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Abstract
The presence of lymphocytic infiltration (LI) has been

correlated with nodal metastasis and tumor recurrence in
HER2+ breast cancer (BC), making it important to study LI.
The ability to detect and quantify extent of LI could serve
as an image based prognostic tool for HER2+ BC patients.
Lymphocyte segmentation in H & E-stained BC histopathol-
ogy images is, however, complicated due to the similar-
ity in appearance between lymphocyte nuclei and cancer
nuclei. Additional challenges include biological variability,
histological artifacts, and high prevalence of overlapping
objects. Although active contours are widely employed in
segmentation, they are limited in their ability to segment
overlapping objects. In this paper, we propose a segmenta-
tion scheme (EMaGACOR) that integrates Expectation Max-
imization (EM) based segmentation with a geodesic active
contour (GAC). Additionally, a novel heuristic edge-path
algorithm exploits the size of lymphocytes to split contours
that enclose overlapping objects. For a total of 62 HER2+
breast biopsy images, EMaGACOR was found to have a
detection sensitivity of over 90% and a positive predictive
value of over 78%. By comparison, EMaGAC (model without
overlap resolution) and GAC (Randomly initialized geodesic
active contour) model yielded corresponding sensitivities of
57.4% and 26.7%, respectively. Furthermore, EMaGACOR
was able to resolve over 92% of overlaps. Our scheme was
found to be robust, reproducible, accurate, and could po-
tentially be applied to other biomedical image segmentation
applications.

1. Introduction

Breast cancer (BC) is the most common cancer diagnosis
in women in the United States with an estimated incidence
of 180,000 and mortality of over 40,000 in 2008 [1]. The
diagnosis and prognosis of BC is typically based on exam-
ination of breast biopsy tissue specimens by a pathologist
who attempts to identify image derived features to recognize
patterns and changes in phenotypes that are characteristic of
BC. Certain kinds of phenotypic changes in tissue pathology,
such as lymphocytic infiltration (LI), may be related to
patient survival and outcome and may aid in prescribing
appropriate therapy [2]. LI has been correlated with nodal
metastasis and tumor recurrence in HER2+ BC, thus making
it necessary to detect and quantify lymphocyte patterns in
BC histopathology [2].

The visual detection of lymphocytes in histopathology
images is complicated due to the similarity in appearance

between lymphocyte nuclei and cancer nuclei. These two
classes of nuclei are often confused with each another
during manual segmentation, which may introduce error
and negatively affect consistency in determining extent of
LI. This in turn implies that a clinician’s ability to predict
survival and disease outcome will be affected by inter-
and intra-clinician variability. Hence, there exists the need
for accurate automated detection of lymphocyte nuclei in
BC histopathology images that involves minimal manual
intervention. Additional challenges in segmentation include
the variability between images due to inconsistencies in
histological staining, fixation and digitization procedures.
Furthermore, LI is characterized by a high density of lym-
phocytes, which makes overlap among lymphocyte nuclei
and other structures highly prevalent in BC images. Hence,
the ability to accurately estimate the true extent of LI is
contingent on an algorithm’s ability to resolve such overlaps.

2. Previous related work

Manual detection and semi-automated segmentation of
nuclei and glands were employed in [3] to distinguish
low and high grades of BC using textural and nuclear
architectural features.

Segmentation of structures in breast histopathology im-
ages have been attempted using fuzzy c-means clustering [4]
and adaptive thresholding [5]. Thresholding tends to work
only on uniform images and does not produce consistent
results if there is considerable variability across image sets.
Watershed algorithms [6] tend to be limited by the same
problem and require prominent ‘necks’ to segment adjacent
or overlapping objects. Active contours are widely used in
image segmentation [7], however they are often unable to
resolve multiple objects segmented as a single object and
inclusion of other irrelevant objects from the background
further detracts from the final result. Contour models alone
are insufficient in providing satifactory segmentation as ran-
dom initialization limits their ability to target specific objects
of interest. More recently, probabilistic models have been
employed to drive segmentation models [8], [9] but require
manual training that limits automation and application. For
example, a Bayesian classifier in conjunction with a template
matching scheme was used to grade prostate and breast
cancer histopathology [8] and distinguish LI in HER2+ BC
[9]. A supervised classifier requires manual training and
a representative annotated sample data set to model the
entire data. Data sets for training are difficult to define
due to variability across images. Furthermore, such models
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may not be generalizable and have limited application.
The limitations in the applicability of the aforementioned
segmentation methods for detecting lymphocyte nuclei in
BC histopathology images include,

• variability in image sets due to artifacts from staining,
fixation and digitization,

• inability to resolve overlap between objects,
• limitations in obtaining representative annotated sample

data sets for training probabilistic models.

3. Novel contributions of this work

In this paper, we present a new segmentation scheme —
Expectation Maximization driven Geodesic Active Contour
with Overlap Resolution (EMaGACOR) — for detecting
lymphocyte nuclei in BC histopathology images. (Figure
1). EMaGACOR is able to overcome the drawbacks asso-

Initialize and 
evolve contour 

from EM results

Split contours 
enclosing multiple 

objects

Distinguish objects 
using texture based 

clustering

Obtain initial scene 
segmentation using 

EM

Figure 1: Flow chart depicting proposed EMaGACOR model

ciated with probabilistic segmentation schemes, namely the
need for annotated training data and defining representative
data sets. We attempt to avoid these issues by using an
Expectation Maximization (EM) algorithm to initialize a
geodesic active contour model (GAC). In this paper, we use
the Magnetostatic Active Contour (MAC) described in [7]
as the GAC model. The EM algorithm effectively replaces
the Bayesian framework and hence eliminates the need for
representative data sets for training and reduces the effect
of data set variability on segmentation results. Initialization
of the active contour using EM allows the model to focus
on relevant objects of interest. The EM algorithm provides
an initial segmentation in the form a likelihood scene. The
centroids of the objects detected in this scene are used as
seed points to initialize the contour which enhances the
performance of the active contour model in capturing target
objects. As mentioned earlier, overlapping/touching objects
are characteristic of our problem and we further process
the contour result by splitting the contour between high
concavity points. While Chetverikov et al. [10] and Yang et
al. [11] have previously described related concavity detection
algorithms, our methodology involves a modified approach
involving the use of vectors to allow continuous concavity
detection on closed contours. A novel contour splitting
scheme is devised where the concavity points are connected
by an edge-path algorithm that defines paths through relevant
edge points within the contour while simultaneously ensur-
ing an optimal split. The algorithm incrementally defines a
path by including single edge points at a time to ensure that
the split represents an edge or a potential overlap boundary.
An intelligent heuristic rule based on object size is used to
determine the need for a split. This enables us to distinguish
between multiple objects identified as a single entity by

the active contour. The last module of the system involves
object class segregation based on texture based clustering
in order to distinguish lymphocyte nuclei from other similar
structures in the image.

In summary, our segmentation method (EMaGACOR)
improves lymphocyte detection in BC histopathology images
by,

• eliminating the need for training data sets that are
difficult to define due to image variability,

• enhancing the performance of active contours by pro-
viding an appropriate initialization via the EM algo-
rithm,

• resolving the issue of contours enclosing overlap-
ping/touching objects by splitting contours in favor of
obtaining better object detection.

The rest of the paper is organized as follows: Section
4 describes the overall methodology of our segmentation
model and Section 5 explains the experiments performed
to validate the improvements in segmentation using our
method. In Section 6 we discuss and summarize our results.
Concluding remarks are presented in section 7.

4. Methods

4.1. Data Description and Notation

Hematoxylin and Eosin (H & E) stained breast biopsy
cores were scanned into a computer using a high resolution
whole slide scanner at 40x optical magnification at The
Cancer Institute of New Jersey. A total of 62 images
representing HER2+ breast cancer exhibiting LI were used in
our analysis. The ground truth for detection of lymphocytes
was obtained via manual detection performed by an expert
from The Cancer Institute of New Jersey.

An image is defined as C = (C, f) where C is a 2D grid
representing pixels c ∈ C, with c = (x, y) representing the
Cartesian coordinates of a pixel or a point and f is a function
of c that assigns pixel values corresponding to intensities in
R, G, and B channels.

4.2. EM based segmentation

The EM algorithm is used to determine the probabil-
ity of each pixel c belonging to one of K classes, ωk,
k ∈ {1, 2, . . . ,K} in an image scene. The EM algorithm
attempts to identify the individual Gaussian distribution from
a mixture of K normal class densities. For the application
considered in this paper, we set K = 3 representing
ωk ∈ {lymphocyte nuclei, stroma, cancer nuclei}. The EM
algorithm will compute the posterior class conditional proba-
bility P (ωk|f(c)) of each pixel c belonging to class ωk given
the prior probability p(f(c)|ωk). The algorithm is run itera-
tively, and comprises of two steps: the Expectation (E-step)
and the Maximization step (M-step). The E-step calculates
P (ωk|f(c)) based on the current parameters of Gaussian
mixture model while the M-step recalculates or updates the
model parameters at each iteration i, γi

k = {μi
k,Σ

i
k, p

i
k}

where μi
k and Σi

k are the mean and covariance of each
Gaussian component, respectively, and pi

k = pi(f(c)|ωk),
also referred to as the mixture coefficients in the Gaussian
mixture model. After convergence, the EM algorithm will as-
sign each pixel c, a 1×K probability vector whose elements
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are the respective P (ωk|f(c)) values. The implementation of
the EM algorithm is summarized below [12]:
Parameters initialization: The initial parameters
{μ0

k,Σ
0
k, p

0
k} are randomly selected.

E-step: Calculate the posterior probabilities using the current
parameters γi

k,

P (ωk|f(c)) =
pi

kN (f(c)|μi
k,Σ

i
k)∑K

j=1 p
i
jN (f(c)|μi

j ,Σ
i
j)
,

where

N (f(c)|μi
k,Σ

i
k) =

(2π)−
D
2 |Σ− 1

2
k | exp{−1

2
(f(c) − μi

k)T Σ−1
k (f(c) − μi

k)},
is a D dimensional Gaussian distribution. For intensities
from an RGB image, D is set to 3.
M-step: The mean, covariance and the priori probability of
each class are updated by the posterior probabilities obtained
in E-step and are computed as follows,

μi+1
k =

1
nk

|C|∑
c∈C

P (ωk|f(c))f(c),

Σi+1
k =

1
nk

|C|∑
c∈C

P (ωk|f(c))(f(c) − μi+1
k )(f(c) − μi+1

k )T ,

pi+1
k =

nk

|C| ,

where nk =
∑|C|

c∈C P (ωk|f(c)) and |C| is the cardinality of
C.
Convergence Evaluation: Convergence is evaluated by cal-
culating the Euclidean distance of log likelihood between
current and preceding iterations. Assuming that the Gaussian
distribution for every pixel c within the image is independent
of one another, based on Gaussian mixture model, the log
likelihood function of the model with parameters obtained
in M-step can be computed as follows,

Li+1(C|μ, σ, p) = ln{
K∑

k=1

pi+1
k N (f(C)|μi+1

k ,Σi+1
k )},

= ln{
K∑

k=1

pi+1
k [

|C|∏
c∈C

N (f(c)|μi+1
k ,Σi+1

k )]},

=
|C|∑
c∈C

K∑
k=1

ln{pi+1
k N (f(c)|μi+1

k ,Σi+1
k )},

where Li+1 is the log likelihood estimation of C with
Gaussian mixture model. The convergence criterion can be
expressed as the following inequality:∥∥∥∥L

i+1 − Li

Li

∥∥∥∥ ≤ ε

where ε is an empirically determined threshold and || · || is
the L2 norm. The termination of iterations is decided by the
convergence criterion. In our experiments ε was set to 10−5.
If the convergence criterion is not reached, the algorithm
returns to the E-step. Otherwise, the algorithm will return a

probability matrix obtained from latest E-step which is used
to group every pixel c ∈ C in to K different classes.

Given the convergence of the EM algorithm ∀c ∈ C as
P (ωk|f(c)), construct K likelihood scenes Lj = (C, �j),
j ∈ {1, . . . ,K}, where �j(c) = P (ωk|f(c)). For each Lj ,
derive corresponding binarized scenes LB

j = (C, �Bj ) where

�Bj (c) =
{

1, if �j = max
k

[P (ωk|f(c))]
0, otherwise.

(1)

The binarized scene LB
j represents the EM based segmen-

tation for objects belonging to class ωk ∈ {lymphocyte
nuclei, stroma, cancer nuclei}. The appropriate scene for
lymphocyte nuclei is identified and used to initialize the ac-
tive contour model. A sample image with its corresponding
binarized lymphocyte nuclei scene obtained via EM is shown
in Figure 2.

(a) (b)

Figure 2: (a) Original BC histopathology image with corresponding
(b) binarized lymphocyte nuclei scene. The EM algorithm provides
the probability for each pixel c belonging to class ωk given f .
The maximum posterior class conditional probability is used to
assign c to class ωk that generates the corresponding binarized
scene LB

j , j ∈ {1, . . . , K}. The appropriate LB
j corresponding to

lymphocytes is visually identified.

4.3. EM driven Geodesic Active Contour Model
(EMaGAC)

An active contour model is used in our boundary segmen-
tation problem where a set of contours S is evolved using
level set method [13] to find target object boundaries. S
is composed of numerous closed sub-contours s ∈ S, the
number of which depends upon the initialization and the
final evolved result. Each closed sub-contour s is composed
of an ordered set of M points such that s = {cw|w ∈
{1, . . . ,M}} where each point cw is connected to only to
two of its adjacent points cw−1 and cw+1 with cM+1 = c1
and c0 = cM to form a closed loop. The entire set of
contours S is evolved in time t over a 2D image C. The
contour is represented as a zero level set s = {c|φ(t, c) = 0}
of a level set function φ. In general, the evolution of the level
set function φ is accomplished by an iterative solution to the
following PDE:

∂φ

∂t
+ f |∇φ| = 0

where f is the speed function for evolution that drives the
contour s towards the object boundary. f is unique to an
active contour model and its design depends on how the
information in the image is used. In this paper, a specific
initialization is provided to the magnetostatic active contour
(MAC) model described in [7].
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4.3.1. Magnetostatic active contour (MAC) model. The
MAC model implements a bidirectional force field F gener-
ated from a hypothetical magnetostatic interaction between
the contour s and the object boundary. The force field F
drives the contour towards the boundary. Both the boundary
and the contour are treated as current carrying loops and the
magnetic field from the boundary computed using the well
known Biôt-Savart law determines the force F acting on the
contour. F is defined over the entire image C. The level set
implementation of the contour as proposed in [7] takes the
form:

∂φ

∂t
= αg(C)∇ ·

( ∇φ
|∇φ|

)
|∇φ| − (1 − α)F (C) · ∇φ

where α is a real constant, g(C) = 1/(1 + |∇C|) and ∇(·)
represents the 2D gradient

(
∂(·)
∂X , ∂(·)

∂Y

)
along the X and Y

axes.

4.3.2. Initialization scheme. The EMaGAC and the EMa-
GACOR model use EM derived segmentation to provide
a specific initialization to the GAC contour. For a given
image C, the corresponding lymphocyte nuclei segmented
scene LB

j is manually selected over all k. For all objects
O�, where � ∈ {1, . . . ,Ω} detected in LB

j via connected
component labeling, centroids q� = 1

|O�|
∑

c∈O�

c are computed

that serve as seeds points for initializing the GAC (Figure
6(a)). The initial contour φ0 = φ(0, c), is defined as a circle
of radius r centered at each q� (Figure 6(b)). r is chosen
to be approximately half the radius of the target object
(empirically estimated). The contour is then evolved till the
differences in the contours of the current iteration (φt) to the
next (φt+1) are below an empirically determined threshold ρ.
The algorithm for initializing the contour model is illustrated
in Figure 3. The active contour provides a segmentation

Input : Image scene C, number of classes K, radius r,
thresholds ε and ρ, time step Δt and speed function f.

Output : Final evolved contour.
BEGIN

Randomly initialize γ0 = {μ0
k, Σ0

k, p0
k}, compute L0,

while
∥∥∥Li+1−Li

Li

∥∥∥ > ε,

calculate P (ωk|f(c)),
update γi+1,
compute Li+1,

end
Obtain K class likelihood scenes Lk = (C, �k),

where �k(c) = P (ωk|f(c)),
Binarize Lk to obtain LB

j (Equation 1),
Select target class scene LB

j ,
Determine all objects O� by connected component labeling,
Obtain corresponding centroids q� = 1

|O�|
∑

c∈O�

c,

Define initial contour φ0 = φ(0, c) as circle of radius r,
centered at each q�,
while ||φt+1 − φt|| > ρ,

Evolve contour, φt+1 = φt + [f(∇φt)](Δt),
end

END

Figure 3: EMaGAC algorithm

that focuses on lymphocyte nuclei and cancer nuclei (Figure
6 (c)). Note that various contours contain two or more

Input : Sub contour s, threshold θmax, object size τA,
Output : Concavity points Vs.

BEGIN
for all s ∈ S,

compute A(s),
if A(s) > τA,

for all points cw ∈ s,
compute vectors (cw − cw−1) and (cw+1 − cw),
compute θ(cw) between vectors,
if θ(cw) ≤ θmax and cross product ≥ 0, save cw → Vs,

end
end

end
END

Figure 4: Concavity detection algorithm

Figure 5: Concavity detection: Three consecutive points on s
(cw−1, cw and cw+1) are used to define two vectors (shown
with arrows). The angle θ(cw) between them is a measure of
concavity/convexity of the point cw. Concavity points can be
distinguished from convex points by computing the cross product
between the vectors where a positive cross product would indicate
a concavity point if moving in a counter-clockwise direction on s.

overlapping/touching objects. Contours enclosing multiple
objects are processed in the next step where we explain a
contour splitting scheme based on concavity detection, the
edge-path algorithm and lymphocyte nuclei size heuristic.

4.4. Resolving overlap - EMaGACOR model

In addition to providing a specific initialization to GAC
via EM, the EMaGACOR model aims at improving seg-
mentation by providing overlap resolution where contours
enclosing multiple objects are split using a size heuristic. A
concavity detection scheme [10], [11] is employed to obtain
high concavity points on contours that serve as an input to
our edge-path algorithm to define a split. High concavity
points are characteristic of contours that enclose multiple
objects and represent junctions where object intersection
occurs (Figure 5).

4.4.1. Concavity detection. The area A(s) of the closed
sub-contour s is compared to predetermined area of an ideal
lymphocyte nuclei τA. For our experiments τA was set to
35. Hence a sub-contour is eligible for split if A(s) > τA.
Since c = (x, y), the difference between any two points cw
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(a) (b) (c) (d)

Figure 6: (a) Centroids q� (green) obtained from EM derived binarized scene LB
k that serve as seed points for initializing the active

contour S (b) initialized S (GAC). Initialization is defined as circles centered at each q� (c) Contour result after evolution (d) Improved
segmentation after splitting contours enclosing multiple objects by using the edge-path algorithm.

(a) (b)

(c) (d)

Figure 7: (a), (c) Examples of a contour enclosing overlapping
lymphocytes. Lack of edges/weak edges prevent the contour from
providing accurate object segmentations (b), (d) Contour split by
edge-path algorithm using size heuristic.

and cw−1 will represent a vector in 2D. Concavity points are
detected by computing the angle between vectors defined by
three consecutive points (cw−1, cw, cw+1) ∈ s. The degree
of concavity/convexity is proportional to the angle θ(cw) as
shown in Figure 5. θ(cw) can be computed from the dot
product relation as shown below:

θ(cw) = π − arccos
(

(cw − cw−1) · (cw+1 − cw)
||(cw − cw−1)|| ||(cw+1 − cw)||

)
.

Concavity points can be distinguished from convexity points
by computing the cross product of the vectors (cw − cw−1)
and (cw+1 − cw) where a concavity point would yield a
positive cross product if moving in a counter-clockwise
direction on s (Figure 5). The value of θ(cw) for an
eligible concavity point cw is constrained to be less than an
empirically determined value θmax. The value of θmax serves
as a threshold for detecting meaningful concavity points and
in our case it was found that θmax = 8

9π yielded optimal
results. The concavity detection algorithm is summarized in
Figure 4.

4.4.2. Edge-path algorithm. The algorithm defines a path
between a pair of concavity points through edge points

enclosed within s. From all the possible paths between
various concavity points, the shortest path that satisfies a
split yielding a sub-contour whose size is close to that of
a lymphocyte nuclei is favored. Let Vs be the set of N
concavity points detected on s such that Vs = {cm|m ∈
{1, . . . , N}} and N ≤M . Let E represent the set of H edge
points enclosed by s such that E = {cu|u ∈ {1, . . . , H}}.
For a given pair of concavity points {ca, cb} ∈ Vs and a �= b,
a, b ∈ {1, . . . , N}, the path Qab between them is defined
through specific h number of ordered edge points in E, such
that Qab = {ca, c1, . . . , ch, cb} is an ordered set with each
of its points connected to only to two of its adjacent points
and satisfies the following condition:

||ca − cb|| ≥ ||c1 − cb|| ≥ . . . ≥ ||ch − cb|| ≥ 0

and there does not exist ch+1 such that ||ch+1 − cb|| ≤

Algorithm : Edge-path
Input : Sub-contour s, object size τA,

Edge points cu ∈ E, Concavity points Vs,
Output : Final path Qab to split s into s1 and s2.
BEGIN

if |Vs| > 2,
set D = ∞,
compute ψ = A(s)−τA

τA
,

for each pair of concavity points {ca, cb} ∈ Vs, a �= b,
set cA = ca, set e = E, mark cb as edge point,
set Qab = {ca},
while cA �= cb,

find closest edge point cu ∈ e to cA,
if ||cA − cb|| ≥ ||cu − cb||,

save cu → Qab,
set cA = cu,

end
remove cu from e,

end
Split s in to s1 and s2 using Qab,
compute Γ = A(s1)

A(s2)
,

if ψ−1 ≤ Γ ≤ ψ and ||Qab|| < D,
accept split and reject any previous split,
set D = ||Qab||,

end
end

end
END

Figure 8: Edge-path algorithm

||ch − cb||. Hence the path Qab is defined in an incremental
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Figure 9: Final detection result (green dots are lymphocyte nuclei).
The result is obtained by clustering textural features (average
and standard deviation in intensity) extracted from final contour
result into 2 groups. Red dots refer to objects identified as non-
lymphocytes

manner to ensures that relevant edges between any two given
concavity points {ca, cb} are included while simultaneously
guaranteeing a path between them. Once a path Qab is
defined, it splits s in to two sub-contours - s1 and s2. The
area of the split contours A(s1) and A(s2) are computed and
compared to the predetermined size of an ideal lymphocyte
τA. The ratio of the areas of the split contours Γ = A(s1)

A(s2)
are constrained to a threshold ψ described below:

ψ =
A(s) − τA

τA

The path Qab that splits s is accepted if the area ratio Γ
satisfies the condition:

ψ−1 ≤ Γ ≤ ψ (2)

The condition in Eqaution 2 favors the size heuristic. Of
all the paths between various pairs of concavity points
that satisfy this condition (Equation 2), the shortest path is
selected to define the split. The process of splitting contours
is repeated till all contours have an area comparable to τA.
The final contour segmentation is shown in Figure 6 (d)
and is used to extract textural information to distinguish
lymphocyte nuclei from other object classes. Note that
majority of contours enclosing multiple objects have been
split via paths representing weak edges or potential overlap
boundaries. Detailed splitting of such contours is illustrated
in Figure 7. Note that lack of edge information does not
impede the algorithm in segregating overlapping objects.
The algorithm is summarized in Figure 8.

4.5. Texture based clustering to detect lymphocytes

The final contour result is used to distinguish lymphocytes
from other objects in the image via clustering of simple
textural features using the k-means algorithm. The standard
deviation σ and average κ of intensity from three channels
(R, G and B) is computed for the region enclosed by a
contour. Thus each candidate object Oζ , ζ ∈ {1, . . . , T},
is described by a 6 dimensional attribute vector F(Oζ),
comprised of σ and κ values within Oζ for each of the
three color channels. The popular k-means algorithm is then
used to distinguish all Oζ in to one of 2 object classes
based on F(Oζ). The motivation behind this final step is
to distinguish lymphocytes from other objects based on

their textural attributes. Figure 9 illustrates the final result
showing the detected lymphocytes by obtaining the centroids
of the closed contours s (green dots).

5. Experiments

A total of 62 images were analyzed using the proposed
EMaGACOR model. We compare segmentation results
on these images from randomly initialized active contour
(GAC) against EMaGAC and EMaGACOR. Quantitative
and qualitative comparison of detection results from these
three models were performed.

6. Results and Discussion

6.1. Qualitative results

Qualitative results for 3 of the 62 different studies are
illustrated in Figure 10 and indicate the superiority of EMa-
GACOR over the EMaGAC and GAC models respectively
in segmenting lymphocytes. Note how initialization from
the EM algorithm allows the contour to focus on objects of
interest and prevents the contour from enclosing numerous
objects (Figures 10(g)-(i)). In addition, the concavity detec-
tion scheme and the edge-path algorithm provide overlap
resolution by splitting contours enclosing multiple over-
lapping/touching objects and improve segmentation results
(Figures 10 (j)-(l)). The experimental trials aim at portraying
the difficulty in detecting lymphocytes in BC images by an
active contour alone and how the EMaGACOR model is
successful in tackling this problem.

6.2. Quantitative results

Quantitative results are summarized in Table 1 which
again are indicative of the improved performance of EMa-
GACOR over GAC and EMaGAC. The active contour model
is limited in its ability to segment objects of interest (Figures
10(d)-(f)). The initialization of the GAC contour using EM
results proves to be useful in targeting lymphocytes and
constraining the contour from erroneously evolving in to
large contours enclosing multiple objects. While a Bayesian
framework may be used for initialization, the EM algorithm
proves to be a better option as it improves automation by re-
placing the need for annotated training. As discussed earlier,
representative data sets for training are difficult to define ow-
ing to variability across images. The contour results obtained
from EMaGAC (Figures 10(g)-(i)) are clearly sub-optimal
in that several overlapping/touching objects are identified
as single objects. The concavity detection scheme followed
by splitting of contours by the edge-path algorithm greatly
improves segmentation accuracy in relation to overlapping
objects (EMaGACOR). Quantitative evaluation of the three
models was done via (a) statistical measurements and by
computing the (b) overlap detection ratio (OR).

6.2.1. Statistical measurements. The statistical measure-
ments used to evaluate the experimental results include the
sensitivity (SN) and the positive predictive value (PPV) that
are computed for each of the three models in our experiment
(Table 1) in terms of lymphocyte detection. These values are
computed from the true positive (TP), false positive (FP)
and false negative (FN) values. TP refers to the number
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10: Qualitative results: (a)-(c) Original BC histopathology image Lymphocyte segmentation result from (d)-(f) randomly initialized
GAC (g)-(i) EMaGAC, and (j)-(l) after contour splitting using concavity detection and edge-path algorithm (EMaGACOR).

of lymphocytes correctly identified while FP refers to the
number of objects incorrectly identified as lymphocytes and
FN refers to the number of lymphocytes missed by each of
the EMaGACOR, EMaGAC and GAC models respectively.
The SN and PPV values listed in Table 1 reflect the efficacy
of the EMaGACOR model in detecting lymphocytes in BC
images as compared to GAC and EMaGAC models.

6.2.2. Overlap detection ratio (OR). The overlap detection
ratio (OR) (Table 1) is computed as follows:

OR =
Number of Overlaps resolved

Total number of overlaps

An overlap is characterized by the existence of a common
boundary between two objects and in our case may be
between two or more lymphocyte nuclei, cancer nuclei or
both. A total of 704 cases of overlapping objects were
manually identified in 62 images and our model was able to
resolve 651 (92.5%) overlaps. The improvement in OR value
is indicative of the enhanced overlap resolution provided by
the EMaGACOR model using the edge-path algorithm.
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Table 1: Results of quantitative evaluation between EMaGACOR,
EMaGAC and GAC models over 62 images in terms of detection
SN, PPV and OR.

SN PPV OR
GAC 26.7 70.8 1.7

EMaGAC 57.4 76.3 10.8
EMaGACOR 90.6 78.1 92.5

6.2.3. Test of statistical significance between models.
SN, PPV and OR values were compared for every pair of
models using the paired t-test under the null hypothesis that
there is no significant difference in these values between
the EMaGACOR, EMaGAC and GAC models respectively.
Each of the t-tests above returned a p-value ≤ 0.05 (Table 2)
indicating that improvements in detection results due to the
EMaGaCOR model when compared to EMaGAC and GAC
models are statistically significant.

Table 2: p-values of t-test between EMaGACOR, EMaGAC and
GAC models for SN, PPV and OR over 62 images.

SN PPV OR
GAC/EMaGAC 1.1×10−26 2.3×10−4 6.0×10−7

GAC/EMaGACOR 6.8×10−43 1.4×10−6 1.6×10−58

EMaGAC/EMaGACOR 2.9×10−27 3.0×10−2 9.9×10−44

7. Conclusion

In this paper, we have presented a new segmenta-
tion model for detection of lymphocytes in HER2+ BC
histopathology images. Our segmentation scheme over-
comes a number of issues that plague popular segmenta-
tion schemes. Specifically, our model is able to overcome
detection sensitivity associated with random initialization
and allows resolving object overlap. In addition, the scheme
differs from supervised classifier detection methods that are
encumbered by the need for a large number of annotated
training samples. The initialization of the contour from EM
results (1) enhances contour performance, (2) eliminates
the need for training and (3) improves automation. The
concavity detection scheme in conjunction with the edge-
path algorithm effectively resolves the issue of segmenting
overlapping objects. Experimental results have shown that
our new EMaGACOR model performs significantly better
compared to EMaGAC and GAC models over a total of 62
images.

The ability to accurately and automatically segment lym-
phocytes in BC histopathology images may serve to be
useful in studying LI and its relation to BC prognosis. Future
work will focus on quantifying appropriate LI features to
explore the potential of LI as a prognostic tool.
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