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EXPANSIONS OF CHROMATIC POLYNOMIALS
AND LOG-CONCAVITY

FRANCESCO BRENTI

Abstract. In this paper we present several results and open problems about log-
concavity properties of sequences associated with graph colorings. Five polyno-
mials intimately related to the chromatic polynomial of a graph are introduced
and their zeros, combinatorial and log-concavity properties are studied. Four
of these polynomials have never been considered before in the literature and
some yield new expansions for the chromatic polynomial.

1. Introduction

Log-concave and unimodal sequences arise often in combinatorics, algebra,
geometry and computer science, as well as in probability and statistics where
these concepts were first defined and studied (see [2] for further information
and references about the origin of the concept of a unimodal sequence). Even
though log-concavity and unimodality have one-line definitions, it has now be-
come apparent that to prove the unimodality or log-concavity of a sequence can
sometimes be a very difficult task requiring the use of intricate combinatorial
constructions [40, 58, 32, 62] or of refined mathematical tools. The number
and variety of these tools has been constantly increasing and is quite bewilder-
ing and surprising. They include, for example, classical anlaysis [54, 55, 56],
linear algebra [35], the representation theory of Lie algebras and superalgebras
[34, 46, 47], the theory of total positivity [8, 9, 11], the theory of symmetric
functions [10, 13, 41], and algebraic geometry [49]. We refer the interested
reader to [50] for an excellent survey of many of these techniques, problems,
and results.

In this paper we use the theory of total positivity and analytical results to
study some remarkable log-concavity properties arising from the enumeration
of colorings of a graph. More precisely, we will consider the zeros and the
log-concavity properties of the chromatic polynomial of a graph and of five
other polynomials naturally associated with it. Zeros and log-concavity prop-
erties of chromatic polynomials have been studied for several years (see, e.g.,
[1, 20, 38, 53, 60]) and one of the other five polynomials, the a -polynomial,
has been considered before in the literature (see [15, 29, 30, 61]), though none
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730 FRANCESCO BRENTI

of these authors studied its log-concavity properties. The other four polynomi-
als, however, have never appeared before. In this work we show that all these
polynomials possess interesting log-concavity properties and that many previ-
ously known results about chromatic and ct-polynomials can be interpreted as
log-concavity results. We also present several open problems and conjectures.

The organization of the paper is as follows. In the next section we recall some
definitions, notation, and results that will be used for the rest of the paper, as
well as two fundamental analytical results that are the theoretical foundation
of all the results that follow. In §3 we study the zeros and log-concavity prop-
erties of the cr-polynomial and of the augmented cr-polynomial of a graph.
We prove that these polynomials are log-concave or have only real zeros for
many general classes of graphs such as, for example, complements of compara-
bility and triangle-free graphs, graphs with a high chromatic number, interval
graphs, board graphs, triangulated graphs, complete multipartite graphs, and
trees. We also prove that the property of the cr-polynomial having only real
zeros is preserved under an operation of "composition" of graphs which in-
cludes the ordinary product and disjoint union of two graphs. In §4 we study
the w-polynomial of a graph. After giving a combinatorial interpretation of its
coefficients (which yields a new expansion for the chromatic polynomial of a
graph, Theorem 4.4) we prove that the ^-polynomial has only real zeros for a
general class of graphs which strictly includes the chordal graphs. We also prove
that the reality of the zeros of the w -polynomial is preserved under the oper-
ation of disjoint union, and we discuss the relationships between the zeros of
the if-polynomial and those of the o and augmented cr-polynomial. In §5 we
introduce and study the x and augmented r-polynomial of a graph and discuss
the connections between its zeros and log-concavity properties and those of the
polynomials considered in §§3 and 4. A simple combinatorial interpretation is
found for the coefficients of the r-polynomial which yields another new expan-
sion of the chromatic polynomial of a graph (Theorem 5.5) and also generalizes
a result of R. Stanley. In §6 we look at the log-concavity properties of the chro-
matic polynomial itself and we relate them to corresponding properties of the
other five polynomials considered in this paper. Finally, in §7, we discuss some
of the main open problems arising from our work and present some conjectures.

2. Notation and preliminaries

In this section we collect some definitions, notation and results that will be
used in the rest of this paper. We let P d= {1, 2, 3, ...} and N =f Pu {0} ; for
a e N we let [a] = {1, 2, ... , a} (where [0] = 0). The cardinality of a set A
will be denoted by \A\. A sequence {ao, ax, ... , a¿} (of real numbers) is called
log-concave if a2 > a¡-Xa¡+x for i = 1,..., d — 1. It is said to be unimodal if
there exists an index 0 < j < d such that a, < ai+x for i - 0, ... , j - I and
o-i > ûi+i for i =/,..., d— 1. It is said to have no internal zeros if there are not
three indices 0 < i < j < k <d such that a¡ ,ak^0 and a, = 0. We say that
a polynomial J2¡=o a'x' *s log-concave (respectively, unimodal, with no internal
zeros) if the sequence {ao, ax, ... , a¿} has the corresponding property. It is
well known that if Y^i=oa¿1 *s a polynomial with nonnegative coefficients and
with only real zeros, then the sequence {ao,ax, ... ,af} is log-concave and
unimodal, with no internal zeros (see, e.g., [9], or [14, Theorem B, p. 270]).
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CHROMATIC POLYNOMIALS AND LOG-CONCAVITY 731

We will denote by Kp (respectively, Cp and Np), the complete graph
(respectively, the cycle and the empty graph) on p vertices, and by KPly,„yPri
the complete multipartite graph on px, ... , p„ vertices. Given a graph G we
will denote by x(G; x) its chromatic polynomial, by v(G) its chromatic num-
ber, and by kG (where k eP) the graph consisting of k disjoint copies of
G. Given two graphs G and 77 we denote by G tti 77 the disjoint union of
G and 77. Given a graph G = (V, E) a walk in G is a sequence VqVx ■ ■ ■ vn
of vertices of G such that (v¡, v¡+x) e E for / = 0, ... , « - 1, the integer
« is called the length of the walk, and the walk is called closed if vo = vn.
A closed walk i>0t>i • • -v„ is called a cycle if the vertices v0vx •••v„_i are all
distinct. A chord of a cycle i>ot>i ■••v„ is an edge of the form (v¡, Vj) where
0 </</<«- 1 and j — i > 2. For other graph theoretic notation and
terminology we will follow [7].

By a simplkial complex we will mean a collection of sets y with the property
that if A e SF and Be A then B e& .We call the elements of & the faces
of y. For S e y, the dimension of S is |5| - 1. Two general classes of
simplicial complexes will be particularly important for us. Given a partially
ordered set (or, poset, for short) P we let A(P) be the simplicial complex
of all the chains (i.e., totally ordered subsets) of F. We call A(F) the order
complex of the poset F. Given a graph G = (V, E) we let 7(C) be the
simplicial complex of all the independent subsets of V, and we call 7(G) the
independence complex of the graph G.

Given p g P, we will often use the basis of the vector space Vp of real
polynomials of degree < p consisting of the polynomials {(x+p"' )}/=0> p . It
is not hard to see that these polynomials are indeed a basis of Vp (see, e.g., [48,
p. 209]). The reason why this basis is often used in enumerative combinatorics
lies in the following result which is, essentially, a restatement of the binomial
theorem (see, e.g., [48, p. 16]).
Theorem 2.1. Let A(x) be a real polynomial of degree d. Then

■*M = í>(*+¿-'')

if and only if

E^"^ = (fecW'«>o [l    x>

as formal power series.
A proof of the preceding result can be found in [9, Theorem 2.3.3]. Since we

will be often dealing with polynomials having only real zeros it will be conve-
nient to introduce the following terminology. Given two polynomials / and g
having only real zeros we say that g interlaces f if deg(g) = deg(/) - 1 and
we have that

m < ii < 12 < ■ ■ ■ < 1d-\ < írf-i < Vd
where r¡x, r\2, ... , n¿ are the zeros of / and & ,&,... , ¿,d-\ are those of g.
Given a polynomial / having only real zeros we denote by X(f) (respectively
A(f)) the smallest (respectively the largest) zero of /.

We now recall two analytical results that relate the basis {(x+P~')}i=o,...,P
with polynomials having only real zeros. They are fundamental for this paper.
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Theorem 2.2. Let
d'M-S>(x+Í~')

1=0
be a polynomial of degree d. Suppose that A(x) has only real zeros and that
A(x) - 0 for all x e ([1(A), -1] U [0, A(A)]) n Z.    Then the polynomial
2~l1=o bix' has °"ly real zeros.
Theorem 2.3. Let Yfi=0 aix' and 2~w=o °ix' be two polynomials with only real
zeros and nonnegative coefficients. Define a sequence {cq,Ci, ..., cp+a} by

then the polynomial Y%=o c'x' has on^y rea^ zeros an<^ nonnegative coefficients.
We state below two equivalent formulations of Theorem 2.3 that are com-

pletely independent from the polynomials (x p ').

Theorem 2.4. Let V(z) and U(z) be two polynomials of degrees < a and
< b, respectively, having only real zeros and nonnegative coefficients. Define a
polynomial W(z) by

^V(x)U(i)xb~
,dx J

W(z) = (l-z)a+b+x
(l-x)a+x

Then W(z) has only real zeros and nonnegative coefficients.
Theorem 2.5. Let U(z) and V(z) be two polynomials having nonnegative co-
efficients and all their zeros in the interval [-1,0]. Define a polynomial W(z)

™«£^(¿)Vm>(¿)V>>.
F«i?« W(z) has (nonnegative coefficients and) all its zeros in the interval [-1,0].

The equivalence of Theorems 2.4 and 2.3 is proved in [9, Theorem 4.7.4],
while the equivalence of Theorems 2.5 and 2.3 is proved in [54] (see Lemma
1.2.2 and Theorem 1.4.4). Theorems 2.2 and 2.5 are both highly nontrivial
results and we refer the reader to [9, Theorem 4.4.1 and 56, Theorem 0.3],
respectively, for their proofs.

3. The ct-polynomial

Let G be a graph on p vertices and let
p

(i) *(G;*) = 5>(*)/
i=0
defbe its chromatic polynomial, where (jc),- = x(x - 1) ■ • • (x - i + 1) for i > 1,

defand (x)o = 1. We define the a-polynomial of G to be the polynomial defined
by

(2) o{G\x) = Ytalx>.
1=0
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The cr-polynomial was first explicitly defined and studied by Korfhage in 1978
(see [29]), though, actually, his definition of the cr-polynomial is equivalent to
what we denote by a(G; x)/xu(-G). However, since all the properties that we
are going to consider in this work hold for o(G; x)/x"^ if and only if they
hold for o(G; x), this difference is immaterial.

We begin by "rewriting" in terms of cr-polynomials the following elementary
and well-known result about chromatic polynomials. It can also be proved
directly from (1) using the combinatorial interpretation of %(G\x). Recall
that a partition of a (finite) set F is a collection n — {Bx, ... , Bk} of mutually
disjoint subsets of V such that \J¡=1 B¡ = V. We call the elements of n the
blocks of %.
Theorem 3.1. Let G - (V, E) be a graph with p vertices and q edges and let (2)
be its o-polynomial. Then, for i = 0, ... , p, a¡ equals the number of partitions
of V into exactly i independent sets. In particular ap = I, ap-x - (P2) - q,
a, = 0 for i = 0, ... ,v(G)-l, and a¡ > 0 if i - v(G), ... , p.   D

It is also possible to give an explicit formula for the coefficient of xp~2
in o(G ; x). The following result first appeared (though stated and proved
incorrectly) in [15, p. 220].
Proposition 3.2. Let G = (V, E) be a graph with p vertices and q edges and
let (2) be its o-polynomial. Then

o,      »>,-.=(!)-<V)+(S)(V)-<<«>•
where t(G) is the number of triangles of G.
Proof. Let

(4) X{G;x) = Yj(-iy-ibixi
i=0

be the chromatic polynomial of G. It then follows from (1), (4), and a well-
known identity (see, e.g., [48, p. 35]), that

(5) flp_2 = bp-2 -S(p-l,p- 2)bp-x + bpS(p, p - 2),
where S(p, k) is the number of partitions of [p] into exactly k blocks (see,
e.g., [48, p. 33] for further information about the S(p, fc)'s). Now, it follows
easily from this combinatorial interpretation that

(6) S(p-I,p-2)=(P-X\

and that

<7> «M-«-ï U ¿-O + (5) •
Substituting now (6) and (7) in (5) and using the well-known facts that bp= I,
bp-x = q, and bp-2 = (*) - t(G) (see, e.g., [36, Theorem 16]), gives (3), as
desired.   D

In order to prove the next result it will be necessary to define a polynomial
that was first introduced and studied in [55]. Let F be a finite set. A collection
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734 FRANCESCO BRENTI

y of subsets of V is called a set system on V if 0 g y and {Jxef X = V.
Given a set system y on F we define the partition polynomial of y by

(8) p(y;x)=f5>,(y)A
i:>0

where pk(&) equals the number of partitions of V into k blocks such that
each block is in y. It follows immediately from (2) and Theorem 3.1 that, if
7(G) is the independence complex of a graph G, then

(9) p(l(G);x) = o(G;x).
Thus the partition polynomial of a set system is a generalization of the cr-
polynomial of a graph. Indeed, the partition polynomial of a set system pos-
sesses many other interesting properties as well (such as, for example, that of
being also a generalization of the matching polynomial of a graph) and we refer
the interested reader to [55] for further information about it.

We can now prove one of the main results of this section. Recall that a graph
G — (V, E) is called a comparability graph (see, e.g., [21, p. 539]) if there exists
a partial order ■< on V such that (x, y) e E if and only if x -j¿ y and either
x < y or y <x.

Theorem 3.3. Let G be a graph such that the complementary graph Gc is a
comparability graph. Then o(G;x) has only real zeros.
Proof. Since Gc is a comparability graph there exists a partially ordered set
F = (V, <), on V, such that (x, y) £ E if and only if x ^ y and x and y
are comparable in F. Therefore a subset S c V is independent in G if and
only if it is a chain of F. Hence 7(G) is the order complex of P. But, by
Theorem 2.5 of [55] the partition polynomial of an order complex has only real
nonpositive zeros. Hence p(I(G) ; x) has only real zeros and the result follows
from (9).   D

Using a well-known characterization of comparability graphs (Theorem 1 of
[21]) we can restate Theorem 3.3 in the following form. Recall (see, e.g., [21,
p. 539]) that a triangular chord of a closed walk vqVX •••vn is an edge of the

defform (v¡, vi+2), (where 0 < / < « - 1 and Vj = v¡-n if j > n).

Theorem 3.4. Let G be a graph such that each closed walk of odd length of Gc
has at least one triangular chord. Then o(G;x) has only real zeros.   D

Theorems 3.3 and 3.4 have quite a large applicability. For example, as im-
mediate consequences of them, we obtain the following results. (We refer the
reader to, e.g., [21, p. 539] for the definition of an interval graph.)

Corollary 3.5. Let G be an interval graph. Then a(G;x) has only real zeros.
Proof. Since G is an interval graph there follows from Theorem 2 of [21] that
every closed walk of odd length of Gc has at least one triangular chord and the
thesis follows from Theorem 3.4.   G
Corollary 3.6. Let Np be the empty graph on p vertices. Then o(Np ; x) has
only real zeros.   D

Note that Corollary 3.6 is equivalent (by Theorem 3.1 ) to the known (see, e.g.,
[ 14, Theorem D, p. 271]) but not trivial fact that the polynomial ^=05'(p, i)x'
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has only real zeros, where S(p, i) has the same meaning as in the proof of
Proposition 3.2. Therefore Theorem 3.3 is a generalization of this well-known
result.

Another general class of graphs for which o(G; x) has only real zeros consists
of all the graphs G = (V, E) such that u(G) >\V\- 2. Before we can prove
this result, however, we need to define two infinite families of graphs. Let
/, m, n G N, following [18] we let V(t,m,n) be the graph obtained from two
(disjoint) stars KXyt+n and KXyt+m by identifying t of their leaves, and we let
T(t, m, n) be the graph obtained from V(t, m, n) by adding the edge that
connects the two centers of the stars. So, for example, the graphs F(4, 2, 1)
and F(2, 2, 1), are shown in Figures 1 and 2 respectively (the meaning of the
orientation of the edges of F(4, 2,1) and F(2, 2,1) is given in the proof of
Theorem 3.8). The following result appears in [18, Theorem 2.2], and we refer
the reader to this source for its proof.

Theorem 3.7. Let G be a graph on p vertices such that v(G) > p - 2. Then
there exist k, t, m, « g N such that one of the following three conditions is
satisfied:

(i) Gc = C5tíkKx;
(ii) Gc = T(t,m, n)\ßkKx;

(iii) Gc = V(t,m,n)\äkKx.

Using the preceding theorem, we obtain the following consequence of Theo-
rem 3.3.

Theorem 3.8. Let G be a graph on p vertices such that v(G) > p - 2. Then
o(G;x) has only real zeros.

<-•

Figure 1. The graph V(4, 2,1)

Figure 2. The graph F(2, 2, 1 )
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Proof. It is easy to see that, for all k, t, m, « G N, the graphs T(t, m, «) i+i
kKx, and V(t, m, n) tí kKx, are comparability graphs (Figures 1 and 2 show
the right orientations for F(4, 2,1) and F(2, 2, 1), the general cases being
completely analogous). On the other hand, it is not hard to verify directly that
o((C5 tí kKxy ; x) m o((C5)c ; x)xk = xM(x2 + 5x + 5), which has only real
zeros. The thesis then follows from Theorems 3.3 and 3.7.   D

As an immediate consequence, we obtain the following inequality, which first
appeared in [61, Theorem 6].

Theorem 3.9. Let G be a graph on p vertices with v(G) > p - 2 and let (2) be
its o-polynomial. Then a2_x >4ap-2.   D

Let now 77 be a graph on p vertices vx,v2, ... ,vp and Gx, G2, ... , Gp be
p graphs with disjoint vertex sets Fi, V2, ... , Vp . We define the composition
of 77" with Gx, ... , Gp, denoted by 77[Gi, ... , Gp], tobe the graph that has

defV = Fi U V2 U ■ ■ • U Vp as vertex set and in which two vertices u, v e V are
adjacent if and only if either u, v e V¡ and (u, v) is an edge of G,, for
some 1 < i < p ; or u e V¡, v e V¡, and (v¡, Vj) is an edge of 77, for
some 1 </',/< p , i ^ j ■ To the best of our knowledge, this operation of
composition of graphs is new. It is, however, closely related to the operation of
composition of set systems, which was first defined in [55, §4], which is, in turn,
derived from a natural transformation in the theory of species (see [27]). Note
that A2[Gi, G2] is just the ordinary product Gi o G2 (as defined, e.g., in [3,
p. 60] or [36, p. 60]), and that Ap[Gi, G2, ... , Gp] is just the disjoint union
GiWG2l±lG3l±)» • l+lGp . We should also mention that the graphs H[Km¡, ... , Km¡>]
have been studied in [37] where they are called "clan graphs with underlying
graph 77." We are now ready to prove the second main result of this section.

Theorem 3.10. Let H be a graph on p vertices and Gx, ... , Gp graphs with
disjoint vertex sets. Suppose that o(Gx ; x), ... , o(Gp ; x) all have only real
zeros and that Hc is triangle-free. Then a(H[Gx, ... , Gp]; x) has only real
zeros.
Proof. With the notation above let S C Vx U • • • U Vp . Then it follows easily
from our definitions that S e I(H[GX,... ,GP]) if and only if SnV¿e I(G¡)
for i = 1, ... ,p, and {v¡: i e [p],Sr\V¡ ^ 0} e 1(H). This means,
in the terminology of [55, §4], that I(H[Gx, ... , Gp]) is the composition of
7(77) with I(Gx), ... , I(GP) as set systems. Now, since 77c is triangle-free,
7(77) is a one-dimensional simplicial complex. Furthermore, it follows from
(9) and from our hypotheses that p(I(Gx); x), ... , p(I(Gp); x) all have only
real nonpositive zeros. These conditions, by Theorem 4.5 of [55], imply that
p(I(H[Gx, ... , Gp]); x) has only real zeros, which, by (9), implies the desired
result.   G

In particular, we obtain the following result.

Corollary 3.11. Let H be a graph such that Hc is triangle-free. Then o(H;x)
has only real zeros,   u

Note that (77[Gi, ... , Gp])c may not be triangle-free even if Hc and
G¡, ... , Gp are (take, e.g.,  N2[N2, Nx]).   Therefore Corollary 3.11 actually
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applies to a much wider class than just that of triangle-free graphs. In fact, it
would be quite interesting to have a characterization of this class.

Theorem 3.10 is a tool for constructing graphs whose a -polynomial has only
real zeros. As an application, we have the following result.

Theorem 3.12. Let G and H be two graphs such that o(G; x) and a(H; x)
have only real zeros. Then o(GtíH; x) has only real zeros.
Proof. As was observed above, Gl+177 = A2[G, 77] and since (A2)c is triangle-
free the result follows from Theorem 3.10.   G

For the operation of product of two graphs even more is true. The following
is a well-known result though it has never been stated before in terms of o-
polynomials.
Theorem 3.13. Let Gx, G2 be two graphs and let GxoG2 be their product. Then

o(Gx oG2;x) = cr(Gi ; x)o(G2 ; x) ;
in particular, o(Gx oG2; x) has only real zeros if and only if both o(Gx ; x) and
o(G2; x) have only real zeros.
Proof. The result follows immediately from our definition (2) and Theorem
3.1.   G

Two immediate corollaries of Theorem 3.13 are given below. Recall (see,
e.g., [3, p.  60]) that the co«t? (respectively, suspension) of a graph G is the
graph c(G) = Nx o G (respectively, s (G) = N2oG).
Corollary 3.14. Let G be a graph. Then the following are equivalent:

(i) o(G; x) has only real zeros;
(ii) a(c(G) ; x) has only real zeros;

(iii) o(s(G) ; x) has only real zeros.   G

Corollary 3.15. Let G be a complete multipartite graph. Then o(G;x) has only
real zeros.
Proof. Let G = Kmi ,...>m,, then it is well known that Km¡.m, = Nmio-- -oNmr.
The thesis now follows from Theorem 3.13 and Corollary 3.6.   G

A particularly elegant special case of the preceding result is the following.
Corollary 3.16. Let Hm be the hyperoctahedral graph on 2m vertices. Then

o(Hm;x) = xm(x+l)m;

in particular, o(Hm;x) has only real zeros.
Proof. By definition,

Hm = ^2,2.2 •

m

Hence, by Theorem 3.13,
o(Hm ;x) = o(N2o-..oN2;x) = o(N2; x)m,

m

and the result follows,   a
Using the definition (2) of the cr-polynomial we immediately obtain the fol-

lowing consequence of Corollary 3.16.
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Corollary 3.17. Let Hm be the hyperoctahedral graph on 2m vertices. Then

m  í    \
X(Hm;x) = ^[™\(x)m+i.   G

The preceding formula for the chromatic polynomial of an hyperoctahedral
graph seems to be new and solves the recurrence relation obtained in [3, §9B,
p. 62], for the x(Hm ', XY$-

There is another general class of graphs whose o -polynomials have only real
zeros. To describe it we need a few definitions. A board is a finite subset
B ç P x P. Let «, c, r e P be such that B ç [c] x [r] and n > c. The rook
polynomial and the n-factorial polynomial of B are the polynomials defined by

(10) R(x;B)^   £   *W,
SeR(B)

and

(H) Pn(x;B)áM    £   (X)n-\S\,
S€R{B)

defrespectively, where R(B) = {SçB: (z,, jx), (i2, j2) e S => ix ¿ i2 , jx ¿ j2} .
These polynomials were first defined in [23] and have been extensively studied
(see, e.g., [17, 23, 24]). Following [24, §11] we call a graph G a board graph if
there exist « G P and a board B ç [«] x P such that p„(x ; B) = x(G; x). We
can now prove the following result.

Theorem 3.18. Let G be a board graph. Then a(G;x) has only real zeros.
Proof. Let n e P and B ç [«] x P be a board such that p„(x ; B) = x(G ; x).
By (1), (2), (10), and (11) this means that

■*(!;*)(12) o(G;x) = x

But it is known (see [31, Theorem 1]) that the rook polynomial of any board
has only real zeros, and the thesis follows.   G

We should remark that, as noted in [24, p. 140], no characterization of board
graphs seems to be known.

There is one more operation on graphs which preserves the property of the
cr-polynomial having only real zeros. Before we can prove this, however, we
need the following analytical result.

Theorem 3.19. Let X^o0'*' be a polynomial having only real nonpositive zeros,
and let

d+l d
(13) £>(*)/= (*-c) $>(*)«

i=0 i=0

where c > 0. Then ^¡=0' °iXl has only real zeros.
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Proof. It follows from (13) that
d+\ d
Yl b^x)< = Yl fl.i(*).+i + (ï - o Wii
i=0 1=0

d+\
E(a,--i + a¡(i - c))(x)i
1=0

(where a_i = a¿+i = 0) and hence that
d+\

£
i=0

(14) ¿ h** = (x - C)A(X) + xA'(x) '

where ^(x) = ¿0uíx'. By our hypothesis, ^(x) has only real nonpositive
zeros. Therefore A'(x) has only real zeros and interlaces A(x). Hence xA'(x)
interlaces (x - c)A(x) and this, by a standard argument (see, e.g., [55, Lemma
1.3]) implies that (x - c)A(x) + xA'(x) has only real zeros which, by (14), is
the desired result.   G

Let now G = (V, E) be a graph, v e V, and « G N. We denote by GVy„
the graph obtained from G by adding « new vertices Ux,..., u„ to V and
adding all the edges (u¡, Uj) and (v, u¡) to F for I < i, j < n, i ^ j. It

defwill also be convenient to let G„o = G for any v e V. Using the preceding
theorem we can prove the following result.

Theorem 3.20. Let G = (V, E) be a graph such that o(G; x) has only real
zeros. Then o(GVyf¡; x) has only real zeros for all v e V and « G N.
Proof. By its definition, GVyH is the union of G and of a complete graph on
« + 1 vertices which "overlap" (in the sense of [36, p. 59]) on the vertex v.
Hence

X(GVyH;x) = x(G;x)(x- l)---(x-n).
Therefore

(15)

n+p

E
;=0
Y^ai(Gv,n)(x)i = x(Gv,n ;x) = (x- n)x(GVy„-x ; x)

p+n-l

(x-n)   Y   ai{Gv,n-l)(x)i
1=0

where p = \V\ and YH=o ai(Gv,n)x' = o(GVy„;x).  We are now done by
induction and Theorem 3.19.   G

As an immediate consequence of the preceding theorem we obtain the fol-
lowing result.

Corollary 3.21. Let G be a tree. Then o(G;x) has only real zeros.   G

We close this section by introducing a modified version of the a -polynomial
which, besides giving rise to some interesting problems, "interpolates" between
the o -polynomial and the ^-polynomial which will be introduced in the next
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Figure 3

section. Let G be a graph on p vertices and let (2) be its cr-polynomial. We
define the augmented a-polynomial of G by

(16) a(G;x)=f¿/!0..x<.
1=0

As might be expected, the log-concavity properties and the zeros of the aug-
mented a-polynomial are related to those of the cr-polynomial. The two most
important connections are given in the following two results.

Theorem 3.22. Let G be a graph such that ~&(G; x) has only real zeros, then
o(G; x) has only real zeros.

Theorem 3.23. Let G be a graph such that o(G ; x) has only real zeros, then
o(G;x) is log-concave.

The preceding two theorems follow from two purely analytical results ap-
pearing, e.g., in [9] (Theorems 2.4.1 and 2.5.6, respectively) and we refer the
reader to that source for their proofs. We also have the following result, whose
easy verification is left to the reader.

Proposition 3.24. Let G be a graph such that o(G; x) is log-concave. Then
o(G;x) is log-concave.   G

By Theorem 3.23, many of the results in this section give rise to corresponding
log-concavity results for o(G; x). However, the augmented a-polynomial also
gives rise to many open problems. For example, it would be interesting to
know whether Theorems 3.10 and 3.13 have an analogue for augmented a-
polynomials and to know if Theorems 3.8, 3.18 and Corollaries 3.5, 3.11 remain
valid when (J(G;x) is substituted for a(G;x), in their statements. Note,
however, that not all of the results presented in this section about the zeros of
o(G; x) hold for ö"(G; x). For example, if G is the graph in Figure 3, then it
is easy to see that the complementary graph Gc is a comparability graph. On
the other hand, it is not hard to verify that

W(G ; x) = 2x2 + 48x3 + 384x4 + 960x5 + 720x6,

which is easily seen not to have only real zeros. Therefore Theorems 3.3 and
3.4 do not hold for the augmented a-polynomial. On the other hand, we will
see in the next section that Corollaries 3.6, 3.21 and Theorems 3.12, 3.20 also
hold for the augmented a-polynomial (see Corollaries 4.13, 4.14 and Theorems
4.17,4.18).

4. The ^-polynomial

Let G be a graph on p vertices and let

(.7) x(G;x) = ±m(x + pp->)
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be its chromatic polynomial. The w -polynomial of G is the polynomial defined
by

p
def ■(18) w(G;x) = YwiXi

(=0

From Theorem 2.1 and our definition we immediately obtain the first important
property of the tu-polynomial.

Proposition 4.1. Let G be a graph on p vertices and let w(G; x) be its w-
polynomial. Then

n>0 v ;

(as formal power series),   a

We now give a combinatorial interpretation to the coefficients of the w-
polynomial. Let G - (V, E) be a graph on p vertices. An orientation of G
is an assignment of a direction to each edge (u, v) e E denoted by u —> v or
v —> u. An orientation is said to be acyclic if it contains no directed cycles.
We denote the set of all acyclic orientations of G by A(G). Given 6 e A(G)
we can associate to it a finite poset Fe having V as underlying set, and where,
for x ,y eV, x <y in Fe if and only if either x - y or there is a directed
path from x to y in (G, 6). Given a finite poset F of cardinality p a //«ear
extension of F (see, e.g., [48, p. 110]) is a bijection tu: F —> [p] such that
x < y in F implies tu(x) < iu(>>) (as integers). We can now state our second
result about the polynomial w(G; x). Recall that an ascent of a sequence
(bx, ... , bn) e Z" is an integer / g [« - 1] such that ¿>, < bi+l. We denote by
a(bx, ... ,bn) the total number of ascents of (bx, ... , bn).

Theorem 4.2. Let G be a graph on p vertices and let w(G;x) be its w-
polynomial. Then
(20) W(G;X)=    Yl Y      xa(we(a-\\)),...,we(o-'(p)))+\

6€A(G) a:Pe^\p]

where Pe is the poset associated to the acyclic orientation 6, we: Pe —► [p] is
(any) linear extension of Pe , and o runs over all linear extensions of Pe .
Proof. It is proved in [44] (see equation (1) on p. 174) that given a graph G
on p vertices we have that

(21) X(G;x)=   Y  ñ(Pe;x),
eeA{G)

where Q(FÖ ; x) is the strict order polynomial of the poset Pe (see, e.g., [42,
pp. 4, 45] or [9, §1.2] for the definition of the strict order polynomial of a poset).
But, for any poset F of size p , it is known (see [42, Propositions 8.1, 8.2, and
8.3, p. 24]) that

•5- xa(w(o-,(\)),...,w(<j-,(p)))+\
(22) ^ñ(F;«)x" = ^^ -

n>0 v ;
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where w is (any) linear extension of F and a runs over all linear extensions
of P. Hence, since \Pe\ = p for all 6 G A(G), from (19), (21), and (22) we
conclude that

r„     ,^V     „ xa(we((J-\\)),...,we(a-\p)))+\

(23)       £ *(G ; «)*" = ^^)^:^-^ -

as formal power series in Z[[x]], where Wg is (any) linear extension of Pe.
Comparing (23) with (19) yields the desired result.   G

There is an equivalent way of stating Theorem 4.2 in purely graph theoretic
terms which also has the advantage of showing that w (G ; 1 ) = p!, a fact which
is not obvious from (20). To do this we first need a definition. Let G = (V, E)
be a graph on p vertices and assume (since we are dealing with labeled graphs)
that V — [p]. Let now o, x e Sp (where Sp denotes the symmetric group on
p elements) we say that a and x are G-equivalent (denoted a =g t) if for
all (u, v) G E we have that o(u) < o(v) =>• x(u) < x(v). It is easily verified

defthat =g is an equivalence relation which partitions Sp into a(G) = \A(G)\
equivalence classes (note that this implies that a(G) = 1 if G has no edges).
We can now state and prove the following equivalent formulation of Theorem
4.2.
Theorem 4.3. Let G be a graph on p vertices. Then

a(G)

Xa(<j,oT   ')+!(24) w(G;x) = Y   E
i=l reSp(Oj)

defwhere Sp(o) = {t g Sp: x =g <*}> and ox, ... , oa{G) are a complete set of
distinct representatives of Sp modulo =g ■
Proof. Let a g Sp . Define an orientation 6a in G by letting u —> v in 8a if
and only if o(u) < o(v). The orientation 6a is clearly acyclic. Furthermore,
a is a linear extension of Pga and we claim that a map x: Pga —► [p] is a linear
extension of Pga if and only if x =g a. In fact if x is a linear extension of
Pea and (u, v) e E is such that o(u) < o(v) then u ■* v in P6a and hence
x(u) < x(v) (since x is a linear extension). Conversely if x =q a and u ■< v
in Pqo then there exists a directed path u = v0 —► vx -> • • • —> vt = v in 6a .
This implies that o(u) = o(vq) < o(vx) < ■■■ < o(vt) = a(v) and hence (since
(Vi, vi+x) e E for / = 0, ... , t - 1, and a =G t) that x(u) = x(v0) < x(vx) <
■-■ < x(vt) = x(v). Hence x is a linear extension of Pga, as claimed. Therefore
(25) Y*        X«0(T-'(1)).«T(T-'(p)))+l  _      y     ^(CTOT-'l+l ^

r:-Pf)ff-»[P] re^ttr)

the sum on the left being over all linear extensions x of P$a. Now, it is clear
that, given ox, o2 e Sp, 6a¡ = 6ai if and only if ai =q a2. Therefore the
polynomial on the RHS of (25) actually depends only on Sp(o). Furthermore,
it is easy to see that for any acyclic orientation 6 e A(G) there is at least a
a G Sp such that 6 = Q„ . Hence

a(G)
(26) V V     x"(Mr-[(i)),-,w(T-\pm+l = y    y    xa(aioT-l)+l (
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where ai, ... , oa(G) are a complete set of distinct representatives of Sp modulo
=g and the polynomial on the LHS of (26) is the same polynomial as in the
RHS of (20). Thus, comparing (20) and (26) yields the desired result,   a

By the definition of the tu-polynomial the preceding result yields the follow-
ing new expansion of the chromatic polynomial of a graph.

Theorem 4.4. Let G be a graph on p vertices. Then

(27) x(G;x) = Y   Y   (x + P-"(°>°*-l)-A,
¡=1 renter,) v /

where Sp(o) and ox, ... , oa(G) have the same meaning as in Theorem 4.3.   G

We illustrate Theorems 4.3 and 4.4 with an example. Let G = (V, E) be
the path on three vertices, and assume that V = [3], and E = {(1, 2), (2, 3)} .
Then there are four equivalence classes of Si, modulo =g , namely {123},
{132, 231}, {312, 213}, and {321}, where we are writing permutations in
one-line notation, (i.e., ax ■ ■ ■ an represents the map that sends / to a¡, for
/= 1,...,«). Hence, letting ai = 123, a2 = 132, o->, = 312, and a4 = 321,
we have that by Theorem 4.3,

4
w(G;x)= Y   E   xa(CT'0T"'>+1

¡=1 T653(<7,)

_      y^    ^atmoT-'j+l _|_        V^        xa(I32oT-')+l

re{123} re{132,231}

_l_ y^        xa(312oT-')+l _|_     y^    Jca(321oT-')+l

t€{312,213} t6{321}

_ xa(123)+l _|_ /xa(l23)+l + xa(213)+l\

_l_ rxa{\23)+l + xa(132)+l\ + xa(123)+l

= 4x3 + 2x2,

and hence, by the definition (18) of the lü-polynomial,

*(0;*) = 2(*+')+4(*).

As a consequence of Theorem 4.3 we obtain the following result.

Proposition 4.5. Let G be a graph on p vertices and (18) be its w-polynomial.
Then ¿?i=l w, = p!, w¡ = 0 if 0 < i < v(G) - 1, !D,éP for i = v(G) ,...,p,
and wp equals the number of acyclic orientations of G.
Proof. The first assertion follows by letting x = 1 in (24). To prove the second
one let a, x e Sp be G-equivalent, ax, ... , ar e [p - 1] be the ascents of
(a(T-'(l)), ... , a(T-'(p))), and Bk d= {ak + 1, ak + 2,..., ak+x} , for k =

def def0, ... , r (where ao = 0, ar+x — p). Fix now 0 < k < r, then for all x, y e
Bk, we have that x < y => a(T-1(.x)) > o(x~x(y)). But this implies that
(x~x(x), x~x(y)) <£ E (otherwise, since a =<j a, we would have that x <
y => x(x~x(x)) < t(t_1(v)) => o(x~x(x)) < t(t"'(v)).  Hence x~x(Bk) is an
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independent set of G, for k - 0, ... , r. Since t-1(7?o), ... , x~x(Br) are a
partition of V this implies that v(G) < r + 1 and hence that a(o o t-1)+ 1 >
v(G). Since this holds for all a, x e Sp that are G-equivalent we conclude,
from (24), that tu,- = 0 if 0 < / < v(G) - 1. To prove the third assertion
let v(G) < r < p and let Vx, ... ,Vr be a partition of V into exactly r
independent sets. Choose a bijection a : V ->[p] with the property that

o(Vj+i) = {ij + I, ij + 2, ... , ij+x}

for j = 0, ... , r- I, (where ij = Y,k=l |V¡\ for 1 < j < r, and /0 = 0), and
define a bijection x: V —► [p] by letting

x(o-x(ij + k)) = ij+x-k+l
for j = 0, ... , r - 1, 1 < k < \Vj+x\. It is then easy to see that a =G t,
and that, by our definitions, a(x o o~x) = r - I. Since any system of distinct
representatives of Sp modulo =G may be used in (24) to compute w(G; x) we
may assume that a is an element of {ai, ... , aa(G)} in (24). Since x e Sp(o)
and iz(Toa-1)+ 1 = r this implies that wr > 0, as desired. Finally, for every
fixed 6 e A(G) and linear extension we of Pe , the polynomial

y     xa(we(a-l(l)),...,we(a-l(p)))+i

is monic of degree p (since a(wg(o~x(l)), ... , wg(o~x(p))) = p - 1 if and
only if a - we). Hence, taking the coefficients of xp on both sides of (20)
gives that wp = \A(G)\, as desired.   G

Note that the fact that x"(G) divides w(G ; x) may also be easily established
from (19) using the combinatorial definition of /(G; «) for « G N. However,
we thought a direct, combinatorial proof, to be preferable, and we thank An-
dreas Blass for suggesting the combinatorial argument given in the proof of the
preceding Proposition.

One of the main reasons for considering the w-polynomial of a graph is that
it can be used to derive information about some of the polynomials already
considered in this work. In fact, we have the following results.

Theorem 4.6. Let G be a graph on p vertices. Then

(28) w(G;x) = (1-xYö(g;j?-A.

In particular, w(G;x) has only real zeros if and only if ~&(G; x) does.
Proof. Equation (28) is an easy consequence of the definitions (18) and (16)
of w(G; x) and ö"(G; x), and of the binomial theorem (see also [9, Theorem
2.3.3]). The second assertion follows from (28).   a

Theorem 4.7. Let G be a graph and suppose that w(G;x) is log-concave. Then
both o(G;x) and o(G;x) are log-concave.
Proof. Let (18) and (16) be the tu-polynomial and augmented a-polynomial
of G, respectively. Then, from (1) and (17) we conclude that

p»>        £«.(*+;~')-t<«>x*>(í).
,-n \ r / \      /
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Since, by hypothesis, the sequence {lUo, ... ,wp} is log-concave, and by Propo-
sition 4.5 it has no internal zeros, there follows from (29), and Proposition
2.5.1 and Theorem 2.5.8 of [9] that the sequence {<zo• ci\, a2(2\), ... , ap(p\)}
is also log-concave. This shows that W(G; x) is log-concave and this implies,
by Proposition 3.24, that a(G;x) is also log-concave.   G

As an immediate consequence of Theorems 4.6 and 3.22 we obtain the fol-
lowing result.

Theorem 4.8. Let G be a graph and suppose that w(G; x) has only real zeros.
Then o(G; x) has only real zeros.   G

We now come to one of the main results of this section.

Theorem 4.9. Let G be a graph such that x(G; x) has all its zeros in the half
open interval [0,u(G)). Then w(G;x) has only real zeros.
Proof. By hypothesis X(x(G;x)) > 0 and A(x(G;x)) < v(G). Also, it is
clear from the combinatorial interpretation of the chromatic polynomial that
X(G; x) — 0 for all x e [0, v(G)) n Z. Hence, by Theorem 2.2 and the
definition (18) of the w-polynomial we have that w(G; x) has only real zeros,
as desired.   G

We now present a general class of graphs whose w -polynomials always have
only real zeros. A graph G on p vertices is called supersolvable if there is an
indexing vx, ... ,vp of the vertices of G such that if I < i < j <k < p and
vk is adjacent to v¡ and v¡, then v¡ and v¡ are adjacent. In other words,
the vertices adjacent to vk among vx, ... , vk_x induce a complete subgraph
of G, for k = I, ... , p. This concept was first introduced and studied by
Stanley in the more general setting of lattices (see [43]). Intuitively, we may
think of a supersolvable graph as one which can be reduced to A'i by taking
away one vertex at a time so that, each time, we are only allowed to take away a
vertex whose neighborhood is a clique. So, for example, the graphs T(t, m, n)
(defined in §3) are supersolvable, while the graphs V(t, m, n) are not, except
if t = 1.

Our interest in supersolvable graphs stems from the fact that their chromatic
polynomials have a nice closed form, as the next result shows.

Theorem 4.10. Let G — (V, E) be a supersolvable graph on p vertices. Then
there exist nonnegative integers ax, ... ,ap such that

(30) x(G;x) = f[(x-ai).
i=i

Proof. Let G be a supersolvable graph and let Vi,..., vp_x, vP be an indexing
defof the vertices of G as in the definition. For i — I, ... , p, let a¡ = \{j <

i: (Vj, Vj) e E}\, (so that ax = 0). Then we can color G in x colors by first
coloring Vx in x ways, then v2 in x - a2 ways, etc.... , and (30) follows.   G

The previous theorem is a special case of Theorem 4.1 of [43] about super-
solvable lattices, however, we thought a direct, self-contained proof, to be more
illuminating. Theorems 4.9 and 4.10 immediately imply one of the main results
of this section.
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Theorem 4.11. Let G be a supsersolvable graph. Then w(G; x) has only real
zeros.   G

As an immediate corollary of Theorems 4.8 and 4.11 we obtain the following
result which was first proved, though stated in a slightly different language, in
[55, Theorem 3.5].

Corollary 4.12. Let G be a supersolvable graph. Then o(G; x) has only real
zeros.   U

Other immediate consequences of Theorem 4.11 are the following, which, by
Theorem 4.8, strengthen Corollaries 3.6, and 3.21, respectively.

Corollary 4.13. Let Np be the empty graph on p vertices. Then w(Np;x) has
only real zeros.   G

Corollary 4.14. Let G be a tree. Then w(G;x) has only real zeros.   G

The reader should note that it follows easily from Theorem 4.3 that

(31) w(Np;x)=YxaiT)+i ■
resp

The polyomial on the RHS of (31 ) is called the pth Eulerian polynomial and has
been widely studied (see, e.g., [48, p. 22] for further information about Eulerian
polynomials). Thus, Corollary 4.13 is equivalent to the well-known (see, e.g.,
[14, Example 3, p. 292]) but nontrivial fact, that the Eulerian polynomials
have only real zeros. Hence Theorem 4.11 is a generalization of this well-
known result. Note that there are graphs whose chromatic polyomial do not
have only real zeros but that satisfy the hypotheses of Theorem 3.3 (take, e.g.,
Q). Therefore Theorem 3.3 is not a special case of Theorem 4.9.

There is an elegant characterization of supersolvable graphs (mentioned in
[43, p. 205]) which is sometimes more convenient to handle than the original
definition. Recall (see, e.g., [19, p. 48]) that a graph G is chorda! (sometimes
also called triangulated) if every cycle of G has a chord.

Theorem 4.15. Let G be a graph. Then G is supersolvable if and only if G is
chordal.   G

It is easy to see that if G is supersolvable then G is chordal. The converse,
however, is not obvious, and we refer the reader to [16, 19, 39], for a proof.

We now prove that the operation introduced in the paragraph preceding The-
orem 3.20 also preserves the property of the tu-polynomial having only real
zeros. In order to do this, we need the following analytical result, which is an
immediate consequence of Theorem 4.4.3 of [9].

Theorem 4.16. Let G and 77 be two graphs. Suppose that w(G; x) has only
real zeros and that

(32) x(H;x) = (x-c)x(G;x),
where 0 < c < u(G). Then w(H; x) has only real zeros.   G

The following result is the analogue of Theorem 3.20 for iu-polynomials. Its
proof is similar to that of Theorem 3.20 and is omitted.
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Theorem 4.17. Let G = (V, E) be a graph such that w(G; x) has only real
zeros. Then w(GVyK ; x) has only real zeros for all v e V and « G N.   G

We conclude this section with a result that is a consequence of Theorem 2.3
and the obvious fact that x{G tí 77 ; x) = x(G ; x)x(H ; x). It is the analogue,
for w-polynomials, of Theorem 3.12.

Theorem 4.18. Let G and H be two graphs.   Suppose that w(G;x)  and
w(H;x) have only real zeros. Then w(Gtí H; x) has only real zeros.   G

5. The t-polynomial

Let G be a graph on p vertices and let

(33) x(G;x) = Y(-lf-icl(x)l,
i=0

def def(where (x)¡ = x(x+l) ■ ■ ■ (x+i-l), for / > 1, and (x)o = 1), be its chromatic
polynomial. The x-polynomial of G is the polynomial defined by

(34) T(G;x)=f¿c,x''.
(=0

The T-polynomial of a graph is, in some sense, a "dual" of the a-polynomial.
The next two results give some of its basic properties.

Proposition 5.1 (Decomposition). Let G be a graph and let u and v be two
adjacent vertices of G. Then

x(G;x) = x(G';x) + x(G";x),
where G' (respectively, G") is the graph obtained from G by removing the edge
between u and v (respectively, identifying u and v).
Proof. It is well known (see, e.g., [36, Theorem 1] or [3, Proposition 9.3]) and
easy to see that

(35) x(G';x) = x(G;x) + x(G";x).
The thesis then follows from (35), (33), and (34).   G

We now proceed to give a combinatorial interpretation of the coefficients of
t(G; x) . To do this, we need the following result. (Recall that, given a graph
G, we denote by a(G) the number of acyclic orientations of G.)

Lemma 5.2. Let G be a graph and let u and v be two adjacent vertices of G.
Then

a(G) = a(G') + a(G"),
where G' and G" have the same meaning as in Proposition 5.1.
Proof. Letting x = « in (35) yields that

X(G';n) = x(G;n) + x(G";n).
Multiplying both sides of this equation by x" and summing over all « G N
gives, by (19), that
(36) w(G' ; x) = w(G ; x) + (1 - x)w(G" ; x).
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But, by Proposition 4.5, the leading coefficient of w(H; x) equals a(H), for
any graph 77. Hence taking the coefficients of xp on both sides of (36) estab-
lishes the lemma.   G

Using the preceding lemma we can give a combinatorial interpretation of the
coefficients of t(G; x) . Let F be a finite set, we denote by n(F) the set of
all partitions of V. Given a function /: V -» [«] (« G P) we let Kf be the
partition of V defined by letting i, j e V be in the same block of iif if and
only if /(/) = f(j). We call Uf the partition of V induced by /. Given
71, a G 11(F) we let n ■< a if and only if every block of n is contained in
a block of a. This makes 11(F) into a partially ordered set (actually, into a
geometric lattice) and we refer the reader to [48] or [51] for further information
about it. Given u, v e V we will denote by uv the partition of V having
all blocks of cardinality 1 except for the block {u,v}. For n e 11(F) we
denote by |7r| the number of blocks of n . Let now G = (V, E) be a graph.
Given a subset B ç V we denote by G(B) the subgraph of G induced by B
(i.e., G(B) =f (B,E(B)), where E(B) d= {(«, v) e E: u, v e B}). Given a

defpartition n of V we let G(n) = l+)Be7r G(B). We can now prove one of the
main results of this section.

Theorem 5.3. Let G = ( V, E) be a graph on p vertices and q edges and
x(G;x) be its x-polynomial. Then

(37) t(G;x)=   Y   a(G(n))x\«\.
n€U(V)

Proof. We prove the result by induction on p + q . The result is easily verified
for p + q < 2. So assume that (37) holds for all graphs G — (V, E) such that
I V\ + \E\ <p + q-l and let G be a graph on p vertices and q edges. If q = 0
then G — Np and hence x(G; x) = xp . But it is well known (see, e.g., [48, p.
209]) that x" = T,Pi=o(-l)p~is(P> *)(*)/. so from (33) and (34) we conclude
that x(Np;x) = ¿Z"i=os(P> 'V' ■ B»t if G = Np then G(n) = Np for all
neU(V). Therefore \Z^n(v)a(G(n))x^ = \Z^u(v)x^ = Eio^F, 0*',
as desired. So suppose that there are u, v e V such that (u, v) e E, and let
G' and G" have the same meaning as in Proposition 5.1. Note that we have a
natural bijection

<p: {n e U(V): uv<n}-* n(F\{«})

and that G(7r)' = G'(n) and G(7t)" = G"((p(n)) if n y uv. Also note that if
n^_uv then G(n) = G'(n). Then we have that

Y        a(G(n))XW = Y        (a(G(n)') + a(G(n)"))xW
{nen(V): n±uv} {n£\l(V)\ n^uv}

Y (a(G'(7i)) + a(G"(tp(n))))xW

Y x^a(G'(n))+      Y     xWa(G"(n)).
{n€n(V): k±uv} x€Tl(V\{u})
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Hence
Y  x]nla(G(n))=        Y        x^a(G(n))+        Y        x^a(G'(n))

ten(F) {n€ll(V): nyuv} {n£ïl(V): n\±uv}

=      Y     x¡nla(G"(n))+   Y  xln]a(G'(x))
xen(v\{u}) neri(v)

= x(G" ; x) + x(G'; x)
= x(G;x)

by Proposition 5.1 and our induction hypotheses. This proves (37) for G and
concludes the induction step and hence the proof.   G

As an immediate consequence of the preceding theorem we obtain the fol-
lowing result.
Corollary 5.4. Let G be a graph on p vertices and q edges and (34) be its
x-polynomial. Then, for i = 0, ..., p, we have that

c,=        Y        a(G(n))-
{KÇ.n(V):\x\=i}

In particular, c0 = 0, ex = a(G), c¡ > 1 for i = 2,..., p — 2, cp-\ = (^) + q,
and cp = 1.   G

By the definition of the T-polynomial Theorem 5.3 yields the following new
expansion of the chromatic polynomial of a graph.
Theorem 5.5. Let G — (V, E) be a graph on p vertices. Then

X(G;x)=   Y  a(G(n))(-iy-W(xhn\-   □
7ten(K)

We illustrate Theorems 5.3 and 5.5 with an example. Let G = (V, E) be
the cycle on three vertices and assume that V = [3], and E — {(1,2), (2, 3),
(3, 1)} . Then there are five partitions of V, namely, Jix = {1, 2, 3}, n2 =
{1}U{2,3}, *3 = {2}U{1,3}, *4 = {3}U{l,2},and ns = {1}U{2}U{3} .
Hence,

t(G; x) = a(G({l, 2, 3}))xx + a(G({l}U {2, 3}))x2
+ a(G({2} u {1, 3}))x2 + a(G({3} U {1, 2}))x2
+ a(G({l}U{2}u{3}))*3

= 6x + 6x2 + x3,
and therefore

X(G;x) = 6(x)x -6(x)2 + (x)3.
We now introduce a modified version of the T-polynomial that will serve the

same purpose as â"(G; x) does for o(G; x). Let G be a graph on p vertices
and let (34) be its T-polynomial. Then the augmented x-polynomial of G is
the polynomial defined by

(38) T(G;x)=f£(/!)c,-x''.
i=0

As another immediate consequence of Theorem 5.3 we obtain the following
combinatorial interpretation of the coefficients of x(G; x).
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Theorem 5.6. Let G be a graph on p vertices and let (38) be its augmented
x-polynomial. Then, for i = 0, ... , p, we have that

(i\)d=    Y    ^G(na)),
o:V->li]

a onto

where na is the partition of V induced by a.   G

As a consequence of Theorem 5.6 we obtain the following combinatorial
interpretation of the chromatic polynomial of a graph evaluated at negative
integers.

Theorem 5.7. Let G be a graph on p vertices. Then, for n e P, we have that

(39) (-Ifx{G;-n)=    Y   ^G(na)).
a: V^[n]

Proof. Fix « g P. Letting x = -n in (33) we obtain that
p

(-l)^(G;-«) = ¿(/!)c;(")
i=i

and the thesis follows from Theorem 5.6.   G

Let 6 e A(G) and « G P, a map a: V -> [«] is said to be 6-compatible if
!/-»« implies o(u) > o(v). We can now prove the following result originally
due to R. Stanley (see [44, Theorem 1.2]), and frequently rediscovered in the
case « = 1 (see, e.g., [60, p. 202]).

Theorem 5.8. Let G be a graph on p vertices. Then, for « G P, (-l)px(G; -«)
equals the number of pairs (6, a) where 6 is an acyclic orientation of G and
a: V --> [«] is a 6-compatible map. In particular, (-l)px(G; -I) equals the
number of acyclic orientations of G.
Proof. It is not hard to see that, for each map a : V —> [«], there are exactly
a(G(na)) acyclic orientations 6 of G such that a is ö-compatible. The thesis
hence follows from (39).   G

The main connections between the zeros and log-concavity properties of
w(G; x) and t(G; x) are given in the next two results. We omit the proof
of the first one since it is similar to that of Theorem 4.6.

Theorem 5.9. Let G be a graph on p vertices. Then

(40) w(G;x) = (x-1)pxx(g;—^-\.

In particular, w(G; x) has only real zeros if and only ifx(G;x) does.   G

Theorem 5.10. Let G be a graph and suppose that w(G; x) is log-concave.
Then both x(G; x) and x(G; x) are log-concave.
Proof. Let (18) and (38) be the w-polynomial and augmented T-polynomial of
G, respectively. Then, by (17) and (33), we have that

(4i) Y™.(x+p~i) = Y(-ir-'cM'-
i=i      \      y      /     i=l
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Letting now x = -x in (41) and then multiplying both sides by (-l)p yields

(42)       ±<*-»(x+;-')-±<m(xx
i=i ¡=i      ^ '

By our hypotheses and Proposition 4.5 the sequence {wp , ... , w2, wx} is log-
concave with no internal zeros, hence by (42), and Proposition 2.5.1 and Theo-
rem 2.5.8 of [9], the sequence {co, c\, c2(2\), ... , cp(p\)} is log-concave. This
shows that x(G; x) is log-concave. The second statement follows easily from
the first one.   G

Note that the preceding result is the analogue, for t(G; x) and t(G; x) , of
Theorem 4.7. We conclude this section with a curious consequence of Theorem
5.9.

Proposition 5.11. Let G be a graph. Then

(43) x(G;l) = \w(G;2).   D

It would be interesting to have a combinatorial proof of (43) based on The-
orems 4.3 and 5.3. Note that, by Theorem 4.6, Theorem 5.9 also implies that,
for a graph G, o(G ; x) has only real zeros if and only if t(G ; x) does. Also,
since the relationship between x(G; x) and x(G; x) is identical to the one
between o(G; x) and W(G; x) Theorems 3.22 and 3.23 and Proposition 3.24
still hold when "a" is replaced by "t" throughout their statements. Finally, by
Theorem 5.9, all the results obtained in the preceding section about the zeros
of w(G; x) (namely Theorems 4.9, 4.11, 4.16, 4.17, and 4.18 and Corollaries
4.13 and 4.14) also hold for x(G;x).

6. Chromatic polynomials
In this section we study the zeros and log-concavity properties of the chro-

matic polynomial itself and the connections between these and those of the
polynomials studied in the preceding sections. Our first result is the following.

Theorem 6.1. Let G be a graph. Suppose that x(G;x) has only real zeros; then
x(G ; x) has only simple real zeros.
Proof. Let (34) be the T-polynomial of G. Since x(G; x) has only real (neces-
sarily nonnegative) zeros, there follows from equality (33) that the polynomial
Yfi=x Ci(x)¡ has only real nonpositive zeros. But by Theorem 2.4.2 of [9] this
implies that Yf¡=x ctx' nas onry simple real zeros, as desired.   G

Note that the converse of Theorem 6.1 does not hold (take, e.g., G = Q).
We investigate next the log-concavity properties of the coefficients of /(G; x).
(We refer the reader to [3, p. 88] for the definition of the internal and external
activities of a spanning tree.)

Theorem 6.2. Let G be a connected graph on p vertices and let, for i =
I, ... , p-l, tj be the number of spanning trees of G having internal activity i
and external activity 0. Suppose that the sequence {tx, ... , rp_i} is log-concave
with no internal zeros; then (-l)px(G; -x) is log-concave.
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Proof. It follows from our definitions and [3, Theorem 1.4.1, p. 94] that

(-iyX(G;-x) = xYlti(l+x)i

7>0 \i>0     xy/ /

def(where /, = 0 if / > p or / = 0). But, by our hypotheses, the sequence
{/,},eN is log-concave with no internal zeros (and eventually vanishing), hence,
by Proposition 2.5.1 and Theorem 2.5.3 of [9], the sequence

is-»),,.
is log-concave and the thesis follows from (44).   G

We now consider the log-concavity of the sequence {x(G ; «)}«=o, 1,2,... • Our
main result in this direction is the following.

Theorem 6.3. Let G be a graph and suppose that W(G;x) is log-concave. Then
the sequence {x(G; «)}„=o,i,2,... is log-concave.
Proof. Let (16) be the augmented a-polynomial of G. By our hypotheses,
the sequence {ao, lax, 2!û2 , • • • , PxaP} is log-concave, and, by Theorem 3.1, it
has no internal zeros. Therefore, by (1) and Theorem 2.5.7 of [9], the sequence
{x(G; «)}n=o,i,2,... is log-concave, as desired.   G

Note that, by the preceding result and Theorems 3.23 and 4.8, all the results
obtained in §§3 and 4 about the reality of the zeros of w(G; x) and o(G; x)
give rise to a number of classes of graphs for which the sequence {x(G ; «)}neN
is log-concave.

7. Conjectures and open problems
There are several problems that are suggested by the research presented in

this work. The main one is probably the following.

Problem 7.1. Does the polynomial x(G; x) have only real zeros for all graphs
G?

We have verified that the answer is yes for all connected graphs on < 8
vertices. G. F. Royle (private communication) has recently found that o(G; x)
does not always have only real zeros. However, we do feel that the following
statements are true. (We refer the reader to [3, p. 63] for the definition of
prisms and Möbius ladders.)

Conjecture 7.2. Let G be a graph on p vertices and suppose that v(G) > p-3.
Then o(G; x) has only real zeros.

Conjecture 7.3. Let G — (V, E) be a prism, a cycle, or a Möbius ladder. Then
a(G; x) has only real zeros.
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If v(G) > p - 2 then Conjecture 7.2 holds by Theorem 3.8. The chromatic
polynomials of connected graphs G on p vertices such that u(G) — p-3 have
been completely classified by Dhurandhar in [15] and Conjecture 7.2 might
follow from this characterization. We should warn the reader, however, that
some printing errors are present in [15]. Besides the wrong formula on p. 220
for ap-2 (see Proposition 3.2 of the present work for the correct formula) the
constant term of o(G4) on p. 218 of [ 15] should be "5r-28" instead of "5r-23"
and the coefficient of a in a(Gx2) on p. 219 should be 17 instead of 19. We do
not know if other printing errors are present in [15]. Conjecture 7.3 has been
verified for \V\ < 14.

The graph in Figure 3 at the end of §3 and Theorems 4.6 and 5.9 shows that
w(G ; x), x(G; x), and W(G ; x) do not always have only real zeros. However,
it would be interesting to know for which graphs G this is true. The graph
G = Cs shows that the condition of x(G; x) having all its zeros in [0, v(G))
(though sufficient, by Theorem 4.9) is not necessary for w(G; x) to have only
real zeros. The main open problem about w(G; x), x(G; x), and o(G; x),
however, is the following.

Problem 7.4. Are the polynomials w(G; x),x(G; x), and o(G; x) log-concave
(or just unimodal) for every graph G ?

We have verified that the answer to the above questions is yes for connected
graphs on < 7 vertices. Note that, by Theorems 4.7 and 5.10, if w(G; x) is
log-concave then both o(G;x) and x(G;x) are also log-concave. Also, by
Theorem 3.23, if the answer to Problem 7.1 is yes for o(G; x) (respectively,
t(G; x)) then the answer to Problem 7.4 is also yes for o(G; x) (respectively
x(G;x)).

Regarding the chromatic polynomial itself we feel that the following state-
ment holds.

Conjecture 7.5. Let G be a graph.  Then the sequence {x(G; «)}«eN is log-
concave.

If the answer to Problem 7.1 is affirmative for o(G; x) then, by Theorem
3.23 and 6.3, Conjecture 7.5 would follow. Also, if the answer to Problem 7.4
is yes for W(G; x) (or if w(G; x) is log-concave) then, by Theorems 4.7 and
6.3, Conjecture 7.5 would again follow. In particular, Conjecture 7.5 holds for
all graphs on < 7 vertices.

Finally, let us mention the following conjecture, due to Read for unimodality
(see [36, p. 68]) and to Welsh (in the more general setting of matroids, see [57,
Example 5, p. 266]) for log-concavity.

Conjecture 7.6. Let G be a graph, then the polynomial (-l)px(G; -x) is log-
concave (and hence, in particular, unimodal).

Because this conjecture has already received a considerable amount of in-
terest we do not dwell on it here but instead refer the reader to [20] for more
information about it. However, one of the aims of this work has been to show
that Conjecture 7.6 is only one of a whole class of similar problems that are all
interconnected and worth investigating.
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