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1 Introduction

Series expansions is a classical issue in the theory of Gaussian measures (see [2], [9], [17]). Our
motivation for a new look on this issue finds its origin in recent new expansions for fractional
Brownian motions (see [14], [1], [5], [6], [7]).

Let (E, || · ||) be a real separable Banach space and let X : (Ω,A, IP) → E be a centered Gaussian
random vector with distribution IPX . In this article we are interested in series expansions of X of
the following type. Let ξ1,ξ2, . . . be i.i.d. N(0,1)-distributed real random variables. A sequence
( f j) j≥1 ∈ EIN is called admissible for X if

∞∑

j=1

ξ j f j converges a.s. in E (1.1)

and

X
d
=

∞∑

j=1

ξ j f j . (1.2)

By adding zeros finite sequences in E may be turned into infinite sequences and thus also serve as
admissible sequences.

We observe a precise link to frames in Hilbert spaces. A sequence ( f j) j≥1 in a real separable Hilbert

space (H, (·, ·)) is called Parseval frame for H if
∞∑
j=1
( f j ,h) f j converges in H and

∞∑

j=1

( f j ,h) f j = h (1.3)

for every h ∈ H. Again by adding zeros, finite sequences in H may also serve as frames. For the
background on frames the reader is referred to [4]. (Parseval frames correspond to tight frames
with frame bounds equal to 1 in [4].)

Theorem 1. Let ( f j) j≥1 ∈ EIN. Then ( f j) is admissible for X if and only if ( f j) is a Parseval frame for

the reproducing kernel Hilbert space of X .

We thus demonstrate that the right notion of a ”basis” in connection with expansions of X is a
Parseval frame and not an orthonormal basis for the reproducing kernel Hilbert space of X . The first
notion provides the possibility of redundancy and is more flexible as can be seen e.g. from wavelet
frames. It also reflects the fact that ”sums” of two (or more) suitable scaled expansions of X yield
an expansion of X .

The paper is organized as follows. In Section 2 we investigate the general Banach space setting
in the light of frame theory and provide the proof of Theorem 1. Section 3 contains applications
to pathwise continuous processes X = (X t)t∈I viewed as C(I)-valued random vectors where I is a
compact metric space. >Furthermore, we comment on optimal expansions. Fractional Brownian
motions serve as illustration. Section 4 contains a new optimal expansion for fractional Ornstein-
Uhlenbeck processes.

It is convenient to use the symbols ∼ and ≈ where an ∼ bn means an/bn → 1 and an ≈ bn means
0< lim inf an/bn ≤ lim sup an/bn <∞.
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2 The Banach space setting

Let (E,‖ · ‖) be a real separable Banach space. For u ∈ E∗ and x ∈ E, it is convenient to write

〈u, x〉

in place of u(x). Let X : (Ω,A , IP)→ E be a centered Gaussian random vector with distribution IPX .
The covariance operator C = CX of X is defined by

C : E∗→ E, Cu := IE〈u, X 〉X . (2.1)

This operator is linear and (norm-)continuous. Let H = HX denote the reproducing kernel Hilbert
space (Cameron Martin space) of the symmetric nonnegative definite kernel

E∗× E∗→ IR, (u, v) 7→ 〈u, C v〉

(see [17], Propositions III.1.6. and III.1.7). Then H is a Hilbert subspace of E, that is H ⊂ E and the
inclusion map is continuous. The reproducing property reads

(h, Cu)H = 〈u,h〉,u ∈ E∗,h ∈ H (2.2)

where (·, ·)H denotes the scalar product on H and the corresponding norm is given by

‖h‖H = sup{| 〈u,h〉 |: u ∈ E∗, 〈u, Cu〉 ≤ 1}. (2.3)

In particular, for h ∈ H,
‖h‖ ≤ sup

‖u‖≤1
〈u, Cu〉1/2‖h‖H = ‖C‖1/2‖h‖H . (2.4)

The ‖ · ‖H−closure of A ⊂ H is denoted by A
(H)

. Furthermore, H is separable, C(E∗) is dense in
(H,‖ · ‖H), the unit ball

UH := {h ∈ H : ‖h‖H ≤ 1}
of H is a compact subset of E,

supp(IPX ) = (kerC)⊥ := {x ∈ E : 〈u, x〉= 0 for every u ∈ ker C} = H in E

and
H = {x ∈ E : ‖x‖H <∞} (2.5)

where ||x ||H is formally defined by (2.3) for every x ∈ E. As for the latter fact, it is clear that
||h||H <∞ for h ∈ H. Conversely, let x ∈ E with ||x ||H <∞. Observe first that x ∈ H. Otherwise, by
the Hahn-Banach theorem, there exists u ∈ E∗ such that u|H = 0 and 〈u, x〉 > 0. Since, 〈u, Cu〉 = 0
this yields

||x ||H ≥ sup
a>0

a〈u, x〉=∞,

a contradiction. Now consider C(E∗) as a subspace of (H, || · ||H) and define ϕ : C(E∗) → IR by
ϕ(Cu) := 〈u, x〉. If Cu1 = Cu2, then using (kerC)⊥ = H, 〈u1 − u2, x〉 = 0. Therefore, ϕ is well
defined. The map ϕ is obviously linear and it is bounded since

||ϕ||= sup{|ϕ(Cu)| : u ∈ E∗, ||Cu||H ≤ 1}= ||x ||H <∞
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by (2.2). By the Hahn-Banach theorem there exists a linear bounded extension ϕ̃ : C(E∗)
(H)→ IR of

ϕ. Then, since C(E∗)
(H)
= H, by the Riesz theorem there exists g ∈ H such that ϕ̃(h) = (h, g)H for

every h ∈ H. Consequently, using (2.2),

〈u, x〉= ϕ(Cu) = (Cu, g)H = 〈u, g〉

for every u ∈ E∗ which gives x = g ∈ H.

The key is the following characterization of admissibility. It relies on the Ito-Nisio theorem. Condi-
tion (v) is an abstract version of Mercer’s theorem (cf. [15]. p. 43). Recall that a subset G ⊂ E∗ is
said to be separating if for every x , y ∈ E, x 6= y there exists u ∈ G such that 〈u, x〉 6= 〈u, y〉.

Lemma 1. Let ( f j) j≥1 ∈ EIN. The following assertions are equivalent.

(i) The sequence ( f j) j≥1 is admissible for X .

(ii) There is a separating linear subspace G of E∗ such that for every u ∈ G,

(〈u, f j〉) j≥1 is admissible for 〈u, X 〉.

(iii) There is a separating linear subspace G of E∗ such that for every u ∈ G,

∞∑

j=1

〈u, f j〉2 = 〈u, Cu〉.

(iv) For every u ∈ E∗,
∞∑

j=1

〈u, f j〉 f j = Cu.

(v) For every a > 0,
∞∑

j=1

〈u, f j〉〈v, f j〉= 〈u, C v〉

uniformly in u, v ∈ {y ∈ E∗ : ‖y‖ ≤ a} .

Proof. Set Xn :=
n∑

j=1
ξ j f j . (i)⇒ (v). Xn converges a.s. in E to some E-valued random vector Y , say,

with X
d
= Y . It is well known that this implies Xn→ Y in L2

E . Therefore,

|
n∑

j=1

〈u, f j〉〈v, f j〉 − 〈u, C v〉 |=| IE〈u, Xn〉〈v, Xn〉 − IE〈u, Y 〉〈v, Y 〉 |

=| IE〈u, Y − Xn〉〈v, Y − Xn〉 |≤ a2IE‖Y − Xn‖2→ 0 as n→∞
uniformly in u, v ∈ {y ∈ E∗ : ‖y‖ ≤ a}. (v)⇒ (iv)⇒ (iii) is obvious. (iii)⇒ (i). For every u ∈ G,

IE exp(i〈u, Xn〉) = exp(−
n∑

j=1

〈u, f j〉2/2)→ exp(−〈u, Cu〉/2) = IE exp(i〈u, X 〉).
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The assertion (i) follows from the Ito-Nisio theorem (cf. [17], p. 271). (i)⇒ (ii)⇒ (iii) is obvious.
�

Note that the preceding lemma shows in particular that ( f j) j≥1 is admissible for X if and only
if ( fσ( j)) j≥1 is admissible for X for (some) every permutation σ of IN so that

∑
ξ j f j converges

unconditionally a.s. in E for such sequences and all the a.s. limits under permuations of IN have
distribution IPX .

It is also an immediate consequence of Lemma 1(v) that admissible sequences ( f j) satisfy ‖ f j‖ → 0
since by the Cauchy criterion, lim j→∞ sup||u||≤1〈u, f j〉2 = 0.

The corresponding lemma for Parseval frames reads as follows.

Lemma 2. Let ( f j) j≥1 be a sequence in a real separable Hilbert space (K , (·, ·)K). The following asser-

tions are equivalent.

(i) The sequence ( f j) is a Parseval frame for K.

(ii) For every k ∈ K,

lim
n→∞
||

n∑

j=1

(k, f j)K f j ||K = ||k||K .

(iii) There is a dense subset G of K such that for every k ∈ G,

∞∑

j=1

(k, f j)
2
K = ||k||

2
K .

(iv) For every k ∈ K,
∞∑

j=1

(k, f j)
2
K = ||k||

2
K .

Proof. (i)⇒ (ii) is obvious. (ii)⇒ (iv). For every k ∈ K , n ∈ IN,

0 ≤ ||
n∑

j=1
(k, f j)K f j − k||2K

= ||
n∑

j=1
(k, f j)K f j ||2K − 2

n∑
j=1
(k, f j)

2
K + ||k||2K

so that

2
n∑

j=1

(k, f j)
2
K ≤ ||

n∑

j=1

(k, f j)K f j ||2K + ||k||
2
K .

Hence
∞∑

j=1

(k, f j)
2
K ≤ ||k||

2
K .
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Using this inequality we obtain conversely for k ∈ K , n ∈ IN

||
n∑

j=1
(k, f j)K f j ||2K = sup||g||K≤1(g,

n∑
j=1
(k, f j)K f j)

2
K

= sup||g||K≤1(
n∑

j=1
(k, f j)K(g, f j)K)

2

≤
n∑

j=1
(k, f j)

2
K sup||g||K≤1

n∑
j=1
(g, f j)

2
K

≤
n∑

j=1
(k, f j)

2
K .

Hence

||k||2K ≤
∞∑

j=1

(k, f j)
2
K .

(iv) ⇒ (iii) is obvious. (iii) ⇒ (i). Since G is dense in K , for k ∈ K there exist kn ∈ G satisfying
kn→ k so that limn→∞(kn, f j)

2
K = (k, f j)

2
K for every j. Fatou’s lemma for the counting measure in IN

implies
∞∑
j=1
(k, f j)

2
K ≤ lim infn→∞

∞∑
j=1
(kn, f j)

2
K

= limn→∞ ||kn||2K = ||k||2K .

Therefore, one easily checks that
∞∑
j=1

c j f j converges in K for every c = (c j) ∈ l2(IN) and

T : l2(IN)→ K , T (c) :=
∞∑

j=1

c j f j

is linear and continuous (see [4], Theorem 3.2.3). Consequently, the frame operator

T T ∗ : K → K , T T ∗k =
∞∑

j=1

(k, f j)K f j

is linear and continuous. By (ii),

(T T ∗k, k)K =

∞∑

j=1

(k, f j)
2
K = ||k||

2
K

for every k ∈ G and thus (T T ∗k, k)K = ||k||2K for every k ∈ K . This implies T T ∗k = k for every
k ∈ K . �

The preceeding lemma shows that the series (1.3) converges unconditionally. Note further that a
Parseval frame ( f j) for K satisfies { f j : j ≥ 1} ⊂ UK , since

|| fm||4K +
∑

j 6=m

( fm, f j)
2
K =

∞∑

j=1

( fm, f j)
2
K = || fm||2K ,
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span{ f j : j ≥ 1}= K and it is an orthonormal basis for K if and only if || f j ||K = 1 for every j.

Proof of Theorem 1. The ”if” part is an immediate consequence of the reproducing prop-
erty (2.2) and Lemmas 1 and 2 since for u ∈ E∗,

∞∑

j=1

〈u, f j〉2 =
∞∑

j=1

(Cu, f j)
2
H = ||Cu||2H = 〈u, Cu〉.

The ”only if” part. By Lemma 1,

|| f j ||H = sup{|〈u, f j〉| : 〈u, Cu〉 ≤ 1} ≤ 1

so that by (2.5), { f j : j ≥ 1} ⊂ H. Again the assertion follows immediately from (2.2) and Lemmas
1 and 2 since C(E∗) is dense in H. �

The covariance operator admits factorizations C = SS∗, where S : K → E is a linear continuous
operator and (K , (·, ·)K) a real separable Hilbert space, which provide a useful tool for expansions.
It is convenient to allow that S is not injective. One gets

S(K) = H, (2.6)

∗[.4em](Sk1,Sk2)H = (k1, k2)K , k1 ∈ K , k2 ∈ (kerS)⊥,

∗[.4em]‖S‖ = ‖S∗‖= ‖C‖1/2,

∗[.4em]S∗(E∗) = (kerS)⊥ in K ,

∗[.4em](kerS∗)⊥ := {x ∈ E : 〈u, x〉= 0 ∀u ∈ kerS∗}= H in E.

Notice that factorizations of C correspond to linear continuous operators T : K → H satisfying
T T ∗ = I via S = J T , where J : H → E denotes the inclusion map.

A sequence (e j) in K is called Parseval frame sequence if it is a Parseval frame for span{e j : j ≥ 1}.

Proposition 1. Let C = SS∗,S : K → E be a factorization of C and let (e j) be a Parseval frame sequence

in K satisfying (kerS)⊥ ⊂ span{e j : j = 1,2, . . .}. Then (S(e j)) is admissible for X . Conversely, if ( f j)

is admissible for X then there exists a Parseval frame sequence (e j) in K satisfying (kerS)⊥ = span{e j :
j = 1,2, . . .} such that S(e j) = f j for every j.

Proof. Let K0 := span{e j : j = 1,2, . . .}. Since by (2.6)

S∗(E∗)⊂ (kerS)⊥ ⊂ K0,

one obtains for every u ∈ E∗, by Lemma 2,
∑

j

〈u,Se j〉2 =
∑

j

(S∗u, e j)
2
K = ‖S

∗u‖2K = 〈u, Cu〉.

The assertion follows from Lemma 1. Conversely, if ( f j) is admissible for X then ( f j) is a Parseval
frame for H by Theorem 1. Set e j := (S|(kerS)⊥)−1( f j) ∈ (kerS)⊥. Then by (2.6) and Lemma 2, for
every k ∈ (kerS)⊥, ∑

j

(k, e j)
2
K =
∑

j

(Sk, f j)
2
H = ||Sk||2H = ||k||

2
K

1204



so that again by Lemma 2, (e j) is a Parseval frame for (kerS)⊥. �

EXAMPLES • Let S : H → E be the inclusion map. Then C = SS∗.
• Let K be the closure of E∗ in L2(IPX ) and S : K → E,Sk = IEk(X )X . Then S∗ : E∗→ K is the natural
embedding. Thus C = SS∗ and S is injective (see (2.6)). (K is sometimes called the energy space of
X .) One obtains

H = S(K) = {IEk(X )X : k ∈ K}
and

(IEk1(X )X , IEk2(X )X )H =

∫
k1k2dIPX .

• Let E be a Hilbert space, K = E and S = C1/2. Then C = SS∗ = S2 and (kerS)⊥ = H. Consequently,
if (e j) is an orthonormal basis of the Hilbert subspace H of E consisting of eigenvectors of C and

(λ j) the corresponding nonzero eigenvalues, then (
p
λ je j) is admissible for X and an orthonormal

basis of (H, (·, ·)H) (Karhunen-Loève basis).

Admissible sequences for X can be charaterized as the sequences (Se j) j≥1 where (e j) is a fixed
orthonormal basis of K and S provides a factorization of C . That every sequence (Se j) of this type
is admissible follows from Proposition 1.

Theorem 2. Assume that ( f j) j≥1 is admissible for X . Let K be an infinite dimensional real separable

Hilbert space and (e j) j≥1 an orthonormal basis of K. Then there is a factorization C = SS∗,S : K → E

such that S(e j) = f j for every j.

Proof. First, observe that
∞∑
j=1

c j f j converges in E for every (c j) j ∈ l2(IN). In fact, using Lemma 1,

‖
n+m∑
j=n

c j f j‖2 = sup‖u‖≤1〈u,
n+m∑
j=n

c j f j〉2

≤
n+m∑
j=n

c2
j sup‖u‖≤1

∞∑
j=1
〈u, f j〉2

=
n+m∑
j=n

c2
j sup‖u‖≤1〈u, Cu〉

=
n+m∑
j=n

c2
j ‖C‖ → 0, n, m→∞

and thus the sequence is Cauchy in E. Now define S : K → E by

S(k) :=
∞∑

j=1

(k, e j)K f j

where
∑
(k, e j)K f j converges in E since ((k, e j)K) j ∈ l2(IN). S is obviously linear. Moreover, for

k ∈ K , using again Lemma 1,

‖Sk‖2 = sup‖u‖≤1〈u,Sk〉2

= sup‖u‖≤1(
∞∑
j=1
(k, e j)K〈u, f j〉)2

≤ ‖k‖2K‖C‖.
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Consequently, S is continuous and S(e j) = f j for every j. (At this place one needs orthonormality of

(e j).) Finally, S∗(u) =
∞∑
j=1
〈u, f j〉e j and hence

SS∗u=
∞∑

j=1

〈u, f j〉 f j = Cu

for every u ∈ E∗ by Lemma 1. �

It is an immediate consequence of the preceding theorem that an admissible sequence ( f j) for X

is an orthonormal basis for H if and only if ( f j) is l2-independent, that is
∞∑
j=1

c j f j = 0 for some

(c j) ∈ l2(IN) implies c j = 0 for every j. In fact, l2-independence of ( f j) implies that the operator S in
Theorem 2 is injective.

Let F be a further separable Banach space and V : E → F a IPX -measurable linear transfromation,
that is, V is Borel measurable and linear on a Borel measurable subspace DV of E with IPX (DV ) = 1.
Then HX ⊂ DV , the operator V JX : HX → F is linear and continuous, where JX : HX → E denotes
the inclusion map and V (X ) is centered Gaussian with covariance operator

CV (X ) = V JX (V JX )
∗ (2.7)

(see [11], [2], Chapter 3.7). Consequently, by (2.6)

HV (X ) = V (HX ), (2.8)

∗[.4em](Vh1, Vh2)HV (X )
= (h1,h2)HX

,h1 ∈ HX ,h2 ∈ (ker(V | HX ))
⊥.

Note that the space of IPX -measurable linear transfromation E→ F is equal to the L
p

F (IPX )-closure of
the space of linear continuous operators E→ F, p ∈ [1,∞) (see [11]).

>From Theorem 1 and Proposition 1 one may deduce the following proposition.

Proposition 2. Assume that V : E→ F is a IPX -measurable linear transformation. If ( f j) j≥1 is admissi-

ble for X in E, then (V ( f j)) j≥1 is admissible for V (X ) in F. Conversely, if V |HX is injective and (g j) j≥1

an admissible sequence for V (X ) in F, then there exists a sequence ( f j) j≥1 in E which is admissible for

X such that V ( f j) = g j for every j.

EXAMPLE Let X and Y be jointly centered Gaussian random vectors in E and F , respectively. Then
IE(Y |X ) = V (X ) for some IPX -measurable linear transformation V : E → F . The cross covariance
operator CY X : E∗→ F , CY X u= IE〈u, x〉Y can be factorized as CY X = UY X S∗X , where CX = SX S∗X is the
energy factorization of CX with KX the closure of E∗ in L2(IPX ) and UY X : KX → F, UY X k = IEk(X )Y .
Then

V = UY X S−1
X on HX

(see [11]). Consequently, if ( f j) j≥1 is admissible for X in E then (UY X S−1
X f j) j≥1 is admissible for

IE(Y |X ) in F .
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3 Continuous Gaussian processes

Now let I be a compact metric space and X = (X t)t∈I be a real pathwise continuous centered
Gaussian process. Let E := C (I) be equipped with the sup-norm ‖x‖ = supt∈I |x(t)| so that the
norm dual C (I)∗ coincides with the space of finite signed Borel measures on I by the Riesz theorem.
Then X can be seen as a C (I)-valued Gaussian random vector and the covariance operator C :
C (I)∗→C (I) takes the form

Cu(t) = 〈δt , Cu〉= 〈Cδt ,u〉

= 〈IEX t X ,u〉 =
∫

I

IEX t Xsdu(s). (3.1)

Corollary 1. Let ( f j) j≥1 ∈ C (I)IN.

(a) If

IEXsX t =

∞∑

j=1

f j(s) f j(t) for every s, t ∈ I

then ( f j) is admissible for X .

(b) If
∞∑

j=1

f j(t)
2 <∞ for every t ∈ I

and if the process Y with Yt =
∞∑
j=1
ξ j f j(t) has a pathwise continuous modification X , then ( f j) is

admissible for X and X =
∞∑
j=1
ξ j f j a.s.

Proof. (a) For u ∈ G := span {δt : t ∈ I},u=
m∑

i=1
αiδt i

we have

〈u, Cu〉=
m∑

i=1

m∑

k=1

αiαkIEX t i
X tk

and
n∑

j=1

〈u, f j〉2 =
m∑

i=1

m∑

k=1

αiαk

n∑

j=1

f j(t i) f j(tk)

so that
∞∑

j=1

〈u, f j〉2 = 〈u, Cu〉.

Since G is a separating subspace of C (I)∗ the assertion follows from Lemma 1.
(b) Notice that

∑
ξ j f j(t) converges a.s. in IR and Y is a centered Gaussian process. Hence X is

centered Gaussian. Since

IEXsX t = IEYsYt =

∞∑

j=1

f j(s) f j(t) for every s, t ∈ I ,
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the assertion follows from (a). �

>Factorizations of C can be obtained as follows. For Hilbert spaces Ki , let ⊕m
i=1Ki denote the Hilber-

tian (or l2−)direct sum.

Lemma 3. For i ∈ {1, . . . , m}, let Ki be a real separable Hilbert space. Assume the representation

IEXsX t =

m∑

i=1

(g i
s , g i

t)Ki
, s, t ∈ I

for vectors g i
t ∈ Ki . Then

S :⊕m
i=1Ki →C (I),Sk(t) :=

m∑

i=1

(g i
t , ki)Ki

is a linear continuous operator, (kerS)⊥ = span{(g1
t , . . . , gm

t ) : t ∈ I} and C = SS∗.

Proof. Let K := ⊕m
i=1Ki and gt := (g1

t , . . . , gm
t ). Then IEXsX t = (gs, gt)K and Sk(t) = (gt , k)K . First,

observe that
sup
t∈I

‖gt‖K ≤ ‖C‖1/2 <∞.

Indeed, for every t ∈ I , by (3.1),

‖gt‖2K = IEX 2
t = 〈δt , Cδt〉 ≤ ‖C‖.

The function Sk is continuous for k ∈ span {gs : s ∈ I}. This easily implies that Sk is continuous for
every k ∈ span{gs : s ∈ I} and thus for every k ∈ K . S is obviously linear and

‖Sk‖= sup
t∈I

| (gt , k)K |≤ ‖C‖1/2‖k‖K .

Finally, S∗(δt) = gt so that
SS∗δt(s) = Sgt(s) = IEXsX t = Cδt(s)

for every s, t ∈ I . Consequently, for every u ∈ C (I)∗, t ∈ I ,

SS∗u(t) = 〈SS∗u,δt〉= 〈u,SS∗δt〉
= 〈u, Cδt〉= 〈Cu,δt〉= Cu(t)

and hence C = SS∗. �

EXAMPLE Let K be the first Wiener chaos, that is K = span{X t : t ∈ I} in L2(IP) and gt = X t . Then
Sk = IE kX and S is injective. If for instance X =W (Brownian motion) and I = [0, T], then

K =

(∫ T

0

f (s)dWs : f ∈ L2([0, T], d t)

)
.

We derive from the preceeding lemma and Proposition 1 the following corollary.

1208



Corollary 2. Assume the situation of Lemma 3. Let (ei
j
) j be a Parseval frame sequence in Ki satisfying

{g i
t : t ∈ I} ⊂ span {ei

j
: j = 1,2, . . .}. Then, (Si(e

i
j
))1≤i≤m, j is admissible for X , where Sik(t) =

(g i
t , k)Ki

.

The next corollary implies the well known fact that the Karhunen-Loève expansion of X in some
Hilbert space L2(I ,µ) already converges uniformly in t ∈ I . It appears as special case of Proposition
2.

Corollary 3. Let µ be a finite Borel measure on I with supp(µ) = I and let V :C (I)→ L2(I ,µ) denote

the natural (injective) embedding. Let (g j) j≥1 be admissible for V (X ) in L2(I ,µ). Then there exists a

sequence ( f j) j≥1 in C (I) which is admissible for X such that V ( f j) = g j for every j.

The admissibility feature is stable under tensor products. For i ∈ {1, . . . , d}, let Ii be a compact
metric space and X i = (X i

t)t∈Ii
a continuous centered Gaussian process. Set I := Πd

i=1 Ii and let
X = (X t)t∈I be a continuous centered Gaussian process with covariance function

EXsX t = Π
d
i=1IEX i

si
X i

t i
, s, t ∈ I . (3.2)

For instance, X := ⊗d
i=1X i satisfies (3.2) provided X1, . . . , X d are independent. For real separable

Hilbert spaces Ki , letÕ⊗d
i=1Ki denote the d-fold Hilbertian tensor product.

Proposition 3. For i ∈ {1, . . . , d}, let ( f i
j
) j≥1 be an admissible sequence for X i in C (Ii). Then

(⊗d
i=1 f i

ji
) j=( j1,..., jd )∈INd

is admissible for X with covariance (3.2) in C (I). Furthermore, if CX i = SiS
∗
i ,Si : Ki → C (Ii) is a

factorization of CX i , then ⊗d
i=1Si :Õ⊗d

i=1Ki →C (I) provides a factorization of CX .

Proof. For i ∈ {1, . . . , d}, let Ki be a real separable Hilbert space and (ei
j
) j an orthonormal basis of

Ki . Then (⊗d
i=1ei

ji
) j is an orthonormal basis of K :=Õ⊗d

i=1Ki .

If CX i = SiS
∗
i ,Si : Ki →C (Ii) is a factorization of CX i , set g i

t := S∗i δt , t ∈ Ii . Then IEX i
s X i

t = (g
i
s , g i

t)Ki

and hence, by (3.2)

IEXsX t = Π
d
i=1(g

i
si

, g i
t i
)Ki
= (⊗d

i=1 g i
si

,⊗d
i=1 g i

t i
)K , s, t ∈ I .

Consequently, by Lemma 3
U : K →C (I), Uk(t) = (⊗d

i=1 g i
t i

, k)K

provides a factorization of CX . Since

U(⊗d
i=1ei

ji
)(t) = Πd

i=1(g
i
t i

, ei
ji
)Ki

= Πd
i=1Sie

i
ji
(t i) =⊗d

i=1(Sie
i
ji
)(t)

= (⊗d
i=1Si)(⊗d

i=1ei
ji
)(t), t ∈ I ,

we obtain U =⊗d
i=1Si and thus ⊗d

i=1Si provides a factorization of CX .

If ( f i
j
) j≥1 is admissible for X i , then by Theorem 2 assuming now that Ki is infinite dimensional,

there is a factorization CX i = Ti T
∗
i , Ti : Ki → C (Ii) such that Ti(e

i
j
) = f i

j
for every j. Since
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⊗d
i=1Ti : K →C (I) provides a factorization of CX as shown above and (⊗d

i=1Ti)(⊗d
i=1ei

ji
) = ⊗d

i=1 f i
ji
,

it follows from Proposition 1 that (⊗d
i=1 f i

ji
) j∈INd is admissible for X . �

Comments on optimal expansions. For n ∈ IN, let

ln(X ) := inf{IE||
∞∑

j=n

ξ j f j || : ( f j) j≥1 ∈ C (I)IN admissible for X }. (3.3)

Rate optimal solutions of the ln(X )-problem are admissible sequences ( f j) for X in C (I) such that

IE||
∞∑

j=n

ξ j f j || ≈ ln(X ) as n→∞.

For I = [0, T]d ⊂ IRd , consider the covariance operator R= RX of X on L2(I , d t) given by

R : L2(I , d t)→ L2(I , d t),Rk(t) =

∫

I

IEXsX t k(s)ds. (3.4)

Using (3.1) we have RX = V CX V ∗, where V : C(I) → L2(I , d t) denotes the natural (injective)
embedding. The choice of Lebesgue measure on I is the best choice for our purposes (see (A1)).
Let λ1 ≥ λ2 ≥ . . . > 0 be the ordered nonzero eigenvalues of R (each written as many times as its
multiplicity).

Proposition 4. Let I = [0, T]d . Assume that the eigenvalues of R satisfy

(A1) λ j ≥ c1 j−2ϑ log(1+ j)2γ for every j ≥ 1 with ϑ > 1/2,γ≥ 0 and c1 > 0

and that X admits an admissible sequence ( f j) in C (I) satisfying

(A2) || f j || ≤ c2 j−ϑ log(1+ j)γ for every j ≥ 1with c2 <∞,

(A3) f j is a-Hölder-continuous and [ f j]a ≤ c3 jb for every j ≥ 1 with a ∈ (0,1], b ∈ IR and

c3 <∞, where

[ f ]a = sup
s 6=t

| f (s)− f (t)|
|s− t|a

(and |t| denotes the l2-norm of t ∈ IRd).

Then

ln(X )≈ n−(ϑ−
1
2
)(log n)γ+

1
2 as n→∞ (3.5)

and ( f j) is rate optimal.

Proof. The lower estimate in (3.5) follows from (A1) (see [8], Proposition 4.1) and from (A2) and
(A3) follows

IE||
∞∑

j=n

ξ j f j || ≤ c4n−(ϑ−
1
2
)(log(1+ n))γ+

1
2
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for every n≥ 1, (see [13], Theorem 1). �

Concerning assumption (A3) observe that we have by (2.2) and (3.1) for h ∈ H = HX , s, t ∈ I ,

h(t) =< δt ,h>= (h, Cδt)H

and
||C(δs −δt)||2H =< δs −δt , C(δs −δt)>= IE|Xs − X t |2

so that

|h(s)− h(t)| = |(h, C(δs −δt))H |
≤ ||h||H ||C(δs −δt)||H
= ||h||H(IE|Xs − X t |2)1/2. (3.6)

Consequently, since admissible sequences are contained in the unit ball of H, (A3) is satisfied with
b = 0 provided I → L2(IP), t 7→ X t is a-Hölder-continuous.

The situation is particularly simple for Gaussian sheets.

Corollary 4. Assume that for i ∈ {1, . . . , d}, the continuous centered Gaussian process X i = (X i
t)t∈[0,T]

satisfies (A1) - (A3) for some admissible sequence ( f i
j
) j≥1 in C ([0, T]) with parameters ϑi ,γi , ai , bi

such that γi = 0 and let X = (X t)t∈I , I = [0, T]d be the continuous centered Gaussian sheet with

covariance (3.2). Then

ln(X )≈ n−(ϑ−
1
2
)(log n)ϑ(m−1)+ 1

2 (3.7)

with ϑ = min1≤i≤d ϑi and m = card{i ∈ {1, . . . , d} : ϑi = ϑ} and a decreasing arrangement of

(⊗d
i=1 f i

ji
) j∈INd is rate optimal for X .

Proof. In view of Lemma 1 in [13] and Proposition 3, the assertions follow from Proposition 4. �

EXAMPLES The subsequent examples may serve as illustrations.

• Let W = (Wt)t∈[0,T] be a standard Brownian motion. Since IEWsWt = s∧ t =
∫ T

0
1[0,s](u)1[0,t](u)du,

the (injective) operator

S : L2([0, T], d t)→C ([0, T]), Sk(t) =

∫ t

0

k(s)ds

provides a factorization of CW so that we can apply Corollary 2. The orthonormal basis e j(t) =p
2/T cos(π( j − 1/2)t/T ), j ≥ 1 of L2([0, T], d t) yields the admissible sequence

f j(t) = Se j(t) =

p
2T

π( j − 1/2)
sin(

π( j− 1/2)t

T
), j ≥ 1 (3.8)

for W (Karhunen-Loève basis of HW ) and e j(t) =
p

2/T sin(π j t/T ) yields the admissible sequence

g j(t) =

p
2T

π j
(1− cos(

π j t

T
)), j ≥ 1.
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Then

f 1
j (t) =

1
p

2
f j(t) =

p
T

π( j − 1/2)
sin(

π( j− 1/2)t

T
), j ≥ 1 (3.9)

f 2
j (t) =

1
p

2
g j(t) =

p
T

π j
(1− cos(

π j t

T
)), j ≥ 1

is a Parseval frame for HW and hence admissible for W . The trigonometric basis e0(t) = 1/
p

T ,

e2 j(t) =
p

2/T cos(2π j t/T ), e2 j−1(t) =
p

2/T sin(2π j t/T ) of L2([0, T], d t) yields the admissible
sequence

f0(t) =
t
p

T
, f2 j(t) =

p
T

p
2π j

sin(
2π j t

T
), (3.10)

f2 j−1(t) =

p
T

p
2π j
(1− cos(

2π j t

T
)), j ≥ 1

(Paley-Wiener basis of HW ). By Proposition 4, all these admissible sequences for W (with f2 j :=
f 1

j
, f2 j−1 := f 2

j , say in (3.9)) are rate optimal.

Assume that the wavelet system 2 j/2ψ(2 j · −k), j, k ∈ ZZ is an orthonormal basis (or only a Parseval
frame) for L2(IR, d t). Then the restrictions of these functions to [0,T] clearly provide a Parseval
frame for L2([0, T], d t) so that the sequence

f j,k(t) = S(2 j/2ψ(2 j · −k))(t) = 2− j/2

∫ 2 j t−k

−k

ψ(u)du, j, k ∈ ZZ

is admissible for W . If ψ ∈ L1(IR, d t) and Ψ(x) :=
∫ x
−∞ψ(u)du, then this admissible sequence takes

the form
f j,k(t) = 2− j/2(Ψ(2 j t − k)−Ψ(−k)), j, k ∈ ZZ. (3.11)

• We consider the Dzaparidze-van Zanten expansion of the fractional Brownian motion X =

(X t)t∈[0,T] with Hurst index ρ ∈ (0,1) and covariance function

IEXsX t =
1

2
(s2ρ + t2ρ− | s− t |2ρ).

These authors discovered in [5] for T = 1 a time domain representation

IEXsX t = (g
1
s , g1

t )K + (g
2
s , g2

t )K

with K = L2([0,1], d t) and kernels g i
t ∈ L2([0,1], d t). Hence by Lemma 3, the operator

S : L2([0,1], d t)⊕ L2([0,1], d t)→C ([0,1]), S(k1, k2)(t) =

∫ 1

0

g1
t (s)k1(s)ds+

∫ 1

0

g2
t (s)k2(s)ds

provides a factorization of CX so that for every pair of orthonormal bases (e1
j
) j≥1 and (e2

j ) j≥1 of

L2([0,1], d t),

f i
j (t) =

∫ 1

0

g i
t(s)e

i
j(s)ds, j ≥ 1, i = 1,2
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is admissible in C ([0,1]) for X . By Corollary 2, this is a consequence of the above representation
of the covariance function (and needs no extra work). Then Dzaparidze and van Zanten [5] could
calculate f i

j
explicitely for the Fourier-Bessel basis of order −ρ and 1−ρ, respectively and arrived

at the admissible family in C ([0,1])

f 1
j
(t) =

cρ
p

2

| J1−ρ(x j) | x
ρ+1
j

sin(x j t), j ≥ 1

f 2
j (t) =

cρ
p

2

| J−ρ(y j) | y
ρ+1
j

(1− cos(y j t)), j ≥ 1

where Jν denotes the Bessel function of the first kind of order ν , 0 < x1 < x2 < . . . are the pos-
itive zeros of J−ρ, 0 < y1 < y2 < . . . the positive zeros of J1−ρ and c2

ρ = Γ(1 + 2ρ) sin(πρ)/π.
Consequently, by self-similarity of X , the sequence

f 1
j (t) =

Tρcρ
p

2

| J1−ρ(x j) | x
ρ+1
j

sin(
x j t

T
), j ≥ 1 (3.12)

f 2
j (t) =

Tρcρ
p

2

| J−ρ(y j) | y
ρ+1
j

(1− cos(
y j t

T
)), j ≥ 1

in C ([0, T]) is admissible for X . Using Lemma 1, one can deduce (also without extra work)

IEXsX t =

∞∑

j=1

f 1
j (s) f

1
j (t) +

∞∑

j=1

f 2
j (s) f

2
j (t)

uniformly in (s, t) ∈ [0, T]2. Rate optimality of (3.12) (using an arrangement like f2 j := f 1
j

, f2 j−1 :=

f 2
j ) is shown in [6] based on the work [8] and is also an immediate consequence of Proposition 4

since

x j ∼ y j ∼ π j, J1−ρ(x j)∼ J−ρ(y j)∼
p

2

π
j−1/2

(see [5]), and the eigenvalues satisfy λ j ∼ c j−(1+2ρ) as j→∞ (see [3], [12]).

In the ordinary Brownian motion case ρ = 1/2, (3.12) coincides with (3.9). The interesting ex-
tension of (3.10) to fractional Brownian motions is discussed in [7] and extensions of the wavelet
expansion (3.11) can be found in [1], [14].
• Let X = (X t)t∈[0,T] be Brownian bridge with covariance

IEXsX t = s ∧ t −
st

T
=

∫ T

0

(1[0,s](u)−
s

T
)(1[0,t](u)−

t

T
)du.

By Lemma 3, the operator

S : L2([0, T], d t)→C ([0, T]),Sk(t) =

∫ t

0

k(s)ds−
t

T

∫ T

0

k(s)ds
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provides a factorization of CX and kerS = span{1[0,T]}. The choice e j(t) =
p

2/T cos(π j t/T ), j ≥ 1
of an orthonormal basis of (ker S)⊥ yields admissibility of

f j(t) = Se j(t) =

p
2T

π j
sin(

π j t

T
), j ≥ 1 (3.13)

for X (Karhunen-Loève basis of HX ). By Proposition 4, this sequence is rate optimal.
• One considers the stationary Ornstein-Uhlenbeck process as the solution of the Langevin equation

dX t =−αX t d t +σdWt , t ∈ [0, T]

with X0 independent of Wand N(0, σ2
2α

)-distributed, σ > 0,α > 0. It admits the explicit representa-
tion

X t = e−αt X0+σe−αt

∫ t

0

eαsdWs

and

IEXsX t =
σ2

2α
e−α|s−t| =

σ2

2α
e−α(s+t)+σ2e−α(s+t)

∫ s∧t

0

e2αudu.

Thus the (injective) operator

S : IR⊕ L2([0, T], d t)→C ([0, T]),S(c, k)(t) =
cσ
p

2α
e−αt +σ

∫ t

0

e−α(t−s)k(s)ds

provides a factorization of CX so that for every Parseval frame (e j) j≥1 for L2([0, T], d t), the functions

f0(t) =
σ
p

2α
e−αt , f j(t) = σ

∫ t

0

e−α(t−s)e j(s)ds, j ≥ 1 (3.14)

provide an admissible sequence for X . For instance the choice of the orthonormal basisp
2/T cos(π( j − 1/2)t/T ), j ≥ 1 implies that (3.14) is rate optimal. This follows from Lemma 1

in [13] and Proposition 4.

Another representation is given by the Lamperti transformation X = V (W ) for the linear continuous
operator

V :C ([0, e2αT ])→C ([0, T], V x(t) =
σ
p

2α
e−αt x(e2αt).

The admissible sequence ( f j) in C ([0, e2αT ]) for (Wt)t∈[0,e2αT ] from (4.1) yields the admissible se-
quence

f̃ j(t) = V f j(t) =
σ

p
απ( j − 1/2)

eα(T−t) sin(π( j− 1/2)e−2α(T−t)), j ≥ 1 (3.15)

for X . By Proposition 4, the sequence (3.15) is rate optimal.
• Sheet versions can be deduced from Proposition 3 and Corollary 4 (and need no extra work).
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4 Optimal expansion of a class of stationary Gaussian processes

4.1 Expansion of fractional Ornstein-Uhlenbeck processes

The fractional Ornstein-Uhlenbeck process Xρ = (X
ρ
t )t∈IR of index ρ ∈ (0,2) is a continuous station-

ary centered Gaussian process having the covariance function

IEXρs X
ρ
t = e−α|s−t|ρ ,α > 0. (4.1)

We derive explicit optimal expansions of Xρ for ρ ≤ 1. Let

γρ : IR→ IR,γρ(t) = e−α|t|
ρ

and for a given T > 0, set

β0(ρ) :=
1

2T

∫ T

−T

γρ(t)d t,β j(ρ) :=
1

T

∫ T

−T

γρ(t) cos(π j t/T )d t, j ≥ 1. (4.2)

Theorem 3. Let ρ ∈ (0,1]. Then β j(ρ)> 0 for every j ≥ 0 and the sequence

f0 =
p
β0(ρ), f2 j =
p
β j(ρ) cos(π j t/T ), f2 j−1(t) =

p
β j(ρ) sin(π j t/T ), j ≥ 1 (4.3)

is admissible for Xρ in C ([0, T]). Furthermore,

ln(X
ρ)≈ n−ρ/2(log n)1/2 as n→∞

and the sequence (4.3) is rate optimal.

Proof. Since γρ is of bounded variation (and continuous) on [-T,T], it follows from the Dirichlet
criterion that its (classical) Fourier series converges pointwise to γρ on [-T,T], that is using symmetry
of γρ,

γρ(t) = β0(ρ) +

∞∑

j=1

β j(ρ) cos(π j t/T ), t ∈ [−T, T].

Thus one obtains the representation

IEXsX t = γ
ρ(s−t) = β0(ρ)+

∞∑

j=1

β j(ρ)[cos(π js/T ) cos(π j t/T )+sin(π js/T ) sin(π j t/T )], s, t ∈ [0, T].

(4.4)
This is true for every ρ ∈ (0,2). If ρ = 1, then integration by parts yields

β0(1) =
1− e−αT

αT
, β j(1) =

2αT (1− e−αT (−1) j)

α2T2+π2 j2
, j ≥ 1. (4.5)

In particular, we obtain β j(1)> 0 for every j ≥ 0. If ρ ∈ (0,1), then γρ|[0,∞) is the Laplace transform
of a suitable one-sided strictly ρ-stable distribution with Lebesgue-density qρ. Consequently, for
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j ≥ 1,

β j(ρ) =
2

T

∫ T

0

e−αtρ cos(π j t/T )d t (4.6)

=

∫ ∞

0

2

T

∫ T

0

e−t x cos(π j t/T )d tqρ(x)d x

=

∫ ∞

0

2x T (1− e−x T (−1) j)

x2T2+π2 j2
qρ(x)d x .

Again, β j(ρ) > 0 for every j ≥ 0. It follows from (4.4) and Corollary 1(a) that the sequence ( f j) j≥0

defined in (4.3) is admissible for Xρ in C ([0, T]).

Next we investigate the asymptotic behaviour of β j(ρ) as j→∞ for ρ ∈ (0,1). The spectral measure
of Xρ still for ρ ∈ (0,2) is a symmetric ρ-stable distribution with continuous density pρ so that

γρ(t) =

∫

IR

ei t x pρ(x)d x

= 2

∫ ∞

0

cos(t x)pρ(x)d x , t ∈ IR

and the spectral density satisfies the high-frequency condition

pρ(x)∼ c(ρ)x−(1+ρ) as x →∞ (4.7)

where

c(ρ) =
αΓ(1+ρ) sin(πρ/2)

π
.

Since by the Fourier inversion formula

pρ(x) =
1

π

∫ ∞

0

γρ(t) cos(t x)d t, x ∈ IR,

we obtain for j ≥ 1,

β j(ρ) =
2

T

∫ T

0

γρ(t) cos(π j t/T )d t

=
2

T

�∫ ∞

0

γρ(t)) cos(π j t/T )d t −
∫ ∞

T

γρ(t) cos(π j t/T )d t

�

=
2π

T
pρ(π j/T )−

2

T

∫ ∞

T

γρ(t)) cos(π j t/T )d t

Integrating twice by parts yields

∫ ∞

T

γρ(t) cos(π j t/T )d t = O( j−2)
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for any ρ ∈ (0,2) so that for ρ ∈ (0,1)

β j(ρ) ∼
2π

T
pρ(π j/T ) (4.8)

∼
2πTρc(ρ)

(π j)1+ρ

=
2αTρΓ(1+ρ) sin(πρ/2)

(π j)1+ρ
as j→∞.

We deduce from (4.5) and (4.8) that the admissible sequence (4.3) satisfies the conditions (A2)
and (A3) from Proposition 4 with parameters ϑ = (1 + ρ)/2, γ = 0, a = 1 and b = (1 − ρ)/2.
Furthermore, by Theorem 3 in Rosenblatt [16], the asymptotic behaviour of the eigenvalues of the
covariance operator of Xρ on L2([0, T], d t) (see (3.4)) for ρ ∈ (0,2) is as follows:

λ j ∼
2T1+ρπc(ρ)

(π j)1+ρ
as j→∞. (4.9)

Therefore, the remaining assertions follow from Proposition 4. �

Here are some comments on the above theorem.

First, note that the admissible sequence (4.3) is not an orthonormal basis for H = HXρ but only a
Parseval frame at least in case ρ = 1. In fact, it is well known that for ρ = 1,

||h||2H =
1

2
(h(0)2+ h(T )2) +

1

2α

∫ T

0

(h
′
(t)2+α2h(t)2)d t

so that e.g.

|| f2 j−1||2H =
1− e−αT (−1) j

2
< 1.

A result corresponding to Theorem 3 for fractional Ornstein-Uhlenbeck sheets on [0, T]d with co-
variance structure

IEXsX t =

d∏

i=1

e−αi |si−t i |ρi , αi > 0, ρi ∈ (0,1] (4.10)

follows from Corollary 4.

As a second comment, we wish to emphasize that, unfortunately, in the nonconvex case ρ ∈ (1,2)
it is not true that β j(ρ) ≥ 0 for every j ≥ 0 so that the approach of Theorem 3 no longer works. In
fact, starting again from

β j(ρ) =
2π

T
pρ(π j/T )−

2

T

∫ ∞

T

γρ(t) cos(π j t/T )d t,

three integrations by parts show that

β j(ρ) =
2π
T

pρ(π j/T ) +
(−1) j+12Tαρe−αTρ Tρ−1

(π j)2
+O( j−3)

=
(−1) j+12Tαρe−αTρ Tρ−1

(π j)2
+O( j−(1+ρ)), j→∞.
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This means that for any T > 0, the 2T -periodic extension of γρ|[−T,T] is not nonnegative definite for
ρ∈ (1,2) in contrast to the case ρ∈ (0,1].

4.2 Expansion of stationary Gaussian processes with convex covariance function

As concerns admissibility, it is interesting to observe that the convex function γ(t) = e−αtρ , ρ ∈
(0,1] in Theorem 3 can be replaced by any convex on (0,∞) function γ going to zero at infinity.
Some additional natural assumptions related on its regularity at 0 or the rate of decay of its spectral
density at infinity then provide the optimality.

Namely, let X = (X )t∈IR be a continuous stationary centered Gaussian process with IEXsX t = γ(s− t),
γ : IR→ IR. Then γ is continuous, symmetric and nonnegative definite. Set

β0 :=
1

2T

∫ T

−T

γ(t)d t, β j :=
1

T

∫ T

−T

γ(t) cos(π j t/T )d t, j ≥ 1.

Then the extension of Theorem 3 reads as follows.

Theorem 4. (a) ADMISSIBLITY. Assume that the function γ is convex, positive on (0,∞) and γ(∞) :=
limt→∞ γ(t) = 0. Then X admits a spectral density p, β j ≥ 0 for every j ≥ 0 and the sequence defined

by

f0 =
p
β0, f2 j(t) =
p
β j cos(π j t/T ), f2 j−1(t) =

p
β j sin(π j t/T ), j ≥ 1 (4.11)

is admissible for the continuous process X in C ([0, T]).

OPTIMALITY. Assume furthermore that one of the following two conditions is satisfied by γ for some

δ∈ (1,2]:

(Aδ) γ∈ L1([T,∞)), the spectral density p∈ L2(IR, d x) and the high-frequency condition

p(x)∼ cx−δ as x →∞,

or

(Bδ) γ(t) = γ(0)− a|t|δ−1 + b(t), |t| ≤ T with a > 0 and b : [−T, T] → IR is a (δ + η)-Hölder

function for some η > 0, null at zero.

Then,

ln(X )≈ n−(δ−1)/2(log n)1/2 as n→∞

and the sequence (4.11) is rate optimal.

Remarks. • Assumption (Aδ) is related to the spectral density whereas (Bδ) is related to the (right)
regularity of γ at 0. In fact, these assumptions are somewhat similar since the rate of decay of p is
closely related to the right regularity of γ at 0. So, in practice it mainly depends on which quantity
is straightforwardly available for a given process.
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• The notion of β -Hölder regularity of a function g means that the [β] first derivatives of g do exist
on [−T, T] and that g([β]) is β − [β]-Hölder. In fact, in [16], th enotion is still a bit more general
(g([β]) is assumed to β − [β]-Hölder in a L1(d t)-sense).

Proof. (a) The function γ is positive, convex over (0,∞) and γ(∞) = 0 so that γ is in fact a Polya-
type function. Hence its right derivative γ′ is non-decreasing with γ′(∞) = 0, the spectral measure
of X admits a Lebesgue-density p and

γ(t) =

∫

(0,∞)

�
1−
|t|
s

�+
dν(s)

for all t ∈ IR, where ν is a finite Borel measure on (0,∞) with mass γ(0) (see [10], Theorems 4.3.1
and 4.3.3 for details). Therefore, using Fubini’s theorem, it is enough to show the positivity of the
numbers β j for functions of the type γ(t) = (1− |t|

s
)+, s ∈ (0,∞). But in this case an integration by

parts yields

β0 =
T ∧ s

T
(1−

T ∧ s

2s
)≥ 0 and β j =

2T

s(π j)2
(1− cos(π j(T ∧ s)/T ))≥ 0, j ≥ 1.

Now one proceeds along the lines of the proof of Theorem 3. Since γ is of bounded variation on
[−T, T], the representation (4.4) of IEXsX t is true with β j(ρ) replaced by β j so that the sequence
( f j) j≥0 is admissible for X in C ([0, T]).

(b) Assume (Aδ). Using γ ∈ L1(IR, d t) and the Fourier inversion formula, one gets for j ≥ 1

β j =
2π

T
p(π j/T )−

2

T

∫ ∞

T

γ(t) cos(π j t/T )d t.

Since γ(∞) = γ′(∞) = 0, integrating twice by parts yields
∫ ∞

T

γ(t) cos(π j t/T )d t = O( j−2),

hence
β j = O( j−δ) as j→∞

in view of δ ≤ 2. Furthermore, the assumption p ∈ L2(IR, d x) and the high-frequency condition yield

λ j ∼ c1 j−δ as j→∞

for an appropriate constant c1 ∈ (0,∞) (see [16]). Now, one derives from Proposition 4 the remain-
ing assertions.

Assume (Bδ). An integration by parts (using that γ is even) yields

β j = −
2

π j

∫ T

0

sin

�
π j t

T

�
γ′(t) d t

where γ′ denotes the right derivative of γ. Consequently, for ǫ ∈ (0, T], using that γ′ ≤ 0 and is
non-decreasing,

β j = |β j | ≤
2

π j
(γ(0)− γ(ǫ)) +

γ(0)− γ(ǫ)
ǫ

4T

(π j)2
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At this stage, Assumption (Bδ) yields

β j ≤ C

�
ǫδ−1

j
+
ǫδ−2

j2

�

where C is positive real constant. Setting ǫ = T/ j, implies as expected β j = O( j−δ).

On the other hand, calling upon Theorem 2 in [16], shows that the eigenvalues λ j of the covariance
operator on L2([0, T], d t) (indexed in decreasing order) satisfy

λ j ∼ 2κΓ(δ)

�
T

π j

�δ
as j→∞

where κ=−a cos
�
π

2
δ
�
> 0 and Γ denotes the Gamma function. One concludes as above. �
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