more general even order case, then, is treated as follows: The function
Pi can be reduced to the type (8) by multiplying through by e^V**-1-"2) and
making the proper substitution. Its roots, then, all lie in a region R, and the
proof that the roots of A in R are asymptotically equal to those of Pi is im-
mediate.   To find the roots outside of R write

p- = (P«V)    + (pw^Yy +p~

The line R ( pw^ ) = 0 is now not the bisecting ray of each of the S regions
* Birkhoff, loc. cit., p. 387.

Trans. Am. Math. Soc. 28

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



432 CHARLES E.  WILDER [October

as in the odd order case, but the line of demarcation between two of them.
Hence the region R overlaps the two S regions into which the X-plane is carried
by the transformation X = p". Consider first the region Si in which R ( pw^ )
< 0.    The above expression can be written in the form

I-, -1 <>».>•+[ëk'"'H {"»->■+[M'-'-^">}
+ (p«v )'& + &•

Suppose that a2 — a is not equal to b — ak-i and, for convenience, let a2 — a
> b — ak-i.    Then the term of highest order in Qi is

[0]e_pV6-°*-1',
and in Q2,

[0]eH>V°«-a>.

The expressions Qi and Q2 are merely those terms which must be added to
the product of the two factors in order to make the result equal to A/Pi.

The roots of the two parentheses are found by the methods already de-
veloped, and it can be shown by means of inequalities of the type (12) and
(14) that the roots of A in Si and outside of R are asymptotically equal to
those of the two parentheses.

Similarly the roots of A in S2 and outside of R are asymptotically equal to
those of two parentheses of the same type, but with positive instead of nega-
tive exponents.

The following inequality is easily found for large values of p which are in
Si and at a distance from a root of A greater than 5 :

|A| > \(Pwßy + [^le-^^")| • \(pWlty +^je-pV>-<"-.>|. [PAK,,

in which Kj is a constant depending only on S.    If

Ä = Ae'V6""),
the inequality for A is

(pwß)v e<"°¿w¡-a)

It can also be proved that for large values of p in Si which are at a distance
greater than ô from a root of A, the absolute value of A remains greater than
a positive constant depending only on 5.

When a2 — a = b — ak-i the two systems of roots lie along two curves of
the type (11) in which both have the same exponential, although in general

|A| > |Pi e"V'-i—s)

(24)
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the coefficients are different. If these coefficients should have the same
absolute value the roots all lie along one curve, and if they are identical the
roots are all double. An inequality like (24) holds in this case also, the only
difference being in the d's and the value of K?. From (24) it is easy to deduce
the inequalities

IÂ | > | ( pw„ Y" e"V*-> ep V"-"«) | Ks,
(25) >\(pwliye^'^^\K9,

>\(pwliye"'^i-''^\Kyo,

which hold under the same conditions as (24), and in which K%, K^, and K10
depend only on S.

4. The expansion problem
The expansion theorem is as follows:
Theorem. Given f(x), any real function which together with its first v

derivatives (or if v < 1 with its first derivative) is continuous in the closed interval
(a, b), then its expansion in terms of the residues of the Green's function (3)
converges to f(x) at every interior point of (a,b), if the auxiliary conditions
have the following properties :

In tlie odd order case
Neither dy nor 6k in (6) is zero.
//ii=1 then in the coefficient of (pw^)" neither 62 nor dk-y is zero.

In the even order case
None of the O's in (23) are zero.
The intervals b — a2 and Ok—y — a are longer than any other of the subinter-
vals of (a, b) included between any two of the points a, a2, a3, • • • , ak-y, b.

The essential purpose of this last condition is merely that the second point
from either end shall be farther away from that end than the first point from
the other end is from that end. The conditions on the 6's require merely that
certain determinants from the matrix of the constants in the auxiliary con-
ditions do not vanish. The condition on the o's in the even order case is
stated in the above form in order to have it as simple as possible. If v < 1
it is not necessary that all these O's be different from zero.

To prove the theorem it is necessary to consider separately the odd and
even order cases. But before that is done it is convenient to introduce a
new form of the expression for G(x, s;X) given in (2). If G be expanded
in terms of the first row of the numerator determinant it can be written

— 1 n
G(x,s;\) = ±7,Hyi(x)yi(s),

" i = \
in which
rotes    -(,      e-^'^Wif        M'),M») ,tn-y(s)       E\
(26) yi(s) =^^{1 +~w7 + ^2+ ... +Tp^1 + -).
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This expression for the y's in so far as it differs from the one given by Birk-
hoff* is due to Milne.f In the work to follow, if v < 1, Birkhoff's form would
be sufficient, and the convergence proof is no more complicated than in the
two point case. The complications necessary in case v s£ 1, are due to the
necessity of using the more explicit formulas of Milne.

The above form of G gives for Wi(G)

Wi(G) = -lt,Wu(yj)yj(s) ±lflW2i(yj)y](s) ± •••- j^\ ¿ j=i
1  " 1 n

±,E Wk-u(yj)y~j(s) + x 52 Wm (yj)yj (s),¿ i=\ ¿ j=\
in which the plus sign is taken for values of s to the left of the point at which
the term in question applies, and the negative sign for values of s to the right.

Odd order case. R(pwLi) SO. The convergence of the integral (5) is
now to be studied. It has already been separated into the sum of two inte-
grals, one in Si and one in S2. In the odd order case it is necessary to separate
each still farther into the sum of two integrals, one in that part of S where
R ( pw„ ) < 0, and the other in that part where R ( pw^ ) > 0. The suc-
cessive paths of integration are arcs of circles \p\= constant extending across
both the regions Si and S2, and so chosen that no point of such an arc is at a
distance less than a preassigned 5 > 0 from a root of D. That such arcs
can be drawn in such a way that the sum of the orders of the roots between
two successive arcs is not greater than 2k when 5 is chosen small enough,
follows from the distribution of the roots of A as determined earlier in this
paper. The parts of these arcs in Si and S2 will be denoted by 71 and y2 as
in (5). Let S represent either of these regions. Then let B be the point
where the line R ( pw^ ) = 0 in S cuts one of these arcs, and let A be the other
end of the arc that crosses the region where R ( pw„ ) < 0, and C the other
end of the arc that crosses the region where R ( pw^ ) > 0. The convergence
of the integral over the arc AB will be studied first; that is, the integral

(27) IAB s ^~JAJa np^G(x,s; p»)f(s)dsdp.

Before making use of the expression (3) for G (x, s ; p") it is convenient to
alter the last column by adding to it each of the columns 1 to p multiplied by
the term \y~i(s) with corresponding index, and each of the columns p -f- 1 to
ti multiplied by the term — \yi (s) with corresponding index. The resulting
last column is:

M 71

1st element, 522/» (x)yi(s) for y < x, or —   52  2/i (x)y¡(s) for y > x;
_ «=1 <=d+i

* Birkhoff, loc. cit., p. 391.
t Milne, loc. cit., p. 167.
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(1 + z)th element,

-   È Wyi(yj)yj(s) +
(28)       *-»+»

■   X!  W2i(yj)yj(s)

É^«(yy)ffí(«)
+

+
- E w*-i.¿ (*/,•)&• («O

j=*i+l

£WW, i (y;)ï7y(s)
i=i

+ HWki(yj)yj(s)ri=\

in which the upper term of each brace is taken for values of s to the right of
the point to which that term applies, and the lower for values of 5 to the left.

The asymptotic solutions are now substituted in the expression G, and then
the factor phi of D is divided into the (1 + i)th row of the numerator, and
the factor e9Wil-b~a'> into the jth column. The factor — 1 is divided into the
last column.   Thus is obtained

G{x'S'pn)=n^A'

in which N is the determinant A bounded on the top by ePm(-x~a'> [ 1 ] with
corresponding index for the columns 1 to p, and by ePv"(-x~b') [ 1 ] with corre-
sponding index for the columns p + 1 to n. On the right the ith row is
bounded by Ft and the upper right-hand corner is filled in with F, where F i is

- z
(29)

'au w*i+Vr'(o-s) +Ip"»-*'j

and F is

-   £  [aiiW^+1]e^<a^
j=it+i

+ ¿a!.«'5'itl]e"s<"r"

+ £[akiw}+1)ei>v<9-\
3=1

]Ty»,(*-<» [Wy], for s < a;, and  -   £  gctf—> [Wj], for s > x;
j=l i=n+i

and for convenience we give Bi, the ith element in the pth column of A: 5, is

< ( [ ayi ] + Ë ( P«V )h"-hi [ aH ] ••/«-> + [ aki} e»V»-> ) .

This expression for G (x, s; pn) cannow be substituted into (27), and since
s occurs only in the last column of N, the function f(s) can be multiplied
into this column, and the s integration performed. It is then to be noted
that all terms of the determinant save possibly those in the pth and last
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columns are bounded.    Moreover the cofactor of F is — A, and so the deter-
minant can be expanded to give

(a)

(b)
(30)

1      C   (tl=l  n    n R    í*b \+îsL(j£SS^'',MfXw<,)*)*
LTT%JAB \j=ii + l r=l i=l ili/« /

+àL(li'""'"-1X'i''«')*)*- <«
It will be remembered that E is a generic notation for functions of p (and
other variables) uniformly bounded for large values of p. In particular,
in (b) and (c), EjTi is identically zero for r = 1.

The integral (a) will be treated first. It is necessary to separate it into the
sum of two integrals, one from otoi and the other from x to b. The result
of integrating these by parts with respect to s gives (p/4n)f(x) + € and
( (p — 1 )/4n)f(x) + e respectively, for, as is easily seen,

\    p" e'w¿x-a> dp,       for       j <p,

(31)     and
f pa e"K^-b) dp,       for       j > p,

Jab

approach zero as the radius of the arc AB becomes infinite, for a any real
constant, and x distinct from a and b.    One also easily shows that

—~—dp
AS P

approaches zero as this radius becomes infinite.
To evaluate (b) and (c) it is only necessary to notice that 1/A is bounded,

while both Dr and the s integral are certainly less than a constant times p".
Hence (b) and (c) reduce merely to bounded functions multiplied into integrals
of the type (31), and so approach zero as the radius of AB becomes infinite.

The evaluation of (d) is more complicated. We now make use of the
more explicit asymptotic solutions of Milne, and his expressions for the y's, (26).
In the formula for P,- in (29), the square bracket [ an whju+1 ], for example,
has the more explicit form

[«„„;-]-<«(«„+|^) + f).
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Consider now

F(f(s)d».
va

It can be broken up into the sum of several integrals, since P, is a sum. Of
these integrals consider first the one with the exponential involving a¡ ( I =}= 1,
k ). When the more explicit form of the bracket symbol given above is
used this becomes

pA«-*' ( f ' Ê aH wf+l e"w'<a'-s) f (s ) do
\ Ja    j=l

rn-   52 auw'¡K+1e>'w><'"-')f(s)ds    (a)

+  r±Z<r^e^-«w^f(s)ds
Ja    j=l 7=1 (. PWJ )

(33)
+ f-   t  nÍ~¿^re^^w)^f(s)ds    (b)

J„t        j=y-+lr=l(pWj)

+  i' £ 4 e'w¿a<-!) wh/+1 f(s)ds
Ja    /«l P

+  I   -   È -ne"w'<-a'-!)w^+1f(s)ds).    (c)
Jai j=li. + l P I

Now integrate (a) by parts and add the results, obtaining

~( /(<*i) Ê ( - «$") + È w)« f(a) e^a^ +   £ «>}»/(6) *"*<"-*>
P    \ j=i 3=1 j=n+l

+  r'ÊwJV°/(°,_,)/'(s)ds+ f -   ¿ u$»e',*,'->/'(*)<*» Y
«/»    y=l «/n,        j=n+l /

Since ti > hu > 0, the coefficient of/(a;) is zero. The remaining integrals
can again be integrated by parts,* and again the terms involving a¡ will drop
out. This is repeated hu — h times, which will give the factor an/ph"~ht
outside, and this is just enough to cancel the factor in (33). Then absolute
values are taken,/(A"_Ai_1) (s) is replaced by the upper limit to its absolute
value, and the exponentials are again integrated, giving E/p. The total
result may be written

(34) 52 En p""-*'-1 epw^a) +  ¿ En p'1«-*'-1 e"^a^ + —.
3=1 J'=M + 1 P

Next consider the rth term of (b).    The factor l/pr can be removed from

* It is to be noted that the number'of derivatives here required has been provided for in
the hypothesis of the expansion theorem, and also that if v < 1 all this work with Milne'a
formulas is unnecessary.
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under the sign of integration, and aur(s)f(s) can be considered as one
function. The integral can then be treated as was (a), but it requires only
hu — hi — r integrations by parts and one further integration. The result
can then be written in the same form as (34), though in this case, to be sure,
the E's are not only bounded but actually approach zero. The terms (c) are
obviously of the form E/p, so that the whole of (33) can be written in the
form (34). Finally a single integration by parts reduces the terms involving
the points a and b to the form E/p, so that the integral

j Fif(s)ds
can be written as

(35)       ¿ ( Ê Eiji p*"-*'-1 er*"-°> +  Ê  Em p*«-*'-1 e"w'<ai-b> ) + — .
¡=2 \y=i j=*+i /        P

When this is substituted in Í30d) the last term here gives a result of the form
(32). The other terms for j =1= p give results of the type (31) with the value
ai for x . and since for these terms a¡ is distinct from a and b , the result of the p
integration approaches zero as the radius of AB becomes infinite. The only
terms left from (35) then are

*—i
£ E¡ p*«-*--1 eP-V"-«) ,    '

which are multiplied by ( E/A ) e9W^x~a) for the p integration. If it can be
proved that

tí Ei p^-*--1 gp«vc<-°>

is of the form E/p, then this last term will give a result of the form (32),
and (30d) will have been shown to approach zero as the radius of AB becomes
infinite. Now inequalities (16) and (21) prove this for v > 0, while for
v = 0 the power of p is negative while the exponential is bounded and A re-
mains uniformly away from zero, and the same result is obtained.

To sum up the results, for the radius of AB large

IAB = if(x)+e.

The work for the case R ( pwa ) > 0 runs along parallel to this in every
detail, and the result is obtained that for the radius of BC large

lBc = lf(x) + e.

This result holds for both Sy and S2, so that (1) converges to f(x) in the
odd order case.

Even order case.    In the even order case the paths of integration are the
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same as in the odd order case, but now there is no need of dividing farther
the arcs 71 and y2, since throughout each region S the sign of the real part
of pw^ is unaltered. The region Si in which R(pwlí) Si 0 will be considered
first, that is the integral

L npn~l G(x, s; pn)f(s)dsdp.

In making use of the expression (3) for G (x, s; p") we now alter the last
column by adding to it each of the columns 1 to p multiplied by \yi(s)
with corresponding index, and each of the columns p + 1 to n multiplied
by — \yi ( s ) with corresponding index. The asymptotic solutions are then
substituted, and the factor phi of D is divided into the (1 + i)th row, and
the factor gP^6-«) into the jth column. The factor gP^+i^0) is also divided
out of the (p + l)th column and out of D, thus leaving in the denominator

A = gP V^°> A,

since ivß+y = — w^. Thus G (x, s; p") is found to be equal to l/(np"_1 A)
multiplied into a determinant of order n + 1 in which the element in the
first row and jth column is e9'°'<x-a) [ 1 ] for j Si p and gP^^-w [ 1 ] for p + 1
Si j Si n. The last element is F, given in (29). In the (1 + i)th row and
jth column the element is [ «i,- why ] for j < p, [ aki Wj1 ] for p + 1 < j si n,
while for j = p., p + 1, and n + 1 the elements are respectively Di, Hi,
and Fi, where Di is as given in (21a), while Hi is the H¡ given there, multi-
plied by gP V6-0), and F and Fi are as given in (29).

The variable s appears only in the last column of this determinant, whence
f (s) can be multiplied into this last column and the s integration performed.
Since all terms, save possibly the D's, H's, and F's, are bounded, the expansion
of the determinant takes the form

Di   Hi

-. f   tÏTTlJy  i,j,r=l

(a)

+ Dj

Dr Ilr

fFif(s)ds

fFjf(s)ds

fFrf(s)ds
\ ¡=1

E¡ gp"^*-"'

+   E Ei eP«*-65 ) dp   (b)
¿=n+i

-)

+ -. ft2m JY]i,j=i
Di

1 ]    gP'V+i<*-» [ 1 ] 0

Hi ¡Fif(s)ds

Hj ¡Fjf(s)ds

dp. («0
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By comparing (a) with the similar integral in the odd order case it is obvious
that it approaches the limit f(x)/2 as the radius of 71 becomes infinite.
In (b) the determinants can be written in the form Epa, where a < 3n.
Since in the parenthesis the exponents have negative real parts on 71, (b) falls
under the type (31), and so approaches zero as the radius of 71 becomes
infinite. Finally (c) is expanded in terms of the top row of the determinant,
and the result is treated in a manner similar to that used in the odd order
case.   The expanded form is

(36)    Pi eo'V*-«) 52 =
i,i A

Hi   f Fifds

H}   ¡Fifds
+ P2ep'V+^-4)52 =

t,j A
Di   f Fifds

Dj   f Fjfds
The formula for J F i f ( s ) ds is given in (35), but a more explicit form for the E
terms in that expression is now needed. From (28) can be obtained directly
a formula for J Fif(s)ds.    It is

_P
Tip

~, fhFif(s)ds - -   £ Wu(yj) fyj(s)f(s)ds
Ja j=n+l Ja

(37)
+ £

'-  ¿  Wii(yj) fyj (s)f(s) ds
j=H+l Ja

ílWu(y¡)Cyj(s)f(s)ds
L       j=l Ja

\+ÈWki(yj)fyj(s)f(s)ds.
j=l Ja

By integrating by parts v times,

f <fW-°> / (s) ds =
e-ptii(T-a)

-  PWj [f(r)] +
„—pi0,<a-ii) E
-p^r[fia)]+P^

where
f'(r)

+ /'-»(t)
(pw,rl;

and [f(<r)] has the same form.   And now this can be applied to each term
of 27; (s ) m (26) with the result

71—1    /»t .-pw/r-a) -pw,{<r-a) p

J   yj(s)f(s)ds=     _--7[Mr)]+~^— [MO]+7^1,Tip"

Wj    Ja - PWj PWj

where the symbol [ h ( r ) ] has the more explicit form

[a(t)] = A(t) +    ....     + , .... v,+
PWj ( PWj )2

+
*,-,(t)

(pwj)-1

and [ h ( a ) ] is the same with the value o~ substituted in place of t .    The
function A is the function /, but a different notation is introduced because
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the functions hr that enter are not precisely the derivatives of/. The essential
thing in the expression is the fact that the functions hr are independent of j.
When this result is used in (37) and the asymptotic solutions are substituted,
the result must be of the form (35). Then by comparing the two forms the
more explicit form for the E terms in (35) is found :

(38)
f Fi f ( s ) ds m E ( £ whj" [ an} [ h ( a )} p*«-*-1 «"*•"

J i=2 \j=i

+   £ uf [ an ] [ h ( b ) ] p*«-*'-1 e"*"-a) ) + -,
i=n+i J        P

in which [ an ] is identical with the [ an ] appearing in Di (i. e., when the bracket
symbol is written out in full for any value of m, all corresponding terms as
well as the E terms are identical). In the same way [an] is identical with
the [ an ] appearing in Hi. This evaluation of the integrals is now substituted
in (36), and each determinant there can be written as the sum of several,
according to the terms of (38). Since from (25) the expressions Z)»/A and
( Hi/A ) are bounded on 71, the determinants which involve the last column
E/p are themselves of the form E/p, and that part of (36) is of the form (32),
and so* converges to zero as the radius of 71 becomes infinite. On the other
hand the terms involving exponentials other than w„_ or wB+1 reduce to the
form (31), with one of the constants a¡ (I #= \,k) in place of x. Hence
these also approach zero.   All that is left is then

EigPV^xii,i A
where

Hi   Ni
Hj   Nj

+ E2e<"°v+<(*-6)X ¿
í,j A

Di   Ni

Dj   Nj

Ni^Y, wf l au] [ h (a)] p*«-^-1 epV*->
1=2

k-i

+ E vfa., [ an ] [ h ( b ) ] p*«-**-1 eP-V+i«"-».
;=2

By inequality (25) _the expression ( iV./A ) is of the form E/p. So when the
values of D¿ and Hi are substituted from (21a) the first two terms of each
give expressions that reduce to the form (32) and so approach zero. What
still remains is

F, pt>w/*-a)

(39)    -  ----E
A i,3

where

An      Bai  + #61

Abj    Baj + B bj
+

E ßP'v+i«*-'') ai  + -ßfc»

aj + Bbj

Aai ^ E [a¡¿]ep'r*Ca'-'0(p«V )*"-*'<',
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Abi m ¿ [*u]*"it*-ù(- pw,)h" A¡( - «>„)*%
1=2

£„• = £ [ «K ] [ Ä ( O ) ] p'"-*'"1 ^V«'-) W*«,
1=2

P6i - ¿ [5«] [ A (b) ] p*^-1 *%<»-*> ( - «,„)»«.
i =2

These can be expanded into the sum of a large number of determinants.
Such determinants as have the same exponential factor in both columns
are zero, for example

[ äu ] e"w^-^ ( - pw„ )*""*< ( - «v )Ai   <« [ äu ] [ h ( b ) ] p*«-"'"1 e<>V6-<">

[âtj] e'V6-"*) ( - pw„)'"'-h' ( - w,)*   v# [5W] [ A (6) ] p*»-*'-1 e"V6-<">  '

for when the common factors

gVV*-«,) [ h (b) ] ( - w„)"« (to,,)*« ph"-"i pV-% -

(it is to be noted that [ h ( b ) ] is independent of the subscript) are removed,
we have

[ oiu ]    [ an ]
[aij]    [aij]  '

which is obviously zero, since the two terms in the same row of the deter-
minant are identical.

Since a2 — a and b — a^-i are the shortest of the intervals ending at a or b,
the terms that approach zero most slowly are e^'V^2-") and epw»<-b~ak-l), and
each of the other determinants in (39) can be written

This divided by A can, by inequality (25), be written E/p, whence (39) is
of the form (32), and so approaches zero as the radius of 71 becomes infinite.

To sum up,
Iy1 = U(x)+e

for the radius of 71 sufficiently large.
The treatment of the integral in S2, that is over 72 is, step for step, parallel

to the above, and the result is obtained that for the radius of 72 sufficiently
large

ÍT, -*/(*)  + «•

By combining the two results, the convergence of (1) is established in the even
order case.
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