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Abstract. Various types of expansions in series of Cheby-
shev-Hermite polynomials currently used in astrophysics
for weakly non-normal distributions are compared, namely
the Gram-Charlier, Gauss-Hermite and Edgeworth expan-
sions. It is shown that the Gram-Charlier series is most
suspect because of its poor convergence properties. The
Gauss-Hermite expansion is better but it has no intrinsic
measure of accuracy. The best results are achieved with
the asymptotic Edgeworth expansion. We draw attention
to the form of this expansion found by Petrov for arbitrary
order of the asymptotic parameter and present a simple al-
gorithm realizing Petrov’s prescription for the Edgeworth
expansion. The results are illustrated by examples similar
to the problems arising when fitting spectral line profiles
of galaxies, supernovae, or other stars, and for the case of
approximating the probability distribution of peculiar ve-
locities in the cosmic string model of structure formation.

Key words: methods: statistical; cosmic strings; line:
profiles

1. Introduction

The normal, or Gaussian, distribution plays a promi-
nent role in statistical problems in various fields of astro-
physics and general physics. This is quite natural, since
the sums of random variables tend to a normal distri-
bution when the quite general conditions of the central
limit theorem are satisfied. In many applications, to ex-
tract useful information on the underlying physical pro-
cesses, it is more interesting to measure the deviations of
a probability density function (hereafter PDF) from the
normal distribution than to prove that it is close to the
Gaussian one. This has been done for example in the work
on peculiar velocities and cosmic microwave background
anisotropies in various cosmological models (Scherrer &
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Bertschinger 1991; Kofman et al. 1994; Moessner et al.
1994; Juszkiewicz et al. 1995; Bernardeau & Kofman 1995;
Amendola 1994; Colombi 1994; Moessner 1995; Ferreira
et al. 1997; Gaztañaga et al. 1997), in analyzing the ve-
locity distributions and fine structure in elliptical galaxies
(Rix & White 1992; van der Marel & Franx 1993; Gerhard
1993; Heyl et al. 1994), and in studies of large Reynolds
number turbulence (Tabeling et al. 1996). In this paper we
present a unified approach to the formalism used in those
applications, illustrating it by examples of similar prob-
lems arising in cosmology and in the theory of supernova
line spectra.

The first investigation of slightly non-Gaussian distri-
butions was undertaken by Chebyshev in the middle of the
19th century. He studied in detail a family of orthogonal
polynomials which form a natural basis for the expansions
of these distributions. A few years later the same polyno-
mials were also investigated by Hermite and they are now
called Chebyshev-Hermite or simply Hermite polynomi-
als (their definition was first given by Laplace, see e.g.
Encyclopaedia of Mathematics 1988).

There are several forms of expansions using Hermite
polynomials, namely the Gram-Charlier, Gauss-Hermite
and Edgeworth expansions. We introduce the notation in
Sect. 2 and use the simple example of the χ2 distribution
for various degrees of freedom to illustrate the properties
of Gram-Charlier expansions in Sect. 3. In subsequent sec-
tions the χ2 distribution is used for testing the other two
expansions. We show in Sect. 4 that the Gram-Charlier
series is just a Fourier expansion which diverges in many
situations of practical interest, whereas the Gauss-Hermite
series has much better convergence properties. However,
we point out that another series, the so called Edgeworth
expansion, is more useful in many applications even if it is
divergent, since, first, it is directly connected to the mo-
ments and cumulants of a PDF (the property which is
lost in the Gauss-Hermite series) and, second, it is a true
asymptotic expansion, so that the error of the approxima-
tion is controlled.
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Some applications (e.g. Bernardeau 1992, 1994;
Moessner 1995) involve cumulants of higher order.
These require the use of a correspondingly higher or-
der Edgeworth series, but only the first few terms of
the series are given in standard references (Cramér 1957;
Abramowitz & Stegun 1972; Juszkiewicz et al. 1995;
Bernardeau & Kofman 1995). In Sect. 5 we popularize
a derivation of the Edgeworth expansion due to Petrov
(1962, 1972, 1987) for an arbitrary order of the asymptotic
parameter, and we present a slightly simpler and more
straightforward way of obtaining his result. The formula
found by Petrov (see Sect. 5 below) requires a summation
over indices with non-trivial combinatorics which hindered
its direct application. We find a simple algorithm realizing
Petrov’s prescription for any order of the Edgeworth ex-
pansion; this algorithm is easily coded, e.g. with standard
Fortran, eliminating the need for symbolic packages.

We find that the Edgeworth-Petrov expansion is in-
deed very efficient and reliable. In Sect. 6 we apply the
formalism to the problem of peculiar velocities resulting
from cosmic strings studied by Moessner (1995) and we
show how this technique allows one to reliably extract de-
viations from Gaussianity, even when they are tiny.

2. Background and notation

Let F (x) be the cumulative probability distribution of a
random variable X. Then the mean value for the random
variable g(X) is the expectation value

Eg(X) ≡ 〈g(X)〉 ≡

∫ ∞
−∞

g(x)dF (x) . (1)

The PDF is p(x) = dF (x)/dx. The distribution F (x)
is not necessarily smooth, so it can happen that p(x)
is nonexistent at certain points. Nevertheless, the mean
Eg(X) is defined as long as the integral in (1) exists.
Following the definition (1), the k-th order moment of X
is

αk ≡ EXk =

∫ ∞
−∞

xkdF (x) . (2)

Thus, the mean of X is m ≡ α1 = EX and its dispersion
is

σ2 ≡ E(X − EX)2 =

∫ ∞
−∞

(x−m)2dF (x) . (3)

We denote the cumulative normal distribution by

P (x) ≡

∫ x

−∞
Z(t)dt =

1
√

2π

∫ x

−∞
exp(−t2/2)dt , (4)

so its PDF is the Gaussian function

Z(x) =
exp(−x2/2)
√

2π
. (5)

We also need to recall some definitions for sets of orthog-
onal polynomials. Any two polynomials Pn(x) and Pm(x)

of degrees n 6= m are orthogonal on the real axis with
respect to the weight function w(x) if∫ ∞
−∞

w(x)Pn(x)Pm(x) = 0 . (6)

We follow the notation of Abramowitz & Stegun (1972)
where possible, so Hen(x) denotes the polynomial with
weight function w(x) = exp(−x2/2) ∝ Z(x). According
to Rodrigues’ formula,

Hen(x) = (−1)nex
2/2 dn

dxn
e−x

2/2 . (7)

We will refer to Hen(x) as Chebyshev-Hermite polynomi-
als following Kendall (1952). The ones with the weight
w(x) = exp(−x2) ∝ Z2(x),

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

, (8)

will be called Hermite polynomials.
The expansions in Chebyshev-Hermite and Hermite

polynomials are used in many applications in astrophysics.
For a PDF p(x) which is nearly Gaussian, it seems natural
to use the expansion

p(x) ∼
∞∑
n=0

cn
dnZ(x)

dxn
, (9)

where the coefficients cn measure the deviations of p(x)
from Z(x). From the definitions (5) and (7) it follows that

dnZ(x)

dxn
= (−1)nHen(x)Z(x) , (10)

so that

p(x) ∼
∞∑
n=0

(−1)ncnHen(x)Z(x) , (11)

with

cn =
(−1)n

n!

∫ ∞
−∞

p(t)Hen(t)dt . (12)

This is the well-known Gram-Charlier series (of type A,
see e.g. Cramér 1957; Kendall 1952 and references therein
to the original work). Since Hen(x) is a polynomial, we
see that the coefficient cn in (12) is a linear combination
of the moments αk of the random variable X with PDF
p(x). The combination is easily found by using the explicit
expression for Hen(x), which we derive in Appendix B:,
namely

Hen(x) = n!

[n/2]∑
k=0

(−1)kxn−2k

k!(n− 2k)! 2k
. (13)

The Gram-Charlier series was used in cosmological appli-
cations in the paper by Scherrer & Bertschinger (1991),
but note that it is incorrectly called Edgeworth expansion
there. The Gram-Charlier series is merely a kind of Fourier
expansion in the set of polynomials Hen(x). This expan-
sion has poor convergence properties (Cramér 1957). Very
often, for realistic cases, it diverges violently. We consider
such an example in the next section. The Edgeworth se-
ries, discussed in detail in Sect. 5, is a true asymptotic
expansion of the PDF, which allows one to control its ac-
curacy.
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3. An example based on the χ2 distribution

A good example for illustrating the fast divergence of the
Gram-Charlier series is given by its application to the χ2

ν

distribution with ν degrees of freedom, since the moments
of this distribution are known analytically and its PDF
tends to the Gaussian one for large ν. If X1,X2, ..., Xν , are
independent, normally distributed random variables with
zero expectation and unit dispersion, then the variable
χ2 = χ2

ν ≡
∑ν
i=1 X

2
i has the PDF

ρ(χ2) =
(χ2)ν/2−1 exp(−χ2/2)

2ν/2Γ(ν/2)
, χ2 > 0 . (14)

The expectation value of χ2 is ν and its dispersion is 2ν.
If x = (χ2−ν)/

√
2ν, then x has zero expectation and unit

dispersion and its PDF p(x) asymptotically tends to the
Gaussian distribution Z(x). Transforming ρ(χ2) from (14)
to p(x), we obtain for x > −

√
ν/2:

p(x) =
√

2ν
(
√

2νx+ ν)ν/2−1 exp−(
√

2νx+ ν)/2

2ν/2Γ(ν/2)
. (15)

The χ2 distribution was employed by Matsubara & Yoko-
yama (1996) for a representation of the cosmological den-
sity field (see also Luo 1995 for an application of the χ2 dis-
tribution in the context of cosmic microwave background
temperature anisotropies). It can also serve as a crude
model for approximating the profiles of spectral lines in
moving media. If the lines are nearly Gaussian in the mat-
ter at rest, then the motion with a high velocity gradi-
ent, like that in supernova envelopes, leads to distortions
which can be approximated by the χ2

ν PDF (with ν = 2
for highly non-Gaussian profiles, see e.g. Blinnikov 1996,
and references therein).

The comparison of the Gram-Charlier approximations
of p(x) with the exact results is presented in Figs. 1 and
2 for an increasing number of terms in the expansion. It
is clear that the series quickly becomes inaccurate with a
larger number of terms included.

4. Fourier expansions

In order better to understand the poor convergence prop-
erties of the Gram-Charlier series, let us first discuss how
it is related to the Fourier expansion. A Fourier expansion
(Szegö 1978; Suetin 1979; Nikiforov & Uvarov 1988) for
any function f(x) in the set of orthogonal polynomials Pn
is given by

f(x) ∼
∞∑
n=0

anPn(x) , (16)

with

an =
1

hn

∫ ∞
−∞

w(t)f(t)Pn(t)dt . (17)

Here hn is the squared norm

hn =

∫ ∞
−∞

w(t)P 2
n(t)dt , (18)

Fig. 1. The normalized χ2 PDF (15) for ν = 5 (dashed line),
and its Gram-Charlier approximations with 2 and 6 terms in
the expansion (solid line)

and

hn =
√

2πn! for Hen(x) , (19)

hn =
√
π2nn! for Hn(x) . (20)

Now we can see that the Gram-Charlier series (11) is just
the Fourier expansion (16) of f(x) = p(x)/Z(x) in the set
of Chebyshev-Hermite polynomials with cn = (−1)nan.

The properties of the Gram–Charlier approximations
of p(x) in Figs. 1 and 2 are to be considered in the gen-
eral context of the convergence of Fourier expansions.
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Fig. 2. The same as in Fig. 1 but for 12 and 36 terms in the
Gram-Charlier expansion

The source of the divergence lies in the sensitivity of the
Gram-Charlier series to the behavior of p(x) at infinity
– the latter must fall to zero faster than exp(−x2/4) for
the series to converge (Cramér 1957; Kendall 1952). This
is often too restrictive for practical applications. Our ex-
ample of the χ2 distribution in (15), with its exponential
behavior at infinity, clearly demonstrates this.

The Fourier expansion of p(x)/Z(x) in another set
of Hermite polynomials Hn(x) (8) (not in Chebyshev-

Hermite polynomials Hen (7), as for the Gram-Charlier
series) is sometimes used:

p(x) ∼
∞∑
n=0

anHn(x)Z(x) , (21)

with

an =

√
π

2n−1n!

∫ ∞
−∞

Z(t)p(t)Hn(t)dt . (22)

This series is often called the Gauss-Hermite expansion
(see e.g. its application to spectral lines of galaxies in van
der Marel & Franx 1993). Examples in Figs. 3 and 4 show
its better convergence.

Van der Marel & Franx (1993) use a theorem due to
Myller-Lebedeff on the convergence of the Gauss-Hermite
expansion: it converges when x3p(x) → 0 for any p(x)
with finite and continuous second derivative. Actually, the
conditions sufficient for the convergence are better: if p(t)
obeys the Lipschitz condition

|p(t)− p(x)| ≤M |t− x|α, M = const, 0 < α ≤ 1 ,(23)

in a vicinity of x and∫ ∞
−∞
|p(t)|(1 + |t|3/2)dt <∞ , (24)

then the Gauss-Hermite series converges to p(x) at x (see
e.g. Suetin 1979). These weaker conditions imply that the
class of PDFs with convergent Gauss-Hermite expansions
is much wider than suggested by the Myller-Lebedeff the-
orem cited in van der Marel & Franx (1993). But the sim-
ple relation between the coefficients in the expansion and
the moments of the PDF typical for the Gram-Charlier
series is now lost (cf. Eqs. (12), (13) and (22)). It might
be not important in many practical applications when the
moments cannot be accurately determined from observa-
tions, but it is very important for a theoretical work based
on the analysis of the moments.

Our Figs. 3 and 4 show that the χ2 PDF is well-suited
for approximation by a Gauss-Hermite series. However,
one should be cautious about the accuracy of the compu-
tation of the Fourier coefficients for higher order terms.
We have not encountered the problem of numerical errors
in our Gram-Charlier example, since there all coefficients
can be calculated analytically. Yet in general care must
be taken of the computational accuracy to avoid spurious
numerical divergence of a series which converges theoret-
ically.

5. The Edgeworth asymptotic expansion

A random variable X can be normalized to unit variance
by dividing by its standard deviation σ. The Edgeworth
expansion is a true asymptotic expansion of the PDF of
the normalized variable X/σ in powers of the parameter
σ, whereas the Gram-Charlier series is not. This difference
between the Gram-Charlier series and the Edgeworth ex-
pansion was pointed out by Juszkiewicz et al. (1995), and
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Fig. 3. The normalized χ2 PDF (15) for ν = 5 (dashed line),
and its Gauss-Hermite approximations with 2 and 6 terms in
the expansion (solid line)

in independent work by Bernardeau & Kofman (1995),
followed by Amendola (1994) and Colombi (1994).

Juszkiewicz et al. (1995) and Bernardeau & Kofman
(1995) use 2 or 3 terms of the Edgeworth expansion de-
rived e.g. in Cramér (1957). We note that the full explicit
expansion for arbitrary order s was obtained already in
1962 by Petrov (1962), see also Petrov (1972, 1987).

Petrov derived a powerful generalization of the
Edgeworth expansion for a sum of random variables.

Fig. 4. The same as in Fig. 3 but for 12 and 36 terms in the
Gauss-Hermite expansion

In this section we give a simplified derivation of the
Edgeworth series, following Petrov (1972). This deriva-
tion, for an arbitrary order, is somewhat simpler than the
derivation given for example by Bernardeau & Kofman
(1995) for the third order only of the Edgeworth expan-
sion.

The characteristic function Φ(t) of a random variable
X is the expectation E exp(itX) as a function of t,

Φ(t) ≡

∫ ∞
−∞

eitxdF (x) , (25)



198 S. Blinnikov and R. Moessner: Expansions for nearly Gaussian distributions

Fig. 5. The normalized χ2 PDF (15) for ν = 2 (dashed line),
and its Edgeworth-Petrov approximations with 4 and 12 terms
in the expansion (solid line)

that is the Fourier transform of p(x) if the probability den-
sity p(x) = dF (x)/dx exists. The definition (25) implies
that if the moment αk (2) of X exists,

Φ(k)(0) = ikαk . (26)

Hence the Taylor series for Φ(t) is given by

Φ(t) ∼ 1 +
∞∑
k=1

αk

k!
(it)k . (27)

Fig. 6. The normalized χ2 PDF (15) for ν = 5 (dashed line),
and its Edgeworth-Petrov approximations with 2 and 4 terms
in the expansion (solid)

A similar series for ln Φ(t),

ln Φ(t) ∼
∞∑
n=1

κn

n!
(it)n , (28)

involves cumulants (semi-invariants) κn defined by

κn ≡
1

in

[ dn

dtn
ln Φ(t)

]
t=0

. (29)

In Appendix A: we prove a fundamental lemma of calculus
for the n−th derivative of a composite function f◦g(x) ≡



S. Blinnikov and R. Moessner: Expansions for nearly Gaussian distributions 199

f(g(x)), which reads

dn

dxn
f(g(x)) =

n!
∑
{km}

f (r)(y)|y=g(x)

n∏
m=1

1

km!

(
1

m!
g(m)(x)

)km
, (30)

where r = k1 + k2 + ... + kn and the set {km} consists
of all non-negative integer solutions of the Diophantine
equation

k1 + 2k2 + ...+ nkn = n . (31)

Using (30) we derive a useful relation (Petrov 1987) be-
tween the cumulants κn and the moments αk of a PDF in
Appendix B:,

κn = n!
∑
{km}

(−1)r−1(r − 1)!
n∏

m=1

1

km!

(αm
m!

)km
. (32)

Here summation extends over all non-negative integers
{km} satisfying (31) and r = k1 +k2+ ...+kn. We describe
a simple algorithm for obtaining all solutions of Eq. (31)
in Appendix C.

Now we are ready to begin with the derivation of the
Edgeworth expansion. Consider a random variable X with
EX = 0 (this can always be achieved by an appropri-
ate choice of origin), and let X have dispersion σ2. If
X has the characteristic function Φ(t), then the normal-
ized random variable X/σ has the characteristic function
ϕ(t) = Φ(t/σ). Therefore we have from Eqs. (28) and (29)
that

lnϕ(t) = ln Φ(t/σ) ∼
∞∑
n=2

κn

σnn!
(it)n . (33)

Here the sum starts at n = 2 because EX = 0. Moreover,
since κ2 = σ2 (see Eq. (32)) we obtain

ϕ(t) ∼ e−t
2/2 exp

{
∞∑
n=3

Snσ
n−2

n!
(it)n

}
, (34)

with

Sn ≡ κn/σ
2n−2 . (35)

Let us write the exponential function in (34) as a formal
series in powers of σ,

exp

{
∞∑
r=1

Sr+2σ
r

(r + 2)!
(it)r+2

}
∼ 1 +

∞∑
s=1

Ps(it)σ
s , (36)

where the coefficient of the power s is a function Ps(it).
Now, using g(x) ≡

∑∞
r=1{Sr+2(it)r+2xr/(r+2)!} and f ≡

exp in (30), we find that

Ps(it) ≡
1

s!

ds

dxs
f(g(x))|x=0

=
∑
{km}

s∏
m=1

1

km!

(
Sm+2(it)m+2

(m+ 2)!

)km
, (37)

where the summation extends again over all non-negative
integers {km} satisfying (31). Thus the function Ps is just
a polynomial.

Suppose that the probability density p(x) of a ran-
dom variable X exists. Then the PDF for X/σ is q(x) ≡
σp(σx), and it is the inverse Fourier transform of the char-
acteristic function ϕ:

q(x) =
1

2π

∫ ∞
−∞

e−itxϕ(t)dt . (38)

If Φ(t) is the Fourier transform of a function p(x), then
(−it)nΦ(t) is the transform of the n-th derivative of p(x),

dn

dxn
p(x) =

1

2π

∫ ∞
−∞

e−itx(−it)nΦ(t)dt . (39)

The Fourier transform of the Gaussian distribution Z(x)
in (5) is exp(−t2/2) , see e.g. Bateman & Erdélyi (1954).
Therefore each (it)n, multiplied by exp(−t2/2) in the ex-
pansion of ϕ (see Eqs. (34) to (37)), generates (according
to Eq. 38) the n-th derivative of Z(x),

(−1)n
dn

dxn
Z(x) =

∫ ∞
−∞

e−itx(it)n exp(−t2/2)dt , (40)

in the corresponding expansion for q(x),

q(x) = Z(x) +
∞∑
s=1

σs

×

∑
{km}

s∏
m=1

1

km!

(
Sm+2(−1)m+2

(m+ 2)!

dm+2

dxm+2

)km
Z(x)

 . (41)

Here the set {km} in the sum consists of all non-negative
integer solutions of the equation

k1 + 2k2 + ...+ sks = s . (42)

Using (10) and r = k1 + k2 + ... + ks we can rewrite
(41) in terms of the Chebyshev-Hermite polynomials:

q(x) = σp(σx) = Z(x)

{
1 +

∞∑
s=1

σs

×
∑
{km}

Hes+2r(x)
s∏

m=1

1

km!

(
Sm+2

(m+ 2)!

)km . (43)

This is the Edgeworth expansion for arbitrary order
s. See Petrov (1972, 1987) for a more general form of the
expansion (for non-smooth cumulative distribution func-
tions F (x) and for a sum of random variables) and for the
proof that the series (43) is asymptotic (see also the clas-
sical references Cramér 1957 and Feller 1966). This means
that if the first N terms are retained in the sum over s,
then the difference between q(x) and the partial sum is
of a lower order than the N -th term in the sum (Erdélyi
1956; Evgrafov 1961). Convergence plays no role in the
definition of the asymptotic series.

Strictly speaking, Petrov (1972) proves the asymptotic
theorems for sums of ν independent random variables only
when σ ∼ 1/ν1/2, and not for any σ, which we used in our
derivation. But in all practical applications where nearly
Gaussian PDFs occur (and in all applications that we con-
sider in the present work), those PDFs basically are the
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Fig. 7. The normalized χ2 PDF (15) for ν = 5 (dashed line)
and its Edgeworth-Petrov approximations with 12 terms in the
expansion (solid)

sums of random variables, and the proofs of the asymp-
totic theorems are relevant. In the next section we show
how the theory works in practice.

Figures 5–8 show some examples of the Edgeworth ex-
pansion for the χ2 distribution. It is clear that for strongly
non-Gaussian cases, like χ2

ν for ν = 2, it has a very
small domain of applicability in practical cases since it
diverges like the Gram-Charlier series for a large number
of terms (Fig. 5). But already in this case one can check
that the order of the last term retained gives the order
of the error correctly, and one can truncate the expan-
sion when the last term becomes unacceptably large. For
nearly Gaussian distributions the situation is much bet-
ter: compare the cases for ν = 5 and ν = 20 in Figs. 6, 7
and 8.

6. Peculiar velocities from cosmic strings

As an example we consider the probability distribution
of peculiar velocities within the cosmic string model of
structure formation. Cosmic strings are one-dimensional
topological defects possibly formed in a phase transition
in the early Universe (Brandenberger 1994; Hindmarsh &
Kibble 1995; Vilenkin & Shellard 1994). After the time
of formation, the string network quickly evolves to a scal-
ing solution with a constant number ns of strings passing
through a Hubble volume in one expansion time.

Since individual topological defects give rise to velocity
perturbations of the dark matter through which they move

Fig. 8. The normalized χ2 PDF (15) for ν = 20 (dashed line),
and its Edgeworth-Petrov approximations with 2 and 4 terms
in the expansion (solid)

up to a distance of a Hubble radius, one expects a non-
Gaussian result, in contrast to inflationary theories which
predict a Gaussian PDF. Therefore departures from a nor-
mal distribution may be a way to distinguish between the
two main classes of theories of structure formation, infla-
tion and topological defects. However, since many strings
present between the time of equal matter and radiation
contribute to the perturbations, a nearly Gaussian PDF
can result due to the central limit theorem.
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Fig. 9. Edgeworth expansion up to 10th order for the PDF of
peculiar velocities from cosmic strings, within an analytical
model for the string network, for two values of the number of
strings per Hubble volume (Moessner 1995)

Fig. 10. Relative deviation ΣN from a normal distribution of the
Edgeworth expansion up to Nth order of the PDF of peculiar
velocities from cosmic strings, for ns = 1. Also shown is the
error tN of this deviation associated with the expansion

Fig. 11. Relative error tN/(1+ΣN) in the Edgeworth expansion
of q(x)/Z(x) for the PDF of peculiar velocities from cosmic
strings, for two values of N and ns

In order to estimate the deviation of the PDF from the
normal distribution we use Petrov’s formula (43) for the
Edgeworth series in this section. We calculate the cumu-
lants up to 12th order in the analytical model for the cos-
mic string network presented in Moessner (1995), where
the cumulants are given up to 8th order.

For simplicity, let us write Eq. (43) schematically as

q(x) = Z(x)

{
1 +

∞∑
s=1

ts

}
, (44)

i.e. denote the sth term in the sum by ts. Let us further
denote the sum up to s = N by ΣN ≡

∑N
s=1 ts. In Fig. 9

we show the Edgeworth expansion of the PDF of peculiar
velocities up to 10th order, for the case of ns = 1 string per
Hubble volume. Expanding up to Nth order, the relative
deviation of the PDF from a normal distribution is given
by,

q(x)

Z(x)
− 1 = ΣN . (45)

It is only significant if the error of the asymptotic expan-
sion, which is of the order of the last term included, is
smaller than this deviation. In Fig. 10 we show the rel-
ative deviation ΣN and the error tN associated with it.
The wiggles or cusps in the graphs appear at zeros of ΣN
and tN which are both oscillating, changing their sign, and
we have plotted the logarithms of the absolute values. So
only the maxima of the curves give a true indication of
the deviations and errors. For N = 10 the error is clearly
below the deviation and thus the latter is significant. For
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N = 4, the error is still below the deviation for most val-
ues of x, but it is not as clear, especially since the error is
not exactly equal to tN but of that order only. In Fig. 11
we show the relative error tN/(1 + ΣN ) in the expansion
of q(x)/Z(x). It is smaller for an expansion to higher or-
der for a given number of strings per Hubble volume. The
error decreases more strongly with N for larger ns. The
relative error is also smaller, at fixed N , for a larger ns,
in which case the PDF is closer to a normal distribution.

It is interesting to compare these results with the gen-
eral theory. Petrov (1972) proves that under certain con-
ditions (which are fulfilled in most physically important
cases)

q(x) = Z(x)

{
1 +

N∑
s=1

ts

}
+ o(σN ) (46)

uniformly for −∞ < x < +∞, when σ ∼ 1/ν1/2 and the
PDF q(x) is for a sum of ν random variables. One should
remember that each ts is of the order of σs in (43). In our
case ν is just ns, so the error of the truncated Edgeworth

series scales as ∼ 1/n
N/2
s . From Fig. 11 we can see that

the error for the case of ns = 10 strings is indeed N/2
orders less than for the case of ns = 1 string, i.e. 2 orders
for N = 4 and 5 orders for N = 10 terms in the expansion.
This is an illustration of the theory developed by Petrov
(1972, 1987).

7. Conclusions

We have shown that the Gram-Charlier series has a lim-
ited domain of applicability for nearly normal distribu-
tions because of its rather poor convergence properties.
The Gauss-Hermite expansion can give good results in
problems like fitting profiles of spectral lines of galaxies,
supernovae, or ordinary stars. In advanced calculations of
stellar atmospheres (e.g. Hauschildt et al. 1997; Hubeny
& Lanz 1995) the profiles of thousands or even millions
of lines must be integrated for up to hundreds of Doppler
widths, and the Gauss-Hermite expansion can perhaps be
useful for saving information of the line profiles in an eco-
nomical way. But since it has no intrinsic measure of accu-
racy, the number of terms needed in the expansion must
be examined carefully for each individual problem.

For situations where the estimate of a deviation of
a PDF from a Gaussian one is needed, the asymptotic
Edgeworth expansion is indispensable, and for high order
moments the form of this expansion found by Petrov is
necessary. We found a workable algorithm for Petrov’s for-
mula of the Edgeworth expansion and applied it to several
examples. The source codes used in this work are available
on request from the authors.
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Appendices

Appendix A: Lemma

In Sect. 5, the relation (30) for the n−th derivative of
a composite function f ◦g(x) ≡ f(g(x)) is used for the
derivation of the Edgeworth asymptotic expansion. Here
a simplified derivation of Eq. (30) is given. Petrov (1972,
1987) suggests a proof by induction. We note that this
derivation is more transparent if one simply considers the
Taylor expansion for f◦g expressed in terms of the Taylor
expansions of f and g – see Bourbaki (1958). We have

f(y) = f(y0) +
f ′

1!
∆y +

f ′′

2!
∆2y + · · ·

f (n)

n!
∆ny + · · · (A1)

and

g(x) = g(x0) +
g′

1!
∆x+

g′′

2!
∆2x+ · · ·

g(m)

m!
∆mx+ · · · .(A2)

Truncating the expansions at some n and m we find that
f ◦g(x) = f(g(x0))

+
f ′

1!

(
g′

1!
∆x+

g′′

2!
∆2x+ · · ·

g(m)

m!
∆mx+ · · ·

)
+ · · · (A3)

+
f (n)

n!

(
g′

1!
∆x+

g′′

2!
∆2x+ · · ·

g(m)

m!
∆mx+ · · ·

)n
.

On the other hand, we can write down the Taylor series
for the composite function,
f ◦g(x) = f ◦g(x0)

+
(f ◦g)′

1!
∆x+

(f ◦g)′′

2!
∆2x+ · · ·

(f ◦g)(s)

s!
∆sx+ · · ·(A4)

Now using the polynomial theorem,
(x1 + x2 + · · ·+ xm)r

=
∑
{km}

r!

k1!k2! · · · km!
xk1

1 x
k2
2 · · ·x

km
m

=
∑
{km}

r!
m∏
s=1

xkss
ks!

, (A5)

where summation extends over all sets of non-negative in-
tegers {km} satisfying r = k1 +k2+...+ks, and comparing
the terms ∆sx with equal s in (A4) and (A4), we obtain
ds

dxs
f(g(x)) =

s!
∑
{km}

f (r)(y)|y=g(x)

s∏
m=1

1

km!

(
1

m!
g(m)(x)

)km
. (A6)

This is the relation (30) which we sought. Here the set
{km} consists of non-negative solutions of the Diophantine
equation
k1 + 2k2 + ...+ sks = s , (A7)
and r = k1 + k2 + ...+ ks.
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Appendix B: Applications of the Lemma

If we apply lemma (30) to Chebyshev-Hermite polynomi-
als in (7), we get g(x) = −x2/2 for f = exp, so that only
the terms with m = 1 and m = 2 are non-zero in the
product in (30), and we only need non-negative integers
{k1, k2} as the solutions for k1 + 2k2 = n. Thus for each
k ≡ k2 running from 0 to [n/2] (entier of n/2) we have
k1 = n − 2k and r = n − k. Finally, we have from (30)
that

dn

dxn
exp(−x2/2) = n!

[n/2]∑
k=0

e−x
2/2 1

(n− 2k)!

×

(
1

1!
(−x)

)n−2k
1

k!

(
1

2!
(−1)

)k
, (B1)

and the explicit expression (13) follows immediately from
Rodrigues’ formula (7).

Among other consequences of (30) is the relation (32)
between cumulants κn and moments αk of a PDF. From
the definition (29) we obtain this relation by simply ap-
plying (30) to the case of f ≡ ln and g ≡ Φ. Since
f (r)(y)|y=g(t) = (−1)r−1(r−1)!/Φr|t=0 = (−1)r−1(r−1)!,
we find that

κn =
1

in
dn

dtn
ln Φ|t=0 =

n!

in

∑
{km}

(−1)r−1(r − 1)!
n∏

m=1

1

km!

(
1

m!
Φ(m)|t=0

)km
. (B2)

Thus, from (26),

κn =
n!

in

∑
{km}

(−1)r−1(r − 1)!
n∏

m=1

imkm

km!

(αm
m!

)km
, (B3)

which is equivalent to (32). Here the sum extends over
all non-negative integers {km} satisfying (31) and r =
k1 + k2 + ...+ kn .

Appendix C: Algorithm for computing indices km

To find all the solutions of Eq. (31) it is desirable to order
all sets of non-negative integers {km} satisfying it. We first
rewrite (31) as

nkn + ...+ 2k2 + k1 = n . (C1)

It is natural to establish the ordering of the sets Si ≡ {km}
satisfying Eq. (31) according to the order of numbers in
their decimal representation. For n = 3, say, we have 3
non-negative solutions

S1 = {k3 = 0, k2 = 0, k1 = 3}

S2 = {k3 = 0, k2 = 1, k1 = 1}

S3 = {k3 = 1, k2 = 0, k1 = 0}

which can simply be written as

S1 = 003, S2 = 011, S3 = 100 ,

and we say that S1 < S2 < S3 since 3 < 11 < 100. For
n ≥ 10, when the base 10 is no longer convenient, the sets
of solutions can be ordered according to the order of the
integer numbers

knr
n−1 + ...+ k2r + k1 (C2)

for any natural base r. Those numbers are not important
in themselves, what matters is thinking about the sets of
{km} as numbers in an abstract representation to base r.

On entry to our algorithm we have an integer n >
0, and on exit we wish to have the number nsol of all
solutions of Eq. (31) and the solutions themselves. For
a set Si we introduce an abstract variable S to describe
the array k(1:n) of n integer elements ordered as “quasi-
decimal digits”.

So, in an abstract form the algorithm looks like:

-- Statement QS:

-- all S <= S(CURRENT)

-- are out if and only if

-- k(1)+2*k(2)+...+n*k(n)=n

<*initiate: make QS true for S=S(INITIAL) *>;

_while <*condition: S ^= S(FINAL) *> _do

<*nextset: find next S

keeping QS invariant *>

_od; -- Here S=S(FINAL) and QS=.TRUE., i.e.

-- all needed solutions are found

It is easy to initiate QS:

k(1)=n;

mold=1; -- keeps largest m

-- for non-zero k(m)

_do m=2,n;

k(m)=0

_od;

nsol=1;

The integer mold keeps track of the progress of the algo-
rithm and allows us to establish the condition for the
continuation of the main loop,

mold 6= n .

Finally, the core of the algorithm is the node nextset

where we work with our sets as with digits, which is like
doing the addition of decimal numbers by hand, column
by column from right to left.

-- advance S(CURRENT), i.e. consider adding

-- n-( 2*k(2) +3*k(3) + ...+mold*k(mold) )

-- to k(1) trying to add 1 to the lowest of

-- k(2),...,k(mold) possible.

-- If adding 1 to the lowest k(m)

-- makes the sum > n then

-- put this k(m)=0 and try k(m+1)

--

m=1;

sumcur=n; -- integer sum of current set S

_repeat
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Table C1. Table of solutions to Eq. (31) for n = 1 to 8. Zeros
for higher orders are left blank

n 1 2 3 4

1 2 3 4
10 11 12

100 20
101

1000

n 5 6 7 8

5 6 7 8
13 14 15 16
21 22 23 24

102 30 31 32
110 103 104 40

1001 111 112 105
10000 200 120 113

1002 201 121
1010 1003 202

10001 1011 210
100000 1100 1004

10002 1012
10010 1020

100001 1101
1000000 2000

10003
10011
10100

100002
100010

1000001
10000000

sumcur=sumcur-k(m)*m+m+1;

k(m)=0;

k(m+1)=k(m+1)+1;

m=m+1;

_until sumcur <= n _or m>mold;

_if m>mold _then mold=m _fi;

k(1)=n-sumcur;

nsol=nsol+1;

Here the node nextset ends, and the whole algorithm
is finished. We have written it here in a pseudocode which
can be translated mechanically into any machine language.
We actually use a special preprocessor Trefor which au-
tomatically transforms the text above to standard Fortran
(see Weinstein & Blinnikov 1984, and Bartunov et al.
1997).

For reference, we present the first 8 sets of solutions
found by this algorithm. In practice it is easier not to use
the Table C1 even for low n, but generate all coefficients
in the code.
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