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ABSTRACT

Applications of the original prophet inequalities
of Krengel and Sucheston are made to problems of order
selection, non-measurable stop rules, look-ahead stop
rules, and iterated maps of random variables. Also,
proofs are given of two results of Hill and Hordijk
concerning optimal orderings of uniform and exponential
distributions.

§1. INTRODUCTION
Universal inequalities comparing the two £

tionals

unc-

M= M(Xl,xz,...) = E(sgp Xn)

and

- : is a stop rule
) = sup{EX : t 1

vV = V(Xl,Xz,-.-

for X1,X2,-~-}
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of sequences of random variables are called "prophet
inequalities” because of the natural interpretation of
M as the value to a prophet, or player with complete
foresight, in an optimal stopping problem involving
random variables Xl’xz"" . First discovered by
Krengel and Sucheston [22, 23], these inequalities have
been the subject of a number of recent investigations
(e.g., [1, 2, 4-15, 17-21, 24-271) .

In §2, the applications of prophet inequalities to
inequalities involving functionals other than M or V
are given, with attention focused on the fundamental

prophet inequality [23]

(1) If X;,%X5,... are independent and nonnegative, then
M < 2V, and this bound is sharp.

(Analogous applications of other prophet inequalities
to similar problems are left to the reader.)

Section 3 contains proofs of two optimal-ordering
results of Hill and Hordijk [11].

§2. APPLICATIONS OF PROPHET INEQUALITIES

The initial discovery and application of prophet
inequalities such as (1) were made by Krengel and
Sucheston in conjunction with investigations of semi-
amarts and processes with finite value [22, 23]. In
this section, other applications of the basic inegua-
lity (1) are given to several optimal-stopping problems
and an iterated map problem.

For the main application theorem, which follows
immediately from (1), let

U = U(Xl,Xz,...)

be any (real-valued) functional of xl,xz,... . (More

formally, U is a function from C, the set of infinite



sequences of probability distributions, to the real
numbers. In practice, U is usually Borel measurable,
with C endowed with the product topology induced by the
total-variation norm topology on the space of probabi-

lity distributions.)

Theorem 2.1. Let Xl,Xz,... be independent nonnegative
random variables. Then

(i) V < U implies U =< 2V; and

(ii) U < M implies M < 2U.

Proof. Immediate from (1).

Application to Order Selection
Let Ug be the value of the sequence X, 2;r---
player free to choose the order of observation of the

random variables, as well as the time of stopping, that i

to a

is,

Ug = Ug(X,.,X ) = sup{V(Xn(l),Xﬂ(z)-,...):

s PYARE

}.

7 is a permutation of 1,2,.--

(For a formal definition, including stochastic permuta-

ions w, see {9].)

Corollary 2.2. Let Xl’xz"“ be independent nonnega-

tive random variables. Then
(1) (Hill [9]) Ug < 2V;i and
(ii) M < 2u,.
Moreover, the bound in (i) is sharp. .
(Whether or not the constant wyn jp (ii) 1s @

it
sharp bound is not known to the author.) Inequal uile
ever do better than 4o
£ a given

) is imme-

(1) says that a player may B

his expected value by rearranging the order'?

Sequence of random variables. Inequality (1 the ques~
- H 1

diate from (1) and the fact that Ug * vi ontY

tion of its sharpness is of interest.




Application to Use of Non-Measurable Stop Rules

Let U be the value of the sequence Xl,Xz,... to a
player free to use non-measurable stop rules, i.e.,
integer-valued functions s for which {s = j} can be any

(not necessarily measurable) function of xl”"'Xj‘

That is, UN is the functional

U

N )

Uy (Xq oXyree
sup{EXS: s is a "non-measurable” stop rulel.
s

(For a formal definition, see [161.)

1\

Corollary 2.3. Let Xl'Xz"" be independent nonnega-

tive random variables. Then
(i) (Hill and Pestien [16]) UN < 2V; and
(ii) M = ZUN.

Moreover both bounds are sharp.

Proof. The inequalities follow immediately from (L);
the sharpness of (i) is in [16]. To see that the bound
in (ii) is sharp, let X, be constant +1, and let X, be
a "long shot" [12] given by P(X, = | -P(X, =0)-

The M= 2- = =
n e, and UN US 1. i

Application to "Look-Ahead" Stop Rules

Let U, ) be the value of the sequence R to
a player free to use stop rules s which allow looking
ahead k steps (i.e., integer-valued measurable func-

tions satisfyin s =
ying { i} e G(Xl""’xj+k)’ so

Ua,x = Ya,x¥17X )

gt
sup{EXS: s is a k-step "look-ahead" stop rulel.

Corollary 2.4. Let Xy,X,,... be independent nonnega-

tive random variables, and let k be a positive integer-
Then

(i) UA,k < 2V; and

{(ii) M < 2U




Moreover, both bounds are sharp.

Proof. The inequalities follow immediately from (1).
To see that (i) is sharp, let X, = constant +1,

X2 = ... = Xk+l = confiant 0, and let Xk+2 be a "long
shot" with P(xk+2 =g )y =¢=1- P(Xk+2 = 0); then
UA x = 2-¢ and V = 1. To see that (i) is sharp, let

F
Xl = +1, X2 = ... = Xk+2 = 0, and let X, .4 be the "long
shot" random variable just described; then M = 2-¢ and
UA,k = 1. : 0

Thus (i) says that a player able to look k steps
into the future never has optimal expected return more
than twice that of a player who cannot iook ahead, and
(ii) says that a prophet's optimal expected return is
never more than twice that of a player who may look a
fixed number of steps into the future. On the other
hand, for a fixed sequence of random variables, it is
clear that

lim UA,k(xl'XZ"") = M(xl’XZ"")°

K+
Application to Iterated Maps

Let ¢(X,Y) and y(X,Y) be the random variables
$(X,¥) = max({X,Y} and ¢(X,¥) = max{X,EY}, and define

the random variables ¢n(Xn,---.Xl) and wn(xnr'-"xl)
inductively by

¢k(xj""."xl) = ¢(Xk’¢k_l(xk_ll'--lxl)

and
by (XyeXy) = (X, %), and

, yoeer¥y)e
by Ky reneeXy) = (K B-17777"71




Application to Use of Non-Measurable Stop Rules

Let UN be the value of the sequence Xl’XZ"" to a

player free to use non-measurable stop rules, i.e.,
integer-valued functions s for which {s = j} can be any

(not necessarily measurable) function of Xl""’Xj'

That is, UN is the functional

U UN(Xl'XZ"")

N

I

sup{EXS: s is a "non-measurable" stop rule}.
s
(For a formal definition, see {[161].)

Corollary 2.3. Let Xl’xz"" be independent nonnega-

tive random variables. Then
(i) (Hill and Pestien [16]) UN < 2V; and
(ii) M < ZUN.
Moreover both bounds are sharp.
Proof. The inequalities follow immediately from (1)

the sharpness of (i) is in [16]. To see that the bound

in (ii) is sharp, let X, be constant +1, and let X, be

1
a "long shot™ [12] given by P(X2 = e_l) =g =1-P(X, =0)-
Then M = 2-¢, and UN = Us = 1. 0

Application to "Look-Ahead" Stop Rules

Let Up 4 be the value of the sequence X;,Xjyr---* to
a player free to use stop rules s which allow looking
ahead k steps (i.e., integer-valued measurable func-

tions satisfyin s = 3
ying { it e G(Xl,...,xj+k), so

Ua,k = Ua,x¥pr¥pre-s)

sup{EX_ : s is a k-step "look-ahead” stop rule}.

Corollary 2.4. Let Xl,xz,... be independent nonnega-

tive random variables, and let k be a positive integer:
Then

(i) UA,k < 2V; and
ii) M <
{ii) < ZUA'k.



Moreover, both bounds are sharp.

Proof. The inequalities follow immediately from (1).
To see that (i) is sharp, let Xl = constant +1,

X2 = L. = Xk+l
shot" with P(Xk+2

be a "long
= 0); then

= constant 0, and let X

= E—l) = ¢ =1 - P(X

k+2
k+2

UA K = 2-¢ and V = 1. To see that (i) is sharp, let

14

Xl = +1, X2 T ... = Xk+2 = 0, and let Xk+3 be the "long
shot" random variable just described; then M = 2-¢ and
Up,x = 1+ a

Thus (i) says that a player able to look k steps
into the future never has optimal expected return more
than twice that of a player who cannot look ahead, and
(ii) says that a prophet's optimal expected return is
never more than twice that of a player who may look a
fixed number of steps into the future. On the other
hand, for a fixed sequence of random variables, it is
clear that
lim UA,k(Xl'X2"") = M(xl,xz,...).

koo
Application to Iterated Maps

Let ¢(X,Y) and y(X,Y) be the random variables
$(X,Y) = max{X,Y} and PiX,Y) = max{X,EY}, and define
the random variables ¢n(xn,...,Xl) and wn(Xn,.--.Xl)

inductively by

¢2(X21X1) = ¢(X2lxl)l and

¢k(xk""'xl) = ¢(Xk,¢k_l(xk_l,.-.pxl)

and

— d
by (XyeXy) = P(XyeXy)e 3D

ceer¥))e
P (Koo e i) = Ky by Bgemrr 7L



Then E(max{xl,...,xn}) = E(¢n(xn,...,xl)), and |
V(Xl,...,Xn) = E(wn(xn,...,xl)), so the finite version
of (1) may be restated as

(2) E[¢n(Xn,...,Xl)] < 2E[wn(Xn,...,Xl)].

Corollary 2.5. Let Xl,Xz,... be independent nonnega-=

tive random variables, let g(X,Y) be such that g = ¥,
and g(X,Y) = g(X,¥) if ¥ 2 ¢ a.e. Define g (X .,---r¥;)

1

inductively by gz(xz,xl) g(Xz,Xl) and

gk(Xk.---.Xl) = g(Xk,gk_l(Xk_l,...,Xl)). Then
(3) E(max{Xl,...,Xn}) < ZE[gn(Xn,...,Xl)].
proof. Follows easily by (2) and induction. 0

The iterated maps 9, need not closely resemble
ordinary stopping theory functions, for example con-—
sider g(X,Y) = max{X, NY[|p }for p > 1, or g(X,¥)
(max{X,¥)} + max{X,EY})/2. Inequality (3) corresponds
to the inequality M =< 2U in Theorem 2.1; the analog of
(3) corresponding to U < 2V is also possible under
similar hypotheses.

§3. PROOFS OF TWO RESULTS IN ORDER SELECTION

The purpose of this section is to give proofs of

two results, both concerning optimal stopping with
order selection, which appear in [11] without proof.

I ‘Theorem 3.1. (4.6(ii) of [11]). Let aj,ay,... be @
L sequence of non-increasing positive numbers, and let
Xl,Xz,... be independent random variables with distri-

' § butions uniform on [0,a,],[0,a,],... respectively.
N Then

V(Xl,xz,...) = sup{V(X ),X

m(1 Tr(2),...):

T is a permutation of N }.




proof. (due to Hordijk and Hill). The proof will be an
application of Proposition 4.5 of [11]. By renor-

malizing, it suffices to show
(4) V(Xl,Xa,c) > V(Xa,xl,c)
for all a ¢ (0,1) and all c ¢ IR.

For a random variable T with values in {1,2,3},
let Ry (X,Y,c) = X {fT=1; =Y if T = 2; and = ¢ if
T = 3. Also, let T(X,Y,c) =1 if X > E(max{Y,c}); = 2
if X < E(max{Y,c}) and ¥ > ¢; and = 3 otherwise.
Letting X and Y be i.i.d. ul0,1], by Lemma 2.1 of [3]
it follows that (4) is equivalent to

(5) E[ ,(X,Y,C) - RT(G,Y,X,C) (U-YIXIC)] 2 0.

R X
T(X, 0¥, c) ¢

To see (5), first observe that

(6) EIR

T(X,0¥,c) {(X,aY,cC) IX € {0,all

- X,a¥,c)]
= E[RT(aX,aY,C) (oX,0Y, ’

since the distribution of X given X ¢ [0,al is uniform
on [0,a], that is, has the same distribution as oX. -

Next calculate

(7 EIR

T{(aY,X,C) {aY,X,c) lX e [0,al]

(aY,ach) ]

1

ElRp(4v,X,c)

E[Ry(4y,aX,c)
where the first equality follows as in (6), and the
inequality since T(a¥Y,oaX,C) is the optimal stop rule
(by Lemma 2.1 of [3]) for (a¥,oX,c). Together (&) and
(7) imply

(O.Y,O.XIC) 1,

A

0,0}l
8 - (oY, X,c) |X € (o,
B ElRy(y iy o) (Kro¥e)Rp(ay,x,0) " ’
>0 a.s-
1] and using the
1 distribution

Similarly, conditioning on X e (ar

fact that given X € (a,1], the conditiona



of X is uniform on (a,l}, one has the following two

relations:

(9) ElRy (%, 0v,c) (X,0Y,c) lxl e (a,1]1] = Elmax{z,cl}l],
and
(10) E[RT(aY’X'c)(aY,X,c)iX e (a,11]
= E[RT(QY’X,C)(GY,Z,C)]
< E[RT(QY,Z'C) (0Y,Z2,c)]

E(max{z,cl}l,

where Z is uniform (a,1] (and independent of Y,X).

From (9) and (10) follows the inequality corres-
ponding to (8) given that X ¢ (a,l1], which together
with (8) yields (5) and completes the proof. a

Theorem 3.2. (4.6 (iii) of [11]). Let o be a

RATTERE
sequence of non-increasing positive numbers, and let

Xl'XZ”" be independent exponentially distributed ran-

dom variables with means OprQoyren- respectively. Then

V(Xl'XZ"") = sup{V(XW(l),XW(Z),...:

m is a permutation of IN}.

Proof (due to Chris Klaassen). By Proposition 4.5 of

[11] and renormalizing, it suffices to show

-C
_c_e -< c
< = _c
X - - -
(11) xe X 4+ e7C 5 og7%e € 4+ xe ®

for all x > 1 and all ¢ = 0.

Substituting y = ¢ € and o = 1/x, it suffices to

show a

(12) U ) = =) 4 oyt (1-e %) 2 0

for all o ¢ [0,1] and all y ¢ [0,1].



Since Y, ( = = i
Yo y) = wl(y)a_ 0, fix o ¢ (0,1). Let Fly) =

1-e %Y and G(y) = 1-e~ Y7/ qnen
(13 ! -
) wa(y) = -F(y) + ayl %G(y); and
14 5t
(14) pLly) = ofF(y) + [(-a)y "-116W) )

" Sigce F and G are non-negative on [0,1], and
¢ Z;ilow- 1320 for yeI, = (0, (1-0) /1, from (14)
i impljezh?t wa(y) > 0 for y e I;- Since wa(O) =0
! >
Ty DA T
o < me y € 12 = ((1-a) ,1], then
(13) would imply

l A Ay — A
(15) e < E IR

, it follows from (14)

Since (l—u)§_a—l < 0 on I2
1. §a-l that

and (15) with x(§) = @ + (1=0F

(16) P 2 F(9) x{Y) -

Since x(1) = 0 and ' (y) = (1) 9 2(@*-1) = 04
But the con-

v (y) < 0 implies w&(§) >0 for ¥ € I,-
tinuity of ¥ then implies V¥, 2 0 for all y € I, also,

which establishes (12), completing the proof. a
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