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Abstract

A common divide-and-conquer approach for Bayesian computation with big data is to
partition the data, perform local inference for each piece separately, and combine the results
to obtain a global posterior approximation. While being conceptually and computationally
appealing, this method involves the problematic need to also split the prior for the local
inferences; these weakened priors may not provide enough regularization for each separate
computation, thus eliminating one of the key advantages of Bayesian methods. To resolve
this dilemma while still retaining the generalizability of the underlying local inference
method, we apply the idea of expectation propagation (EP) as a framework for distributed
Bayesian inference. The central idea is to iteratively update approximations to the local
likelihoods given the state of the other approximations and the prior.

The present paper has two roles: we review the steps that are needed to keep EP
algorithms numerically stable, and we suggest a general approach, inspired by EP, for
approaching data partitioning problems in a way that achieves the computational benefits
of parallelism while allowing each local update to make use of relevant information from the
other sites. In addition, we demonstrate how the method can be applied in a hierarchical
context to make use of partitioning of both data and parameters. The paper describes a
general algorithmic framework, rather than a specific algorithm, and presents an example
implementation for it.
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1. Introduction

Expectation propagation (EP) is a fast and parallelizable method of distributional approx-
imation via data partitioning. Since its introduction by Opper and Winther (2000) and
Minka (2001b), EP has been an important Bayesian computational method for inferring
intractable posterior densities.

Motivated by the substantial methodological progress made in the last decade and a half,
our aim in this paper is to review the current state of the art, also serving readers with no
previous exposure to EP as an introduction to the methodology. The main theme of our paper
is to use EPs message passing technique as a framework for distributed Bayesian inference.
The problem is treated in the general setting of combining inferences on data partitioned into
disjoint subsets. This setting can be motivated from two complementary views of distributed
computing, top-down and bottom-up, both of which have gained increasing attention in the
statistics and machine learning communities. We approach them as instances of the same
computational framework.

The top-down view deals with fitting statistical models to large data sets, for which
many distributed (divide-and-conquer) algorithms have been proposed over the past few
years (Ahn et al., 2012; Balan et al., 2014; Hoffman et al., 2013; Scott et al., 2016; Wang
and Dunson, 2013; Neiswanger et al., 2014). The motivation for distributing the inference
may be to decrease run time or deal with memory limitations. The basic idea is to partition
the data y into K pieces, y1, . . . , yK , each with likelihood p(yk|θ), then analyze each part of
the likelihood separately, and finally combine the K pieces to perform inference (typically
approximately) for θ.

In a Bayesian context, though, it is not clear how distributed computations should
handle the prior distribution. If the prior p(θ) is included in each separate inference, it
will be multiply counted when the K inferences are combined. To correct for this, one
can in principle divide the combined posterior by p(θ)K−1 at the end, but this can lead
to computational instabilities. An alternative is to divide the prior itself into pieces, but
then the fractional prior p(θ)1/K used for each separate computation may be too weak to
effectively regularize, thus eliminating one of the key computational advantages of Bayesian
inference; for examples in which the likelihood alone does not allow good estimation of θ, see
Gelman et al. (1996), Gelman et al. (2008), and, in the likelihood-free context, Barthelmé
and Chopin (2014).

Turning to the bottom-up view, the motivation for distributed inference may come from
the local nature of the data and the model. Here the data—not necessarily big in size—are
already split into K pieces, each with likelihood p(yk|θ). For example, in privacy-preserving
computing, the data owners of local pieces can only release aggregated information such
as moments (e.g., Sarwate et al., 2014; Dwork and Roth, 2014). In meta-analysis, different
pieces of information come from different sources or are reported in different ways, and
the task is to combine such information (Dominici et al., 1999; Higgins and Whitehead,
1996). In both settings, we would like to partially pool across separate analyses, enabling
more informed decisions both globally and for the local analyses. These types of problems
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fall into the general framework of hierarchical models, and—as in the privacy-preserving
setting—may need to be solved without any single processor having complete access to all
the local data or model.

Extracting the core principles behind EP motivates a general framework for passing
information between inferences on partitioned data. In classical EP, the data are typically
partitioned pointwise, with the approximating density fully factorized. When data are
partitioned into bigger subsets, the same idea can be used in a more versatile manner. Here
the cavity distribution, which approximates the effect of inferences from all other K − 1
data partitions, can be used as a prior in the inference step for individual partitions. Xu
et al. (2014) apply the EP algorithm in a distributed setting by using MCMC for performing
inference for the separate sites. A posterior server maintains a global approximation and
iteratively issues updates for distributed sites. At each site, a local inference is carried out
and the obtained posterior sample is used to form moment estimates for updating the local
approximation. The site updates are propagated back to the posterior server and the global
approximation is updated. Motivated by an earlier preprint version of the present paper,
Hernández-Lobato and Hernández-Lobato (2016) apply a similar distributed approach for
Gaussian process classification. Instead of MCMC, they apply nested EP updates in each site
and use the same distributed cluster for updating the hyperparameters between iterations.

EP is not in general guaranteed to converge, which motivates an alternative direction of
algorithmic development that, instead of local updates, applies various energy optimization
techniques directly to the related objective function. Motivated by Xu et al. (2014) and
our earlier preprint version of the present paper (Gelman et al., 2014b), Hasenclever et al.
(2017) develop such a distributed algorithm called stochastic natural gradient expectation
propagation (SNEP), which also uses MCMC for the site inferences. Similar to the methods
presented by Heskes and Zoeter (2002) and Opper and Winther (2005), they implement
a convergent double-loop optimization algorithm, which has the same optima as power
EP (Minka, 2004). This method, however, introduces some additional computational
complexities compared to the local updating power EP method. In the case both methods
converge, they are expected to produce similar results. If power EP fails to converge, it is
also possible to switch on the fly to the double-loop to ensure convergence as demonstrated
by Jylänki et al. (2011).

The work by Xu et al. (2014) and Hasenclever et al. (2017) are particular implementations
of the distributed inference framework discussed in this paper. Compared to these works,
we consider the method in a more general setting and introduce some further considerations.
In addition to just EP, power EP, or SNEP, the framework can be generalized to implement
other message passing techniques, all sharing the same idea of using a cavity distribution
to iteratively share information between the distributed sites. We do not argue that
any particular implementation of the framework would be in general better than the other.
Different implementations have different properties that are suitable and desirable in different
situations. Apart from a couple of small scale simulated experiments, we do not provide
exhaustive comparison of the performance of different implementations of the distributed
EP framework against each other.

We consider our method in an applied context and discuss and analyze various algorithmic
considerations related to it. For example, we discuss the implementation of sample based
moment estimates for EP updates. Xu et al. (2014) presented an estimate for the required
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parameters and conjectured that these would be unbiased, but this is not generally true.
Using experiments similar to those of Xu et al. (2014), we also study how the number of
partitions affects the resulting approximation. Compared to conventional fully factored
EP, partitioning the data into bigger subsets may yield better approximations but longer
computation times. We additionally show that dividing the data into smaller pieces tends
to make the posterior variance estimates worse while maintaining the accuracy of the mean
estimates. This is a known property of variational inference but has not been so well
understood with EP, although it has been recognized earlier in some form by Cunningham
et al. (2011) and Cseke et al. (2013).

We discuss the idea in a generalized message passing framework, conforming to both the
top-down and bottom-up views. In particular, we present an efficient distributed approach
for hierarchical models, which by construction partition the data into conditionally separate
pieces. By applying EP to the posterior distribution of the shared parameters, the algorithm’s
convergence only needs to happen on this parameter subset. We implement an example
algorithm using the Stan probabilistic programming language (Stan Development Team,
2017), leveraging its sample-based inferences for the individual partitions. We test the
implementation in two experiments, in which we inspect the behaviour of EP in the context
of the generalized framework.

The remainder of the paper proceeds as follows. We review the basic EP algorithm and
introduce terminology in Section 2. In Section 3, we discuss the use of EP as a general
message passing framework for partitioned data, and in Section 4, we further demonstrate
its applicability for hierarchical models. Despite being conceptually straightforward, the
implementation of an EP algorithm involves consideration of various options in carrying
out the algorithm. In Section 5, we discuss such algorithmic considerations at length, also
highlighting recent methodological developments and suggesting further generalizations.
Section 6 demonstrates the framework with two hierarchical experiments, and Section 7
concludes the paper with a discussion. Further details of implementation can be found in
Appendix A.

2. Expectation Propagation

The distributed inference framework presented in this paper is based on the expectation
propagation algorithm. In this section, we present EP along with the more generalized idea
of a message passing algorithm. Later in Section 2.2, we present various considerations,
extensions, and related methods.

2.1. Basic Algorithm

Expectation propagation (EP) is an iterative algorithm in which a target density f(θ) is
approximated by a density g(θ) from some specified parametric family. First introduced by
Opper and Winther (2000) and shortly after generalized by Minka (2001a,b), EP belongs to
a group of message passing algorithms, which infers the target density using a collection of
localized inferences (Pearl, 1986). In the following, we introduce the general message passing
framework and then specify the features of EP.
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Let us first assume that the target density f(θ) has some convenient factorization up to
proportion,

f(θ) ∝
K∏

k=0

fk(θ).

In Bayesian inference, the target f is typically the posterior density p(θ|y), where one can
assign for example factor k = 0 to the prior p(θ) and factors 1 through K as the likelihood for
the data partitioned into K parts p(yk|θ) that are independent given the model parameters.
A message passing algorithm works by iteratively approximating f(θ) with a density g(θ)
which admits the same factorization,

g(θ) ∝
K∏

k=0

gk(θ), (1)

and using some suitable initialization for all gk(θ). The factors fk(θ) together with the
associated approximations gk(θ) are referred to as sites, and the approximating distribution
g(θ) is referred to as the global approximation.

At each iteration of the algorithm, and for k = 0, . . . ,K, we take the current approxi-
mating function g(θ) and replace gk(θ) by the corresponding factor fk(θ) from the target
distribution. Accordingly (and with slight abuse of the term “distribution”) we define the
cavity distribution,

g−k(θ) ∝
g(θ)

gk(θ)
,

and the tilted distribution,

g\k(θ) ∝ fk(θ)g−k(θ).

The algorithm proceeds by first constructing an approximation gnew(θ) to the tilted distri-
bution g\k(θ). After this, an updated approximation to the target density’s fk(θ) can be
obtained as gnew

k (θ) ∝ gnew(θ)/g−k(θ). Iterating these updates in sequence or in parallel
gives the following algorithm.

General message passing algorithm:

1. Choose initial site approximations gk(θ).

2. Repeat for k ∈ {0, 1, . . . ,K} (in serial or parallel batches) until all site approxima-
tions gk(θ) converge:

(a) Compute the cavity distribution, g−k(θ) ∝ g(θ)/gk(θ).

(b) Update the site approximation gk(θ) so that gk(θ)g−k(θ) approximates
fk(θ)g−k(θ).

In some sources, step 2b above is more strictly formulated as

gnew
k (θ) = arg mingk(θ) D

(
fk(θ)g−k(θ)

∥∥gk(θ)g−k(θ)
)
,
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where D(·‖·) corresponds to some divergence measure. In our definition, the algorithm can
more freely implement any approximation method, which does not necessarily minimize any
divergence.

The global approximation g(θ) and the site approximations gk(θ) are restricted to be in
a selected exponential family, such as the multivariate normal. As step 2b is usually defined,
the site approximation gk(θ) is updated so that the resulting Kullback-Leibler divergence
KL

(
fk(θ)g−k(θ)

∥∥gk(θ)g−k(θ)
)

is minimized.

2.2. Further Considerations

The exponential family restriction in EP makes the algorithm efficient: any product and
division between these distributions stays in the parametric family and can be carried out
analytically by summing and subtracting the respective natural parameters. The complexity
of these distributions, which is determined by the number of parameters in the model,
remains constant regardless of the number of sites. This is less expensive than carrying
around the full likelihood, which in general would require computation time proportional
to the size of the data. Accordingly, EP tends to be applied to specific high-dimensional
problems where computational cost is an issue, notably for Gaussian processes (Rasmussen
and Williams, 2006; Jylänki et al., 2011; Cunningham et al., 2011; Vanhatalo et al., 2013;
Cseke et al., 2013), and efforts are made to keep the algorithm both stable and fast.

Approximating the tilted distribution in step 2b is, in many ways, the core step of
a message passing algorithm. In EP, this is typically done by matching the moments of
gk(θ)g−k(θ) to those of fk(θ)g−k(θ), which corresponds to minimizing the Kullback-Leibler
divergence KL(g\k(θ)||g(θ)). In Section 5.1, we discuss in more detail a variety of other
choices for forming tilted approximations, beyond the standard choices in the EP literature.
If fk(θ) has the same form as g then the contribution of that term can be computed exactly
and there is no need for the corresponding site approximation term gk(θ). For example, if
the prior f0(θ) and approximating distribution g are both multivariate normals, then only
tilted distributions k = 1, . . . ,K need to be computed.

Even if EP minimizes local KL-divergence in the scope of each site, it will not in
general minimize the KL-divergence from the target density to the global approximation
KL(f(θ)||g(θ)). Furthermore, there is no general guarantee of convergence for EP. However,
for models with log-concave factors fk and initialization to the prior distribution, the
algorithm has proven successful in many applications. Various studies have been made
to assess the behaviour of EP. Dehaene and Barthelmé (2015) present bounds for the
approximate error. Dehaene and Barthelmé (2018) inspect the method in the large data
limit and show that it is asymptotically exact but it may diverge if initialized poorly. Dehaene
(2016) relate EP to other better understood methods and show that it is equivalent to
performing gradient descent on a smoothed energy landscape.

Generally, message passing algorithms require that the site distributions gk(θ) are stored
in memory, which may be a problem with a large number of sites. Dehaene and Barthelmé
(2018) and Li et al. (2015) present a modified EP method in which sites share the same
approximate factor g site(θ); considering the prior p(θ) as a constant site with index 0,
and setting all the other site approximations gk(θ) = g site(θ), k = 1, 2, . . . ,K, the global
approximation becomes g(θ) ∝ p(θ)g site(θ)

K . While making the algorithm more memory
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efficient, it has been shown for certain applications that the method works almost as well as
the original EP.

3. Message Passing Framework for Partitioned Data

The factorized nature of the EP algorithm defined in Section 2 makes it a suitable tool for
partitioned data. Assuming the likelihood factorizes over the partitions, the likelihood of
each part can be assigned to its own site:

p(θ|y) ∝ p(θ)
K∏

k=1

p(yk|θ), (2)

where each term p(yk|θ) with respective data partition yk = [yk,1, yk,2, . . . , yk,nk
] is approx-

imated with site approximation gk(θ). The algorithm can be run in a distributed setting
consisting of a central node and site nodes. The schema is illustrated in Figure 1. The
central node stores the current global approximation g(θ) and controls the messaging for the
sites, while each site node stores the corresponding partition of the data yk and the current
site approximation gk(θ). The central node initiates the updates by sending the natural
parameters of the current global approximation g(θ) to the sites. Given this information,
the sites update the respective site approximations gk(θ) and send back the change in the
natural parameters of the site distribution:

g−k(θ) ∝ g(θ)/gk(θ) subtraction of natural parameters

g\k(θ) ∝ p(yk|θ)g−k(θ) MCMC sampling

gnew(θ) ≈ g\k(θ) parameter sample estimates

∆gk(θ) ∝ gnew(θ)/g(θ) subtraction of natural parameters.

The central node then receives the differences and aggregates these to update the global
approximation by adding in the received parameter changes:

gnew(θ) ∝ g(θ)∆gk(θ) sum of natural parameters.

This enables model parallelism—in that each site node can work independently to infer its
assigned part of the model—and data parallelism—in that each site node only needs to store
its assigned data partition (Dean et al., 2012). We present the algorithm in more detail in
Appendix A.1.

In a conventional EP setting, the likelihood is factorized pointwise so that each site
corresponds to one data point. This is motivated by the simplicity of the resulting site
updates, which can often be carried out analytically. By assigning multiple data points to
one site, the updates become more difficult and time consuming. However, updating such
a site also provides more information to the global approximation and the algorithm may
converge in fewer iterations. In addition, the resulting approximation error should be smaller
as the number of sites decreases.

In EP, as mentioned in Section 2, approximating the tilted distribution in step 2b of
the general message passing algorithm is carried out by moment matching. This makes
EP particularly useful in the context of partitioned data: intractable site updates can be
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Figure 1: The EP framework for partitioned data. The central node stores the current
parameters for the global approximation g(θ). Each site node k = 1, 2, . . . ,K
stores the current parameters for the site approximation gk(θ) and the assigned
partition of the data yk. The central node sends the parameters of g(θ) to the
site nodes. In parallel, the site nodes update gk(θ) and send back the difference in
the parameters.

conveniently inferred by estimating the tilted distribution moments, for example using
MCMC. Other message passing algorithms, where some other method for tilted distribution
approximation is used, can also be applied in such a context. These are discussed in more
detail in Section 5.1.

In divide-and-conquer algorithms, each partition of the data is processed separately and
the results are combined together in a single pass. This behavior resembles the first iteration
of the EP algorithm. In EP however, the global approximation is further optimized by
iteratively updating the sites with shared information from the other sites. In contrast to
divide-and-conquer algorithms, each step of an EP algorithm combines the likelihood of one
partition with the cavity distribution representing the rest of the available information across
the other K−1 pieces (and the prior). This extra information can be used to concentrate the
computational power economically in the areas of interest. Figure 2 illustrates this advantage
with a conceptual example, showing how the inference for each site factor fk(θ) can be
concentrated in a region where all site factors overlap. Figure 3 illustrates the construction
of the tilted distribution g\k(θ) and demonstrates the critically important regularization
attained by using the cavity distribution g−k(θ) as a prior; because the cavity distribution
carries information about the posterior inference from all other K − 1 data pieces, any
computation done to approximate the tilted distribution (step 2b in the message passing
algorithm) will focus on areas of greater posterior mass.

4. Application to Hierarchical Models

In a hierarchical context, EP can be used to efficiently divide a multiparameter problem
into sub-problems with fewer parameters. If the data assigned to one site are not affected
by some parameter, the site does not need to take this local parameter into account in the
update process. By distributing hierarchical groups into separate sites, the sites can ignore
the local parameters from the other groups.
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Figure 2: Sketch illustrating the benefits of message passing in Bayesian computation. In
this simple example, the parameter space θ has two dimensions, and the data have
been split into five pieces. Each oval represents a contour of the likelihood p(yk|θ)
provided by a single partition of the data. A simple parallel computation of each
piece separately would be inefficient because it would require the inference for
each partition to cover its entire oval. By combining with the cavity distribution
g−k(θ), we can devote most of our computational effort to the area of overlap.

f -k

-k

k

fk

Figure 3: Example of a step of an EP algorithm in a simple one-dimensional example,
illustrating the stability of the computation even when part of the likelihood is
far from Gaussian. When performing inference on the likelihood factor p(yk|θ),
the algorithm uses the cavity distribution g−k(θ) as a prior.
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Figure 4: Model structure for the hierarchical EP algorithm. In each site k, inference is
based on the local model, p(yk|αk, φ)p(αk|φ), multiplied by the cavity distribution
g−k(φ). Computation on this tilted posterior gives a distributional approximation
on (αk, φ) or simulation draws of (αk, φ); in either case, we just use the inference
for φ to update the local approximation gk(φ). The algorithm has potentially
large efficiency gains because, in each of the K sites, both the sample size and the
number of parameters scale proportional to 1/K.

4.1. Posterior Inference for the Shared Parameters

Suppose a hierarchical model has local parameters α1, α2, . . . , αK and shared parameters
φ. All these can be vectors, with each αk applying to the model for the data piece yk, and
with φ including shared parameters of the data model and hyperparameters as well. This
structure is displayed in Figure 4. Each data piece yk is assigned to one site with its own
local model p(yk|αk, φ)p(αk|φ). The posterior distribution is

p(φ, α|y) ∝ p(φ, α)p(y|φ, α) = p(φ)p(α|φ)p(y|φ, α)

= p(φ)
K∏

k=1

p(yk|αk, φ)p(αk|φ),
(3)

where α = (α1, α2, . . . , αK).
As each local parameter αk affects only one site, they do not need to be included in

the propagated messages. EP can thus be applied to approximate the marginal posterior
distribution of φ only. If desired, the joint posterior distribution of all the parameters can
be approximated from the obtained marginal approximation with the methods discussed
later in Section 4.2.

Applying EP for the marginal posterior distribution p(φ|y) is straightforward. Marginal-
izing the joint posterior distribution in (3) gives

p(φ|y) =

∫
p(φ, α|y) dα ∝ p(φ)

K∏

k=1

∫
p(yk|αk, φ)p(αk|φ) dαk,

which is approximated by

p(φ|y) ≈ g(φ) = p(φ)
K∏

k=1

gk(φ).
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Given the cavity distribution g−k(φ), each site k approximates the tilted distribution

g\k(φ) ∝

∫
g−k(φ)p(yk|αk, φ)p(αk|φ) dαk (4)

in the restricted exponential family form by determining its moments, after which the site
updates the respective approximation gk(φ) accordingly. For intractable tilted distributions,
as is often the case, simulation-based methods provide a practical general approach.

The computational advantage of this marginalized approach is that the local parameters
α are partitioned. For example, suppose we have a model with 100 data points in each
of 3 000 groups, 2 local parameters per group (a varying slope and intercept) and, say, 20
shared parameters (including fixed effects and hyperparameters). If we divide the problem
into K = 300 sites with 10 groups each, we have reduced a problem with 300 000 data
points and 6 020 parameters to 300 parallel iterated problems with 1000 data points and 40
parameters (20 local and 20 shared parameters) each.

4.2. Posterior Inference for the Other Parameters

In large-dimensional hierarchical scenarios, the full joint posterior distribution is not typically
needed. If all that is required are the marginal posterior distributions for each αk separately,
we can take these directly from the corresponding tilted distribution inferences from the last
iteration. The marginal posterior distribution for local parameter αk can be obtained from
the joint distribution in (3) by

p(αk|y) =

∫ ∫

α\αk

p(φ, α|y) dαp dφ

∝

∫
p(φ)p(yk|αk, φ)p(αk|φ)

∏

p6=k

∫
p(yp|αp, φ)p(αp|φ) dαp dφ.

Assuming the EP algorithm has converged, this can be approximated:

p(αk|y) ≈

∫
g−k(φ)p(yk|αk, φ)p(αk|φ) dφ,

which is the same as the tilted distribution in (4) but marginalized over φ instead of αk. If,
for example, a sample-based method is used for the tilted distribution inference in EP, one
can easily just store the local parameter samples in the last iteration to form the marginal
posterior distribution for them.

If the joint posterior distribution of all the parameters is required, one can approximate
it using the obtained EP approximation g(φ) for the marginal posterior distribution of the
shared parameters:

p(φ, α|y) = p(φ|y)p(α|φ, y) = p(φ|y)
K∏

k=1

p(αk|φ, yk) ≈ g(φ)
K∏

k=1

p(αk|φ, yk).

To get simulation draws from this, one can first take some number of draws from g(φ), and
then, for each draw, run K parallel MCMC inferences for each αk conditional on the sampled
value of φ. This computation is potentially expensive—for example, to perform it using 100
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random draws of φ would require 100 separate MCMC inferences—but, on the plus side,
each run should converge fast because it is conditional on the hyperparameters of the model.
In addition, it may ultimately be possible to use adiabatic Monte Carlo (Betancourt, 2014)
to perform this ensemble of simulations more efficiently.

5. Algorithmic Considerations

This section discusses various details related to the implementation of an EP or message
passing algorithm in general. Some of the key aspects to consider are:

• Partitioning the data. From the bottom-up view, such as with private data,
the number of partitions K is simply given by the number of data owners. From
the top-down view with distributed computing, K will be driven by computational
considerations. If K is too high, the site approximations may not be accurate. But
if K is low, then the computational gains will be small. For large problems it could
make sense to choose K iteratively, for example starting at a high value and then
decreasing it if the approximation seems too poor. Due to the structure of modern
computer memory, the computation using small blocks may get additional speed-up if
most of the memory accesses can be made using fast but small cache memory.

• Parametric form of the approximating distributions gk(θ). The standard
choice is the multivariate normal family, which will also work for any constrained space
with appropriate transformations; for example, one can use logarithm for all-positive
and logit for interval-constrained parameters. For simplicity we may also assume that
the prior distribution p0(θ) is multivariate normal, as is the case in many practical
applications, sometimes after proper reparameterization. Otherwise, one may treat the
prior as an extra site which will also be iteratively approximated by some Gaussian
density g0. In that case, some extra care is required regarding the initialization of g0.
We will discuss alternative options in Section 5.4.

• Initial site approximations gk. One common choice is to use improper uniform
distributions. With normal approximation, this corresponds to setting natural param-
eters to zeros. Alternatively, one could use a broad but proper distribution factored
into K equal parts, for example setting each gk(θ) = N(0, 1

KA
2I), where A is some

large value (for example, if the elements of θ are roughly scaled to be of order 1, we
might set A = 10).

• Algorithm to perform inference on the tilted distribution. We will discuss
three options in Section 5.1: deterministic mode-based approximations, divergence
measure minimizations, and Monte Carlo simulations.

• Asynchronous site updates. In a distributed context, particularly with unevenly
sized data partitions, it can be beneficial to allow a site to be updated as soon as it
has finished its previous update, even if some other sites are still busy. Different rules
for waiting for more information could be applied here, as long as it is ensured that at
least one other site is updated before starting the next iteration.
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• Improper site distributions. When updating a site term gk in step 2b in the message
passing algorithm, the division by the cavity distribution can yield a covariance or
precision matrix that is not positive definite. This is not a problem in itself as the
site approximations do not need to be proper distributions. However, improper site
distributions may lead to improper global approximations or tilted distributions in
subsequent iterations, which is a problem. Various methods for dealing with this issue
are discussed in Section 5.3.

In the following sections, we address some of these issues in detail, namely, how to approximate
the tilted distribution and how to handle potential numerical instabilities in the algorithms.
The methods and aspects discussed in this section cover multiple different implementations
for the distributed EP method. Different methods may work in different situations and, as
in statistical analysis in general, one has to choose one that suits the problem. In this paper,
we present all the prominent approaches in a high level while focusing in one implementation,
where the tilted distribution inference is carried out by sampling. With this approach,
the inference can be carried out conveniently with probabilistic programming tools, which
provides substantial generalizability.

5.1. Approximating the Tilted Distribution

In EP, the tilted distribution approximation in step 2b is framed as a moment matching
problem, where attention is restricted to approximating families estimable with a finite
number of moments. For example, with the multivariate normal family, one chooses the
site gk(θ) so that the first and second moments of gk(θ)g−k(θ) match those of the possibly
intractable tilted distribution g\k(θ). When applied to Gaussian processes, this approach
has the particular advantage that the tilted distribution g\k(θ) can typically be set up as a
univariate distribution over only a single dimension in θ. This dimension reduction implies
that the tilted distribution approximation can be performed analytically (e.g., Opper and
Winther, 2000; Minka, 2001b) or relatively quickly using one-dimensional quadrature (e.g.,
Zoeter and Heskes, 2005). In higher dimensions, quadrature gets computationally more
expensive or, with a reduced number of evaluation points, the accuracy of the moment
computations gets worse. Seeger and Jordan (2004) estimated the tilted moments in
multiclass classification using multidimensional quadratures. Without the possibility of
dimension reduction in the more general case, approximating the integrals to obtain the
required moments over θ ∈ R

k becomes a hard task.
To move towards a black-box message passing algorithm, we inspect the tilted distribu-

tion approximation from four perspectives: matching the mode, minimizing a divergence
measure, using numerical simulations, and using nested EP. Algorithmically, these correspond
to Laplace methods, variational inference, Monte Carlo, and recursive message passing,
respectively. Critically, the resulting algorithms preserve the essential idea that the local
pieces of data are analyzed at each step in the context of a full posterior approximation.

5.1.1. Mode-based Tilted Approximations

The simplest message passing algorithms construct an approximation of the tilted distribution
around its mode at each step. As Figure 3 illustrates, the tilted distribution can have a
well-identified mode even if the factor of the likelihood does not.
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An example of a mode-based approximation is obtained by, at each step, setting gnew to
be the (multivariate) normal distribution centered at the mode of g\k(θ), with covariance
matrix equal to the inverse of the negative Hessian of log g\k at the mode. This corresponds
to the Laplace approximation, and the message passing algorithm corresponds to Laplace
propagation (Smola et al., 2004). The proof presented by Smola et al. (2004) suggests that
a fixed point of Laplace propagation corresponds to a local mode of the joint model and
hence also one possible Laplace approximation. Therefore, with Laplace approximation, a
message passing algorithm based on local approximations corresponds to the global solution.
Smola et al. (2004) were able to get useful results with tilted distributions in several hundred
dimensions. The method has been shown to work well in many problems (e.g., Rue et al.,
2009).

The presence of the cavity distribution as a prior (as illustrated in Figure 3) gives two
computational advantages to this algorithm. First, we can use the prior mean as a starting
point for the algorithm; second, the use of the prior ensures that at least one mode of the
tilted distribution will exist.

To improve upon this simple normal approximation, we can evaluate the tilted distribution
at a finite number of points around the mode and use this to construct a better approximation
to capture asymmetry and long tails in the posterior distribution. Possible approximate
families include the multivariate split-normal (Geweke, 1989; Villani and Larsson, 2006),
split-t, or wedge-gamma (Gelman et al., 2014a) distributions. We are not talking about
changing the family of approximate distributions g—we would still keep these as multivariate
normal. Rather, we would use an adaptively-constructed parametric approximation, possibly
further improved by importance sampling (Geweke, 1989; Vehtari et al., 2019) or central
composite design integration (Rue et al., 2009) to get a better approximation of the moments
of the tilted distribution to used in constructing gk.

5.1.2. Variational Tilted Approximations

Mode-finding message passing algorithms have the advantage of simplicity, but they can
do a poor job at capturing uncertainty when approximating the tilted distribution. An
alternative approach is to find the closest distribution within an approximating family to
the tilted distribution, using a divergence measure to define closeness. If the approximating
family contains the tilted distribution as one member in the family, then the local inference
is exact (step 2b in the algorithm). In practice, this is not the case, and the behavior of the
local variational approximations depends on the properties of the chosen divergence measure.
This generalizes mode-finding, which corresponds to minimizing a particular divergence
measure.

In the classical setup of EP, the chosen divergence measure is the Kullback-Leibler
divergence from the tilted distribution to the global approximation, KL(g\k(θ)||gnew(θ)).
As discussed before in Section 2, if the approximating distribution forms an exponential
family, minimizing the divergence conveniently corresponds to matching the moments of two
distributions (Minka, 2001b).

Another reasonable divergence measure is the reverse KL divergence from the global
approximation to the tilted distribution, KL(gnew(θ)||g\k(θ)). This is known as variational
message passing (Winn and Bishop, 2005), where the local computations to approximate the
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tilted distribution can be shown to maximize a lower bound on the marginal likelihood. In
fact, variational message passing enjoys the property that the algorithm minimizes a global
divergence to the posterior, KL(g(θ)||p(θ|y)), according to the factorized approximating
family g(θ) = p(θ)

∏K
k=1 gk(θ).

Inference can also be done using the α-divergence family, in which α = 1 corresponds to
the KL divergence used in the classical EP, α = 0 corresponds to the reverse KL divergence,
and α = 0.5 corresponds to Hellinger distance. One algorithm to solve this is known as
power EP (Minka, 2004). Power EP has been shown to improve the robustness of the
algorithm when the approximation family is not flexible enough (Minka, 2005) or when
the propagation of information is difficult due to vague prior information (Seeger, 2008).
This can be useful when moment computations are not accurate, as classical EP may have
stability issues (Jylänki et al., 2011). Even with one-dimensional tilted distributions, moment
computations are more challenging if the tilted distribution is multimodal or has long tails.
Ideas of power EP in general might help to stabilize message passing algorithms that use
approximate moments, as α-divergence with α < 1 is less sensitive to errors in tails of the
approximation.

5.1.3. Energy Optimization

The EP algorithm, like message passing algorithms in general, is not guaranteed to converge.
It is possible, however, to define an objective function whose stationary points corresponds
to a fixed point for the EP algorithm. In its general form, the problem can be formulated
as an optimization for the free energy corresponding to the negative logarithm of the
intractable normalizer of the global approximation in Equation (1) (Opper and Winther,
2005). Appendix F illustrates such a formulation in more detail. Heskes et al. (2005) presents
an unifying analysis of the correspondence of various different formulations of the same
objective, and Dehaene (2016) relates EP to using a gradient descent on a smoothed energy
landscape. Various energy optimization methods, for which convergence is guaranteed, can
be applied to directly find analogous approximations. Heskes and Zoeter (2002) show a
simulated example where EP fails to converge but a double-loop optimization algorithm
is successful. While optimizing similar objective functions and possibly admitting similar
distributed local updating frameworks, these algorithms are often slower.

Based on the original EP min-max optimization problem reviewed in Appendix F,
Opper and Winther (2005) derived a convergent double-loop optimization algorithm called
expectation consistent approximate inference (EC). Recently Hasenclever et al. (2017)
presented a similar but faster double-loop optimization algorithm called stochastic natural
gradient expectation propagation (SNEP), that shares the same optimum as power EP, and
which admits a similar distributed framework as the local updating scheme discussed in
this paper. They show that, instead of the natural parameter space, SNEP can be seen
as a mean parameter space version of the damped EP update. In the case of convergence,
both methods are expected to produce similar results. We briefly compare the methods
in a simulated experiment in Appendix D with simulation based site inferences. These
experiments show that moment matching can reach convergence faster but may suffer from
larger variability. SNEP can be slower and behave chaotically when far from convergence but
tends to have smaller variability when reaching stable progression and eventually convergence.
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It is also possible to apply moment matching in early iterations in order to have good initial
progression and switch to SNEP for more stable convergence after some iterations. Jylänki
et al. (2011) present similar ideas in a conventional EP setting in order to ensure convergence.
However, convergence problems might also indicate that the approximating family matches
poorly with the exact posterior (Minka, 2001b; Jylänki et al., 2011). Thus it could be
beneficial to first consider some alternative approximating families.

Black-box α-divergence minimization (Hernández-Lobato et al., 2016) (BB-α) is another
example of an energy optimizing algorithm with a tunable α-divergence measure and
automatic differentiation. Similar to the stochastic EP method by Li et al. (2015) discussed
in Section 2.2, the BB-α method features shared local approximations, which makes it more
memory efficient. In distributed settings, however, each site unit needs to store a copy of
the shared site distribution anyway. Thus no memory is saved by tying up the factors in
this setting.

5.1.4. Simulation-based Tilted Approximations

An alternative approach is to use simulations (for example, Hamiltonian Monte Carlo using
Stan) to approximate the tilted distribution at each step and then use these to set the
moments of the approximating family. As above, the advantage of the EP message passing
algorithm here is that the computation only uses a fraction 1/K of the data, along with a
simple exponential family prior (typically multivariate normal on parameters that if necessary
have been transformed to an unbounded scale) that comes from the cavity distribution.

As with methods such as stochastic variational inference (Hoffman et al., 2013) which take
steps based on stochastic estimates, the properties of the estimator affect the convergence
properties of the EP algorithm. One way to study convergence is to inspect the expectation
of the state of the algorithm at the fixed point of conventional analytic EP. As discussed
in Section 2, in the EP update step the KL divergence from the new global approximation
to the tilted distribution KL(g\k(θ)||g(θ)) is minimized by matching the moments. With
a simulation-based method, the expectation of the new global approximation moments in
step 2b should then match with the tilted distribution moments. When working with the
normal approximation, we would use the unbiased estimates of the mean and covariance
of the tilted distribution, which are easily obtained from the simulated sample. Using this
estimator would not result in the least possible expected KL divergence in general, however.
In addition, in the algorithm, these parameters are ultimately needed in natural form, and
estimating them is a complex task in general. This problem is discussed in more detail in
Appendix A.4. If needed, the variance of the estimates can be reduced while preserving
unbiasedness by using control variates. While MCMC computation of the moments may
give inaccurate estimates, we suspect that they will work better than, or as a supplement to,
a Laplace approximation for skewed distributions.

With sample based estimates, there is a tradeoff between computation time and precision
of the estimates. In the local bottom-up view of a distributed inference problem, the time
taken for the separate inferences is not crucial. Thus it is appropriate to apply MCMC with
suitably large sample sizes for such problems.

In serial or parallel EP, samples from previous iterations can be reused as starting points
for Markov chains or in importance sampling. We discuss briefly the latter. Assume we have
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obtained at iteration t for node k, a set of posterior simulation draws θs
t,k, s = 1, . . . , St,k from

the tilted distribution gt
\k, possibly with weights ws

t,k; take ws
t,k ≡ 1 for an unweighted sample.

To progress to node k+ 1, reweight these simulations as: ws
t,k+1 = ws

t,kg
t
\(k+1)(θ

s
t,k)/g\k(θs

t,k).
If the vector of new weights has an effective sample size,

ESS =

(
1
S

∑S
s=1w

s
t,k+1

)2

1
S

∑S
s=1(ws

t,k+1)2
,

that is large enough, keep this sample, θs
t,k+1 = θs

t,k. Otherwise throw it away, simulate new

θs
t+1,k’s from gt

\k+1, and reset the weights wt,k+1 to 1. This basic approach was used in the

EP-ABC algorithm of Barthelmé and Chopin (2014). Furthermore, instead of throwing
away a sample with too low ESS, one could move these through several MCMC steps, in the
spirit of sequential Monte Carlo (Del Moral et al., 2006). Another approach, which can be
used in serial or parallel EP, is to use adaptive multiple importance sampling (Cornuet et al.,
2012), which would make it possible to recycle the simulations from previous iterations.
Even the basic strategy should provide important savings when EP is close to convergence.
Then changes in the tilted distribution should become small and as a result the variance of
the importance weights should be small as well. In practice, this means that the last EP
iterations should essentially come for free.

5.1.5. Nested EP

In a hierarchical setting, the model can be fit using the nested EP approach (Riihimäki
et al., 2013; Hernández-Lobato and Hernández-Lobato, 2016), where moments of the tilted
distribution are also estimated using EP. This approach leads to recursive message passing
algorithms, often applied in the context of graphical models, where the marginal distri-
butions of all the model parameters are inferred by passing messages along the edges of
the graph (Minka, 2005) in a distributed manner. As in the hierarchical case discussed in
Section 4, the marginal approximation for the parameters can be estimated without forming
the potentially high-dimensional joint approximation of all unknowns. This framework can
be combined together with other message passing methods, adopting suitable techniques
for different parts of the model graph. This distributed and extendable approach makes it
possible to apply message passing to arbitrarily large models (Wand, 2017).

5.2. Damping

As mentioned in Section 2, although the EP algorithm iteratively minimizes the KL di-
vergences from the tilted distributions to their corresponding approximations, it does not
minimize the KL divergence from the target density to the global approximation. In partic-
ular, running the EP updates in parallel often yields a deviated global approximation when
compared to the result obtained with sequential updates (Minka and Lafferty, 2002; Jylänki
et al., 2011). In order to fix this problem, damping can be applied to the site approximation
updates.

Damping is a simple way of performing an EP update on the site distribution only
partially by reducing the step size. Consider a damping factor δ ∈ (0, 1]. A partially damped
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update can be carried out by,

gnew
k (θ) = gk(θ)1−δ

(
g̃\k(θ)/g−k(θ)

)δ
,

where g̃\k(θ) is the corresponding tilted distribution approximation. This corresponds to
scaling the difference in the natural parameters of gk(θ) by δ. When δ = 1, no damping is
applied at all.

The error in the parallel EP approximation can be avoided by using a small enough
damping factor δ. However, this reduction in the step size makes the convergence slower and
thus it is beneficial to keep it as close to one as possible. The amount of damping needed
varies from problem to problem and it can often be determined by testing. Minka and
Lafferty (2002) proposes to set δ = 1/K as a safe rule. However, with a large number of sites
K, this often results in intolerably slow convergence. In order to speed up the convergence,
it could be possible to start off with damping closer to 1 and decrease it gradually with the
iterations without affecting the resulting approximation. In our experiments, by comparing
the resulting approximation to a known target, we found out that in the first iteration,
δ = 0.5 often resulted in good progression, regardless of the number of sites K. In the
following iterations, we obtained good results by decreasing damping gradually to δ = 1/K
in K iterations.

In addition to fixing the approximation error, damping helps in dealing with some con-
vergence issues, such as oscillation and non-positive-definiteness in approximated parameters.
If these problems arise with the selected damping level, one can temporarily decrease it until
the problem is solved, and this step can be automated.

5.3. Keeping the Covariance Matrix Positive Definite

In EP, it is not required that the site approximations be proper distributions. They are
approximating a likelihood factor, not a probability distribution, at each site. Tilted
distributions and the global approximation, however, must be proper, and situations where
these would become improper must be addressed somehow. These problems can be caused
by numerical instabilities and also can also be inherent to the algorithm itself.

As discussed before, obtaining the updated site distribution from an approximated tilted
distribution in step 2b of the message passing algorithm, can be conveniently written in
terms of the natural parameters of the exponential family:

Qnew
k = Qnew

\k −Q−k, rnew
k = rnew

\k − r−k,

where each Q = Σ−1 denote the precision matrix and each r = Σ−1µ denote the precision
mean of the respective distribution. Here the approximated natural parameters Qnew

\k and
rnew

\k of the tilted distribution together with the parameters Qnew
−k and rnew

−k of the cavity
distribution are being used to determine the new site approximation parameters Qnew

k and
rnew

k . As the difference between the two positive definite matrices is not itself necessarily
positive definite, it can be seen that the site approximation can indeed become improper.

Problems with the tilted distribution can arise when many of the site approximations
become improper. Constraining the sites to proper distributions (perhaps with the exception
of the initial site approximations) can fix some of these problems (Minka, 2001b). In the
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case of a multivariate normal distribution, this corresponds to forcing the covariance or
precision matrix to be positive definite. If all the sites are positive definite, all the cavity
distributions and the global approximation will also be positive definite.

The simplest way of dealing with non-positive definite matrices is to simply ignore any
update that would lead into such and hope that future iterations will fix this issue. Another
simple option is to set the covariance matrix Σnew

k = aI with some relatively big a and
preserve the mean.

Various methods exist for transforming a matrix to become positive definite. One
idea, as in the SoftAbs map of Betancourt (2013), is to do an eigendecomposition, keep the
eigenvectors but replace all negative eigenvalues with a small positive number and reconstruct
the matrix. Another possibly more efficient method is to find only the smallest eigenvalue of
the matrix and add its absolute value and a small constant to all the diagonal elements in
the original matrix. The former method is more conservative, as it keeps all the eigenvectors
and positive eigenvalues intact, but it is computationally heavy and may introduce numerical
error. The latter preserves the eigenvectors but changes all of the eigenvalues. However, it
is computationally more efficient. If the matrix only slightly deviates from positive definite,
it is justified to use the latter approach as the change on the eigenvalues is not big. If the
matrix has big negative eigenvalues, it is probably best not to try to modify it in the first
place.

If damping is used together with positive definite constrained sites, it is only necessary
to constrain the damped site precision matrix, not the undamped one. Because of this, it
is possible to find a suitable damping factor δ so that the update keeps the site, or all the
sites in parallel EP, positive definite. This can also be used together with other methods,
for example by first using damping to ensure that most of the sites remain valid and then
modifying the few violating ones.

5.4. Different Families of Approximate Distributions

We can place the EP approximation, the tilted distributions, and the target distribution on
different rungs of a ladder:

• g = p0
∏K

k=1 gk, the EP approximation;

• For any k, g\k = g pk

gk
, the tilted distribution;

• For any k1, k2, g\k1,k2
= g

pk1
pk2

gk1
gk2

, which we might call the tilted2 distribution;

• For any k1, k2, k3, g\k1,k2,k3
= g

pk1
pk2

pk3

gk1
gk2

gk3

, the tilted3 distribution;

• . . .

• p =
∏K

k=0 pk, the exact target distribution, which is also the tiltedK distribution.

From a variational perspective, expressive approximating families for g, that is, beyond
exponential families, could be used to improve the individual site approximations (Tran
et al., 2016; Ranganath et al., 2016). Instead of independent groups, tree structures could
also be used (Opper and Winther, 2005). Even something as simple as mixing simulation
draws from the tilted distribution could be a reasonable improvement on its approximation.
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One could then go further, for example at convergence computing simulations from some of
the tilted distributions.

Message passing algorithms can be combined with other approaches to data partitioning.
In the present paper, we have focused on the construction of the approximate densities gk with
the goal of simply multiplying them together to get the final approximation g = p0

∏K
k=1 gk.

However, one could instead think of the cavity distributions g−k at the final iteration as
separate priors, and then follow the ideas of Wang and Dunson (2013).

Another direction is to compare the global approximation with the tilted distribution,
for example by computing a Kullback-Leibler divergence or looking at the distribution
of importance weights. Again, we can compute all the densities analytically, we have
simulations from the tilted distributions, and we can trivially draw simulations from the
global approximation, so all these considerations are possible.

6. Experiments

As discussed in Section 5, the distributed EP framework can be applied to problems in
various ways. In this section, we implement an algorithm using MCMC for tilted distribution
inference, demonstrating in two hierarchical examples: a simulated logistic regression problem
and a mixture model applied to astronomy data. More details of the experiments can be
found in Appendix B.

The objective of these experiments is to demonstrate the EP framework as a convenient
method for distributing inference carried out by general probabilistic programming tools.
These experiments do not serve as a thorough examination of the principles of EP in itself
or as an exhaustive comparison between competitive distributed inference algorithms.

6.1. Simulated Hierarchical Logistic Regression

We demonstrate the distributed EP algorithm with a simulated hierarchical logistic regression
problem, a typical case in statistical analysis. We inspect the behavior of the method when
increasing the number of partitions, which is expected to speed up the inference but decrease
the approximation accuracy. We compare to consensus Monte Carlo (Scott et al., 2016),
an alternative distributed sampling method. Non-sampling based methods are not used
as a comparison. In particular, related but non-distributable conventional optimization
based variational inference is not analyzed here. We consider full non-distributed MCMC
approximation as a reference method. The aim of the experiment is to show that the method
is applicable and that it can outperform consensus Monte Carlo (Scott et al., 2016).

In the context of distributed computing, the constructed problem is small with 64 groups
and 1280 observations in total. When comparing to the non-distributed inference, the
gains in the computational efficiency should be greater with bigger problems. The time
complexity of the distributed algorithm is mostly determined by the MCMC sampling in the
local sites. Thus the expected complexity simplifies to O(h(n/K, dφ)), where n is the total
number of observations, K is the number of sites, dφ is the dimensionality of the shared
parameters, and h(n/K, dφ) indicates the complexity of sampling the local model with n/K
observations and dimensionality dφ. More detailed analysis of the computational complexity
is presented in Appendix C. In general, memory efficiency and limitations must also be
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Figure 5: A graphical model representation of the experimented hierarchical logistic regres-
sion problem. Indexing j = 1, 2, . . . , J corresponds to hierarchical groups and
i = 1, 2, . . . , nj corresponds to observations in group j. Gray nodes represent ob-
served variables and white nodes represent unobserved latent variables. Variables
without circles denote fixed priors.

taken into consideration, as the data set might not fit in the memory in the first place and
then it would need to be partitioned.

The problem has not been chosen here with the expectation that it would be particularly
easy to approximate with the method. On the contrary, it can be seen from the results that
unlike in the non-hierarchical logistic regression, where EP is known to perform well, the
hierarchical problem hard as EP tends to underestimate the variance when there are many
sites and strong posterior dependencies (Cunningham et al., 2011; Cseke et al., 2013).

The model we shall fit is

yij |xij , βj ∼ Bernoulli
(
logit−1(

fij
))
,

where

fij = βT
j xij

βjd ∼ N
(
µd, σ

2
d

)
,

µd ∼ N
(
0, τ2

µ

)
,

σd ∼ log-N
(
0, τ2

σ

)
,

for all dimensions d = 0, 1, . . . , D, groups j = 1, 2, . . . , J , and observations i = 1, 2, . . . , nj .
The observed data have D features. The first coefficient β0 corresponds to the intercept;
correspondingly, the first element in the data vector xi,j is a column of 1’s. The shared
parameters inferred with EP are φ = (µ, log σ). Figure 5 shows the structure of the model.

The simulated problem is constructed with a D = 16 dimensional explanatory variable
resulting in a total of dφ = 2(D + 1) = 34 shared parameters. The number of hierarchical
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groups is J = 64 and the number of data points per group is nj = 20 for all j = 1, . . . , J ,
resulting in a total of N = 1280 data points. The correlated explanatory variable is sampled
from a normal distribution N

(
µxj

, Σxj

)
, where µxj

and Σxj
are regulated so that the latent

probability logit−1(
βT

j xij
)

gets values near 0 and 1 with low but not too low frequency. This
ensures that the problem is neither too easy nor too hard. We present the details of the
regularization in Appendix B.3.

Following the hierarchical EP algorithm description in Section 4, we run experiments
partitioning the data into K = 2, 4, 8, 16, 32, 64 sites, using uniform distributions as initial
site approximations. Distributing the problem further into K > 64 sites, and ultimately to
K =

∑J
j=1 nj sites corresponding to the conventional fully factored EP, would require that

the local parameters be included in the global EP approximation, thus loosing the advantage
of the hierarchical setting. This drastic increase in the shared parameter space would often
make the approach inapplicable and thus we omit these experiments here.

Our implementation uses Python for the message passing framework and the Stan
probabilistic modeling language (Stan Development Team, 2017) for MCMC sampling from
the tilted distribution. The tilted distribution moments are estimated in natural form
with (5) and (6) from the obtained sample. Each parallel MCMC run has 8 chains of length
200, in which the first halves of the chains are discarded as warmup. In our implementation,
the warmup period, during which sampling parameters are learned, is performed in every
iteration of EP. It would be possible, however, to adopt the state of the sampler from
previous iteration to speed up the process. As discussed before in Section 5.2, we apply
gradually decreasing damping factor δ. In our experiment, the following setup produced
good results; in the first iteration, δ = 0.5 and it decays exponentially towards min(1/K, 0.2)
while reaching 90 % decay at iteration K.

We compare the results from the distributed EP approximations to a distributed consensus
Monte Carlo approximation (Scott et al., 2016) and undistributed full MCMC approximation
with varying sample size. In the consensus method, the data is split analogously to K =
2, 4, 8, 16, 32, 64 partitions and the prior is respectively fractioned to p(θ)1/K in each separate
inference. All of the obtained results are compared to a target full MCMC approximation
with 8 chains of length 10 000, in which the first halves of the chains are discarded as warmup.
The code for the experiments is available at https://github.com/gelman/ep-stan.

If we were to use a simple scheme of data splitting and separate inferences (without using
the cavity distribution as an effective prior distribution at each step), the computation would
be problematic: with only 20 data points per group, each of the local posterior distributions
would be wide, as sketched in Figure 2. The message passing framework, in which at each
step the cavity distribution is used as a prior, keeps computations more stable and focused.

Figure 6 illustrates the progression of the experiment for each run. In this experiment,
EP reached better accuracy than consensus MC with all K. As shown in Appendix B.2, the
difference in the accuracy between EP and consensus MC becomes bigger, if the parameter
correlations in the KL divergence measure are ignored. With small K, EP was able to
reach accuracy comparable to the full sampling. Figure 7 compares the final obtained
approximation accuracy between EP and consensus method with varying K. In both of these
methods, the final approximation quality is better with fewer sites but more sites provide
opportunities for faster convergence and reduced memory usage per unit in parallelized
setting. Figure 8 shows a comparison between posterior mean and standard deviation
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Figure 6: MSE of the mean and approximate KL divergence from the target distribution
to the resulting posterior approximation as a function of the elapsed sampling
time. Three methods are compared: full MCMC, distributed EP, and distributed
consensus MC. For EP (solid lines) and consensus Monte Carlo (dotted lines),
line colors indicate the number of partitions K. The y-axis is in the logarithmic
scale. Unsurprisingly, the final accuracy declines as the number of partitions
increases. In all partitionings, EP outperforms consensus MC, and with small K,
it reaches comparable accuracy to the full MCMC approximation. The sampling
time comparison is tentative, as the EP implementation could be further optimized
by reusing sampling parameters in consecutive iterations. In addition to the time
efficiency, the reduced memory usage per distributed unit, gained by increasing
the number of partitions K, would also be a concern for large problems.
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Figure 7: The resulting MSE and KL divergence with distributed EP and consensus Monte
Carlo as a function of the number of partitions. EP reached better results in all
cases. The y-axis is in the base-10 logarithmic scale and the x-axis is in the base-2
logarithmic scale.

between the distributed EP approximation and the target approximation for the shared
parameters in the extreme cases K = 2 and K = 64. Points closer to the red diagonal line
imply a better EP approximation. It can be seen that the case K = 2 results in an overall
better approximation.

As discussed before in the start of this section, it can be seen from Figure 8 that EP
tends to underestimate the variance with more sites. This underestimation is a known
feature in EP when there are many sites and strong posterior dependencies (Cunningham
et al., 2011; Cseke et al., 2013). However, unlike with the consensus MC method, the mean
is well approximated with distributed EP even with a high number of partitions, as can be
seen from Figure 6.

Although not the focus of this experiment, in Figure 6, we assess the time efficiency
of the method by inspecting the performance indicator as a function of the time spent in
the sampling parts of the code. By this, we can compare the methods in an even manner
by neglecting the implementation-specific factor. Each of the methods uses the same Stan
implementation for the sampling. In our experiments, the time spent in other parts of the
code is minuscule compared to the sampling time; even in the most extreme case of K = 64,
the time spent in non-sampling parts of the code was only 0.2% of the total time spent.
However, as various aspects of the problem affect the computational efficiency, our general
time comparison is tentative. For example, it should be possible to improve the sampling
time in EP by adopting the sampling parameters from previous EP iterations. We further
discuss the computational complexity of the method in Appendix C.
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Figure 8: Pointwise comparison of the posterior mean and standard deviation of the target
and the final distributed EP approximation when the groups are distributed into
K = 2 (top row) and K = 64 (bottom row) sites. Each dot corresponds to one of
the 34 shared parameters. The red diagonal line shows the points of equivalence.
It can be seen that in this experiment, while accurately finding the mean, EP
systematically underestimates the variance.

6.2. Hierarchical Mixture Model Applied to an Astronomy Problem

We next apply the distributed EP algorithm to a problem in astronomy, where the goal is to
model the nonlinear relationship between diffuse galactic far ultraviolet radiation (FUV) and
100-µm infrared emission (i100) in various sectors of the observable universe. The data were
collected from the Galaxy Evolution Explorer telescope. An approximate linear relationship
has been found between FUV and i100 below i100 values of 8 MJy sr−1 (Hamden et al.,
2013). Here we attempt to model the nonlinear relationship across the entire span of i100
values, allowing the curves to vary spatially. Sahai (2018) discusses the experiment in more
detail and also presents some additional simulated experiments using the same method.

Figure 9 shows scatterplots of FUV versus i100 in different longitudinal regions (each
of width 1 degree) of the observable universe. The bifurcation in the scatterplots for i100
values greater than 8 MJy sr−1 suggests a nonlinear mixture model is necessary to capture
the relationship between the two variables. At the same time, a flexible parametric model
is desired to handle the various mixture shapes, while maintaining interpretability in the
parameters.
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Figure 9: Scatterplots of far ultraviolet radiation (FUV) versus infrared radiation (i100) in
various regions of the universe. Data are shown for regions of longitude 12◦, 23◦, 92◦,
and 337◦, and are presented with axes on the original scale (first column) and on
the log scale (second column).
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Letting σ(·) = logit−1(·) denote the inverse logistic function and letting

aj =
(
β0j , β1j , µ1j , σ1j , σ

−1(β2j), µ2j , σ2j , σ
−1(πj), σj

)

denote the local parameters for each group j, we model the top part of the bifurcation (the
first component of the mixture) as a generalized inverse logistic function,

f(aj , xij) = β0j + β1jσ

(
log xij − µ1j

σ1j

)
,

while the second mixture component is modeled as the same inverse logistic function
multiplied by an inverted Gaussian:

g(aj , xij) = β0j + β1jσ

(
log xij − µ1j

σ1j

)
·

(
1 − β2j exp

(
−

1

2

(
log xij − µ2j

σ2j

)2))
.

As such, the ultraviolet radiation (yij) is modeled as a function of infrared radiation (xij)
through the following mixture model:

log yij = πj · f(aj , xij) + (1 − πj) · g(aj , xij) + σjǫij ,

ǫij ∼ N(0, 1),

where β2j ∈ [0, 1], πj ∈ [0, 1], and the local parameters are modeled hierarchically with the
following shared centers and scales:

β0j ∼ N
(
β0, τ

2
β0),

β1j ∼ N
(
β1, τ

2
β1),

µ1j ∼ log-N
(
logµ1, τ

2
µ1),

σ1j ∼ log-N
(
log σ1, τ

2
σ1

)
,

σ−1(β2j) ∼ N
(
σ−1(β2), τ2

β2

)
,

µ2j ∼ log-N
(
logµ2, τ

2
µ2

)
,

σ2j ∼ log-N
(
log σ2, τ

2
σ2

)
,

σ−1(πj) ∼ N
(
σ−1(π), τ2

π

)
,

σj ∼ log-N
(
σ, τ2

σ

)

for all groups j = 1, 2, . . . , J , and observation i = 1, 2, . . . , nj . The model is illustrated
graphically in Figure 10.

Hence the problem has 9 · 2 = 18 shared parameters of interest. The number of local
parameters depends on how finely we split the data in the observable universe. Our study in
particular is constructed with J = 360 hierarchical groups (one for each longitudinal degree
of width one degree), resulting in a total of 9J = 3 240 local parameters. We also sample
the number of observations per group as nj = 2 000 for all j = 1, . . . , J , resulting in a total
of N = 720 000 observations.

When dividing the longitudinal degrees into distinct hierarchical groups, the relative
angular distance between groups is ignored; nearby groups are considered equally dependent
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Figure 10: Graphical representation of the astronomy model. Circles represent random
variables and boxes represent fixed parameters. Grayed circles are observed. The
zig-zag line indicates that πj functions as a selector between fij and gij . The
labels for the fixed prior parameters are omitted for clarity.

as far away ones. This is often an issue with divide-and-conquer algorithms when the
data have spatial or temporal structure. Increasing the number of partitions ignores more
information but also increases computational efficiency. In addition, one must pay attention
to local coherence in the groupings. We find that applying this model for the problem is
reasonable, and it also serves as an example for hierarchical nonlinear regressions more
generally. Sahai (2018) discusses the matter in more detail.

Our implementation uses R for the message passing framework and the Stan probabilistic
modeling language (Stan Development Team, 2017) for MCMC sampling from the tilted
distribution. We fit the mixture model with various EP settings, partitioning the data into
K = 5, 10, 30 sites and using uniform distributions as the initial site approximations. For the
tilted distribution inference, the natural parameters are estimated using (5) and (6). Each
parallel MCMC run has 4 chains with 1000 iterations each, of which half are discarded as
warmup. We use a constant damping factor of δ = 0.1 in order to get coherent convergence
results amongst different partitions. We compare the results from the distributed EP
approximations to an MCMC approximation for the full model using Stan. The full
approximation uses 4 chains with 1000 iterations each, of which half are discarded as
warmup.

Figure 11 shows a comparison of the local scatterplot fits for each EP setting on various
hierarchical groups, each representing a one-degree longitudinal slice of the observable
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Figure 11: Comparison of the local fits of the full MCMC computation (black) for the
astronomy example and the final distributed EP approximations when the groups
are distributed into K = 5 (red), K = 10 (blue), and K = 30 (green) sites.
Posterior draws are shown for each of 6 groups (one group per row) with longitudes
12◦, 32◦, 82◦, 92◦, 93◦, and 194◦.
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Figure 12: Computation times for the distributed EP algorithm applied to the astronomy
data, as a function of the number of sites. The full MCMC computation time
is equivalent to that of EP with K = 1 site. The computational benefits of
increasing the number of sites is clear when the updates are parallel.

universe. While all of the runs show similar results for most groups, there are some cases
where increasing the number of sites results in poorer performance. In particular, EP with 30
sites converges to a different mixture for 82◦, while EP with 10 sites converges to a different
mixture for 194◦.

Figure 12 illustrates the computation times for the EP runs with serial and parallel
updates. The advantages of distributed EP are most clear when comparing K = 1 site to
K = 30 sites, which results in a 96% decrease in computation time. This advantage in
computation time, however, depends on the implementation of the parallelization. By using
the time spent on the sampling of the tilted distribution as our benchmarking criterion, we
can focus on the crucial part of the algorithm and neglect the implementation-specific factor.

7. Discussion

Using the principle of message passing with cavity and tilted distributions, we have presented
a framework for Bayesian inference on partitioned data sets. Similar to more conventional
divide-and-conquer algorithms, EP can be used to divide the computation into manageable
sizes without scattering the problem into too small pieces. Furthermore, EP comes with the
additional advantage of naturally sharing information between distributed parts, focusing the
computation into important areas of the parameter space. In our experiment, the method
outperforms comparable consensus MC algorithm (Scott et al., 2016) both in time and
approximation error.

Probabilistic programming languages such as Stan (Stan Development Team, 2017)
provide convenient generalizable tools for statistical data analysis. When dealing with
problems where the data does not fit in the memory, the EP framework can be included in
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the process to distribute the computation without loosing the generalizability. >From an
alternative point of view, EP can also be used to pool information across many sources of
already partitioned data sets and models. In the case of hierarchical models, EP enables
efficient distributed computation for large models with big data sets, as well as meta-models
fit into local models or local aggregated data.

The message passing framework presented in this paper includes numerous design choices,
and many methods can be subsumed under it. In particular, the inference in the sites
can be implemented in various ways. This extensive configurability provides possibilities
for improved efficiency but also makes it more complex to set up. In this paper we have
discussed two generalizable simulation based methods in particular, moment matching and
SNEP (Hasenclever et al., 2017). These methods perform better in different situations.
It is also possible to use them in combination, for example using moment matching in
early iterations for a more stable and quicker start, and SNEP in later iterations for more
stable and precise convergence. If convergence problems are encountered, while different
choices in the method may also be helpful, it could be useful to first consider alternative
approximating families instead. Further research is required in order to learn the effect of
different configurations and the optimal approaches to various problem settings.

Data partitioning is an extremely active research area with several black box algorithms
being proposed by various research groups (e.g., Kucukelbir et al., 2017; Hasenclever et al.,
2017; Bardenet et al., 2017). We are sure that different methods will be more effective in
different problems. The present paper has two roles: we review the steps that are needed to
keep EP algorithms numerically stable, and we are suggesting a general approach, inspired
by EP, for approaching data partitioning problems in a way that achieves the computational
benefits of parallelism while allowing each local update to make use of relevant information
from the other sites.

While EP may not yet be a “way of life,“ we argue that the increasing popularity of
divide-and-conquer algorithms in big data environments is moving us in this direction.
Stepping back from particular choices in implementation, the idea of the cavity and tilted
distributions seems to us to be crucial in understanding how inferences from separate pieces
of information can be combined in a way that respects the model being fit. We anticipate
that great progress could be made by using message passing to regularize existing algorithms.
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Appendices

A. Distributed Parallel Message Passing Algorithm

This section presents a detailed algorithm for distributed EP applied in the context of
partitioned data. The implementation used in the experiments in Section 6 follows this
description. In Appendix A.5, we further extend the algorithm for cases where dimension
reduction is possible.

A.1. Algorithm Description

In this subsection we give a practical algorithm description suitable for implementing the
general message passing algorithms discussed in Sections 3 and 4. The algorithm can be
applied to approximate the joint posterior distribution in a general setting or the marginal
posterior distribution of the shared parameters in a hierarchical setting.

Consider the normal distribution g(θ|r,Q) = N(θ|µ,Σ) for the random variable θ ∈ R
D.

The precision mean vector r ∈ R
D and the symmetric (positive semidefinite) precision matrix

Q ∈ R
D×D are the natural parameters and the mean vector µ ∈ R

D and the symmetric
(positive semidefinite) covariance matrix Σ ∈ R

D×D are the moment parameters. The
parameters can be inverted from natural to moment form, Σ = Q−1, µ = Q−1r, and
vice-versa, Q = Σ−1, r = Σ−1µ, using Cholesky factorization and backward substitution.
Multiplying together two normal distributions yields an unnormalized normal distribution
with natural parameters multiplied together g1(θ|r1, Q1)g2(θ|r2, Q2) ∝ g1·2(θ|r1+r2, Q1+Q2),
and analogically g1(θ|r1, Q1)/g2(θ|r2, Q2) ∝ g1/2(θ|r1 − r2, Q1 −Q2) (e.g., Rasmussen and
Williams, 2006, p. 200).

EP is applied to approximate the target posterior distribution,

p(θ|y) ∝ p(θ)
K∏

k=1

p(yk|θ),

by a normal distribution,

g(θ|r,Q) ∝ g0(θ|r0, Q0)
K∏

k=1

gk(θ|rk, Qk),

where the global approximation g(θ|r,Q), site approximations gk(θ|rk, Qk), and the prior
g0(θ|r0, Q0) are all normal distributions parameterized by mean vector and precision matrix
parameters. The global approximation parameters r,Q can be obtained by summing up all
the site parameters and the prior parameters:

Q = Q0 +
K∑

k=1

Qk, r = r0 +
K∑

k=1

rk.

In the following algorithm description, the parameter η ∈ (0, 1] can be used to apply
power EP (Minka, 2004) to minimize general α-divergence instead of KL divergence as
discussed in Section 5.1 in the paper. Using η = 1, as we did in our experiments, applies
regular EP with KL divergence minimization.
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Initially all the site distributions are set to improper uniform distributions with rk =
0, Qk = 0 for k = 1, 2, . . . ,K, which is equivalent to initializing the global approximation
g(θ|r,Q) to the prior, that is, r = r0 and Q = Q0. The algorithm proceeds by iteratively
updating the site distributions until convergence:

1. In parallel at each site k = 1, 2, . . . ,K, determine the cavity distribution g−k(θ|r−k, Q−k):

Q−k = Q− ηQk, r−k = r − ηrk.

Here it is possible to obtain a precision matrix Qk that corresponds to an improper
distribution (not in the first iteration). This is acceptable as long as the inference for
the tilted distribution in the next step can be carried out. If this inference method
requires a proper cavity distribution, the algorithm can jump to step 4, reduce damping,
and continue until proper cavities are obtained.

2. In parallel at each site k = 1, 2, . . . ,K, approximate the natural precision parameters
r\k, Q\k of the tilted distribution

g\k(θ) ∝ p(yk|θ)ηg−k(θ|r−k, Q−k),

which is of unrestricted form. This can be sampled and differentiated using

log g\k(θ) = η log p(yk|θ) −
1

2
θTQ−kθ + rT

−kθ + const.

In a hierarchical setting, as discussed in Section 4, the tilted distribution considers
also the local parameters:

g\k(θ) ∝

∫ (
p(yk|αk, θ)p(αk|θ)

)η
g−k(θ|r−k, Q−k) dαk,

where θ contains the shared parameters and αk contains the local parameters for site
k.

Key properties of different approximation methods are:

• MCMC: It is easy to compute µ\k and Σ\k from a set of simulation draws.

Various approaches for computing the precision matrix Q\k = Σ−1
\k are discussed

in Appendix A.3 and in Section A.4.

• Laplace’s method: Gradient-based methods can be used to determine the mode
of the tilted distribution efficiently. Once a local mode θ̂ is found, the natural
parameters can be computed as

Q\k = −∇2
θ log g\k(θ)|θ=θ̂ = −η∇2

θ log p(yk|θ)|θ=θ̂ +Q−k

r\k = Q\kθ̂.

If θ̂ is a local mode, Q\k should be symmetric and positive definite.
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Other approximation methods can also be used, including EP itself, which can be used
to form arbitrarily deep and complex message passing algorithms.

The implementation used in the experiments in Section 6 uses MCMC sampling and
consider the hierarchical structure of the problem.

3. In parallel at each site k = 1, 2, . . . ,K, if |Q\k| > 0, compute the change in the site
distribution gk(θ|rk, Qk) resulting from the moment consistency conditions Q\k =
Q−k + ηQnew

k and r\k = r−k + ηrnew
k :

∆Qk = Qnew
k −Qk = η−1(Q\k −Q−k) −Qk

∆rk = rnew
k − rk = η−1(r\k − r−k) − rk,

If |Q\k| ≤ 0, there are at least two options: discard the update by setting ∆Qk = 0
and ∆rk = 0, or use some method discussed in Section 5.3 to improve the conditioning
of Q\k and compute the parameter updates with the modified Q\k.

4. Update the global approximation g(θ|r,Q) with damping level δ ∈ (0, 1]:

Qnew = Q+ δ
K∑

k=1

∆Qk

rnew = r + δ
K∑

k=1

∆rk.

If the resulting approximation g(θ|r,Q) is not proper, decrease δ and try again.

5. In parallel at each site k = 1, 2, . . . ,K, determine the updated site parameters with
the selected damping level δ ∈ (0, 1]:

Qnew
k = Qk + δ∆Qk

rnew
k = rk + δ∆rk.

The iterations are repeated until all the tilted distributions are consistent with the approxi-
mate posterior, that is, ∆rk and ∆Qk become small for all sites k = 1, 2, . . . ,K.

A.2. Advantages and Limitations

This section discusses advantages and limitations of the algorithm presented in Appendix A.1.

A.2.1. Advantages

• Working with the natural parameters of the exponential family makes the computations
in the algorithm convenient. Operating with such terms can be parallelized elementwise,
making the time complexity constant instead of O(D2), for example [Q1 + Q2]i,j =
[Q1]i,j+[Q2]i,j , where [A]i,j denotes element i, j of matrix A. Also, summing up multiple
terms in step 4 can be parallelized termwise, for example (Q1 +Q2) + (Q3 +Q4).
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• The tilted moments can be determined by sampling directly from the unnormalized
tilted distributions or by using Laplace’s method. This requires only cheap function
and gradient evaluations and can be applied to a wide variety of models.

• After convergence, the final posterior approximation could be formed by mixing
the draws from the different tilted distributions because these should be consistent
with each other and with g(θ). This sample-based approximation could also capture
potential skewness in p(θ|y) because it resembles the EP-based marginal improvements
described by Cseke and Heskes (2011).

A.2.2. Limitations

• The tilted distribution covariance matrices can be easily computed from the samples,
but obtaining the precision matrix efficiently is problematic. Various methods for
dealing with this issue are discussed in Section A.4. These methods often involve
computing the inverse of the sample covariance or scatter matrix, which as such
is a costly and inaccurate operation. However, as discussed in Appendix A.3, the
QR-decomposition can be used here to more efficiently form the Cholesky factor of
the matrix directly from the sample.

• Estimating the marginal likelihood is more challenging, because determining the
normalization constants of the tilted distribution requires multivariate integrations.
For example, annealed importance sampling type of approaches could be used if
marginal likelihood estimates are required. We further discuss marginal likelihood in
Appendix E.

With Laplace’s method, approximating the this normalization constant is straightfor-
ward but the quality of the marginal likelihood approximation is not likely to work
well with skewed posterior distributions. The Laplace marginal likelihood estimate is
not generally well-calibrated with the approximate predictive distributions in terms
of hyperparameter estimation. Therefore it would make sense to integrate over the
hyperparameters within the EP framework.

A.3. Inverting the Scatter Matrix

When using sample-based estimates for the tilted distribution moment estimation, one often
needs to deal with the inverse of the scatter matrix (unnormalized sample covariance matrix).
In practice, one wants to form the Cholesky decomposition for it. The naive way would be
to calculate the scatter matrix and apply available routines to determine the factorization.
However, here QR-decomposition can be used to compute it directly from the sample without
ever forming the scatter matrix itself. This makes the process more stable, as forming the
scatter matrix squares the condition number.

Consider the sample concatenated as an n× d matrix D where the columns are centered
to have zero mean. The scatter matrix is S = DTD. In the QR-decomposition D = QR,
the matrix R corresponds to the upper triangular Cholesky factor of the scatter matrix,
although the rows may be negative. Moreover, because the factor Q is not needed, it is
possible to compute the QR-decomposition even more efficiently.
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A.4. Estimating the Natural Parameters

When using sample-based methods for the inference on the tilted distribution, one must
consider the accuracy of the moment estimation. In the message passing algorithm, these
parameters are needed in natural form. Estimating the moment parameters from a given
sample is straightforward but estimating the precision matrix from a set of simulation draws
is a complex task and in general the estimators are biased. In addition, depending on the
situation, using the naive unbiased moment estimator can produce higher expected KL
divergence compared to other biased estimators.

In the algorithm, the parameters of the tilted distribution are needed in natural form. The
naive way of estimating the precision matrix Q is to invert the unbiased sample covariance
matrix, that is Q̂ = Σ̂−1 = (n− 1)S−1, where S is the scatter matrix constructed from the
posterior simulation draws representing the tilted distribution. This estimator is biased
in general: E

(
Q̂

)
6= Q. Furthermore, the number of draws n affects the accuracy of the

estimate drastically. In an extreme case, when n is less than the number of dimensions d,
the sample covariance matrix is not even invertible as its rank can not be greater than n. In
such a case, one could resort for example to the Moore–Penrose pseudo-inverse. In practice,
when dealing with the inverse of the scatter matrix, one should apply the QR-decomposition
to the samples in order to obtain the Cholesky decomposition of S without ever forming the
scatter matrix itself. This is discussed in more detail in Appendix A.3.

If the tilted distribution is normally distributed, an unbiased estimator for the precision
matrix can be constructed by Muirhead (2005, p. 136):

Q̂N =
n− d− 2

n− 1
Σ̂−1 = (n− d− 2)S−1. (5)

Furthermore, the precision mean is given by,

r̂N = Q̂Nµ̂ = (n− d− 2)S−1µ̂, (6)

which can be solved simultaneously while inverting the scatter matrix. The inverse of this
matrix is a biased estimate of the covariance matrix. Xu et al. (2014) used this estimator in
their implementation of the MCMC based EP algorithm and conjectured that it would be an
unbiased estimate of the true natural parameters of the tilted distribution, which is not true
in general. Other improved estimates for the normal distribution and some more general
distribution families exist (Bodnar and Gupta, 2011; Gupta et al., 2013; Sarr and Gupta,
2009; Tsukuma and Konno, 2006). However, if the tilted distribution is normally distributed,
it is likely that the moments can be solved analytically and sample based estimates are not
needed in the first place. Different methods for estimating the precision matrix in the general
case, that is when no assumptions can be made about the tilted distribution, have also been
proposed. These methods often either shrink the eigenvalues of the sample covariance matrix
or impose sparse structure constraints to it (Bodnar et al., 2014; Friedman et al., 2008).

In each iteration of EP, as discussed in Section 2, the objective is to minimize the KL
divergence from the global approximation to the tilted distribution, which corresponds
to matching the moments. With approximated moment estimates, in order to make the
algorithm work like EP on expectation and stay at the same fixed point as EP on expectation,
the moment estimates should be unbiased. However, the distribution of the resulting KL
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Figure 13: Simulated histograms of resulting KL divergences KL(g\k(θ)||g(θ)) when moment
parameters are estimated using the naive unbiased moment estimator S/(n− 1)
and the normal natural estimator S/(n − d − 2) presented in Equations (5)
and (6). The sample size for estimating the parameters n = 200. The tilted
distribution is normally distributed with d = 16 dimensions and the correlation
matrix is randomized with eigenvalues drawn from a Dirichlet distribution with
a few higher values in the concentration parameter. The sampling is repeated
8000 times to form a sample of the distribution of the KL divergences. It can
be seen from the histograms and from the illustrated statistics, that the biased
estimator performs better in this case.

divergence depends on the used moment parameter estimator. An unbiased estimator is
not necessarily optimal, as there can be biased estimators that produce smaller expected
KL divergence. The situation depends on the form of the tilted distribution and on the
properties of the used estimators, for example the sample size and consistency in the case of
simulation-based estimates. Figures 13 and 14 illustrates a simulated example case, where
the tilted distribution moments are estimated from a sample using various scatter matrix
based estimators. Figure 13 illustrates the distribution of the resulting KL divergence
KL(g\k(θ)||g(θ)) with normal tilted distribution g\k(θ) using the naive unbiased estimate
and the normal distribution natural parameter estimates presented in Equations (5) and (6).
In this case, the biased moment estimator outperforms the unbiased naive one. In Figure 14,
a t distribution with four degrees of freedom is used. In this case, the optimal scaling
of the scatter matrix is greater than in both of the discussed estimators. Thus, when
implementing a simulation-based EP algorithm, it may be beneficial to study the form of
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Figure 14: Simulated statistics of resulting KL divergences KL(gEP(θ)||gsample(θ)), where
gEP(θ) is the new global distribution with precise EP update and gsample(θ) is the
new global distribution with sample based update. In the sample based update,
different scaling of the scatter matrix is used, indicated in the x-axis as multiples
of 1/n. The naive unbiased moment estimator S/(n− 1) and the normal natural
estimator S/(n − d − 2) presented in Equations (5) and (6) are indicated by
vertical lines. The sample size for estimating the parameters n = 200. In the
first row, the d = 16 dimensional tilted distribution is normally distributed,
and in the second row, it follows t-distribution with four degrees of freedom.
The correlation matrix is randomized in a similar fashion as in Figure 13. The
sampling is repeated 2000 times to form a sample of the distribution of the KL
divergences for each estimator in a grid of 15 points. It can be seen that while
producing best results in the normal case, the normal natural estimator does not
perform best in the t-distribution case.

the tilted distribution and select the used sample estimator accordingly. The need for this
selective analysis can be hindered by increasing the sample size; With increased sample size,
the naive moment and the normal natural estimators are likely to perform equally well.

A.5. Dimension Reduction for Site Inference

The EP algorithm presented in Appendix A.1 can easily be extended to incorporate additional
message passing components, as discussed for example by Chen and Wand (2020). Here
we demonstrate a version for the special case in which the non-Gaussian likelihood terms
p(yk|θ) depend on θ only through preferably low-dimensional linearly transformed random
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variables zk = UT
k θ, Uk ∈ R

D×Dk , zk ∈ R
Dk for each partition k = 1, 2, . . . ,K; that is,

p(yk|θ) = p(yk|zk).

In the algorithm, the site approximations are stored in low-dimensional form (zero
initialized) as gk(zk|r̃k, Q̃k), r̃k ∈ R

Dk , Q̃k ∈ R
Dk×Dk . The global approximation g(θ|r,Q)

in the original space can be obtained from the transformed site distributions and the prior
distribution (e.g., Chen and Wand, 2020, section Multivariate Linear Combination Derived
Variable Fragment)

Q = Q0 +
K∑

k=1

Qk r = r0 +
K∑

k=1

rk,

where

Qk = UkQ̃kU
T
k , rk = Ukr̃k. (7)

The algorithm proceeds similarly as in Appendix A.1, but the site updates are performed in
the transformed space:

• In step 1, the cavity distribution g−k(zk|r̃−k, Q̃−k) is calculated by,

Q̃−k =
(
UT

k Q
−1Uk

)−1
− ηQ̃k, r̃−k =

(
UT

k Q
−1Uk

)−1
UT

k Q
−1r − ηr̃k,

see for example Chen and Wand (2020, Section Multivariate Linear Combination
Derived Variable Fragment).

• In steps 2, 3, and 5, the computations are applied for zk, r̃k, and Q̃k instead of θ, rk,
and Qk.

• In step 4, the global approximation is updated by transforming the difference into the
original space by considering the relation in (7):

Qnew = Q+ δ
K∑

k=1

∆Qk = Q+ δUk

[
K∑

k=1

∆Q̃k

]
UT

k

rnew = r + δ
K∑

k=1

∆rk = r + δUk

[
K∑

k=1

∆r̃k

]
.

The advantage of the algorithm comes from the lower dimensional operation of the site
updates; the tilted distribution inference considers only the transformed space of zk with Dk

dimensions instead of the space of θ with D dimensions. In addition, the site distributions
can be stored in the lower dimensional space with O(D2

k) elements in parameters r̃k, Q̃k

instead of the original space with O(D2) elements in parameters rk, Qk.

The disadvantage of the method is that the computation of the cavity distributions
becomes heavier task with time complexity O(D3). However, if the global approximation
moment parameters µ = Q−1r Σ = Q−1 are solved between every iteration anyway, for
example to monitor the convergence, the task does not add any complexity.
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B. Additional Details of the Experiments

As discussed in the text, for example in Section 5, implementing a distributed EP algorithm
contains multiple design choices that might affect the behaviour of the algorithm. This
section describes some details of the implementation we used in our experiments in Section 6.
In addition, we show some additional results obtained from the simulated experiment. The
algorithm follows the description in Appendix A.1, where the tilted distribution inference in
step 2 considers the discussed hierarchical setting and is carried out by MCMC sampling.

B.1. Implementation in Stan

We implement our experiments using Python, R, and Stan. The Python code for the
simulated experiment is available at https://github.com/gelman/ep-stan/releases/tag/v1.3.
We pass the normal approximations gk back and forth between a master node and K separate
site nodes. In the site nodes, we use Stan to compute the tilted distribution moments.

Our implementations are not optimal in methodological point-of-view. In the following,
we list some key areas of improvement for our implementation:

• In the current implementation, we write the appropriate Stan model for the tilted
distribution inference manually by adapting the code from the full model to act just
on the subset of parameters relevant to a single subset of the partitioned hierarchical
model. In future software development, we would like to be able to take an existing
Stan program and merely overlay a factorization so that the message passing algorithm
could be applied directly.

• Currently, Stan performs adaptation each time it runs. Future versions should allow
restarting from the previous state, which should speed up computation substantially
when the algorithm starts to converge.

• We should be able to approximate the expectations more efficiently using importance
sampling.

B.2. Simulated Experiment Marginal KL Divergence

In the simulated hierarchical logistic regression experiment in Section 6.1, the bottom
subplot of Figure 6 shows the KL divergence from the reference posterior distribution to the
approximate one. In addition to the mean and variance of the parameters, this measure
also takes into account the correlations between the parameters. Figure 15 features an
analogous plot, where the correlation between the parameters is ignored; instead of the
full KL divergence, the sum of the KL divergences between all the marginals is illustrated.
With this measure, the difference in the accuracy between the EP approximation and the
consensus MC approximation becomes bigger.

B.3. Details of the Simulated Hierarchical Logistic Regression

In the simulated hierarchical logistic regression problem in Section 6.1, the difficulty of the
problem is controlled by regulating the resulting uncertainty in the simulated data. This is
done by first fixing random model parameter values and then selecting suitable parameters
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Figure 15: Approximate marginal KL divergence of the posterior approximation from the
target distribution as a function of the elapsed sampling time in the simulated
hierarchical model. Three methods are compared: full MCMC, distributed
EP, and distributed consensus MC. For EP (solid lines) and consensus MC
(dotted lines), line colors indicate the number of partitions K. The y-axis is
in the logarithmic scale. Compared to the full KL divergence illustrated in
the analogous plot in Figure 6, the difference in the accuracy between EP and
consensus MC is bigger.

for sampling the explanatory variable conditional to the model parameters for each group
separately. Finally the response variable yij is sampled given the explanatory variable xij

and group parameter βj . The following describes these steps in detail.

First the hyperparameters are fixed. For the intercept, we set µ0 = 1.5 and log σ0 = 0.4,
and for the slope, µd and log σd, d = 1, 2, . . . , D are drawn at random from uniform(−2, 2) and
uniform(−0.5, 0.5) respectively. The prior for the hyperparameters is set so that µd ∼ N(0, 42)
and µd ∼ log-N(0, 22) for d = 0, 1, . . . , D. Given the fixed hyperparameters, the group
parameters βj are drawn at random according to the model distribution βjd ∼ N(µd, σ

2
d).

The following describes the sampling of the data based on the fixed parameters βj .
Vectors (lowercase) and matrices (uppercase) are denoted with bold symbols to distinguish
them from scalars. In addition, denoting the conditioning on the model parameters βj

and the group indexing j is omitted. Detailed derivations of the formulas are presented in
Section 6.3.2 in (Sivula, 2015).

The explanatory variable x ∈ R
D is sampled from normal distribution N(µ, σ2Σ0).

The mean µ is restricted to be equal in all dimensions: µ = µ1, where 1 is a vector of
1’s. The correlation structure Σ0 is randomly generated using modified vines method by
Lewandowski et al. (2009), where the partial correlations are sampled from Beta(2, 2) from
the range (−0.8, 0.8) and the diagonal is normalized to unity.
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Consider the regression coefficient vector split into intercept coefficient α and slope β.
The classification uncertainty is controlled by setting restrictions to P = logit−1(

α+ βT x
)
,

that is to the probability of the response variable y being in one class, which follows
logit-normal distribution logit-N

(
α+ βT µ, σ2βT Σ0β

)
. The resulting distribution of P is

restricted to have tail probabilities Pr(P ≤ p0) < γ0 and Pr(P > p0) < γ0, where p0 = 0.2
and γ0 = 0.01. In addition, smallest acceptable variance condition Var

(
α+ βT x

)
≥ τ2

min is
set with τmin = 0.25. Satisfying explanatory variable sampling parameters µ and σ are then
chosen by

µ =





δmax − α
∑D

d=1 βi

, if α > δmax,

−δmax − α
∑D

d=1 βi

, if α < −δmax,

0 otherwise.

σ =





logit(p0) + |α|

Φ-1(γ0)
√

βT Σ0β
, if |α| ≤ δmax,

τmin√
βT Σ0β

, otherwise,

where δmax = τmin Φ-1(γ0) − logit(p0) is the maximum magnitude of the mean of α+ βT x.
With this parameter selection method,

P ∼ logit-N

(
α′,

logit(p0) + |α′|

Φ-1(γ0)

)
,

where

α′ = min
(
max(α,−δmax), δmax

)
.

From this, it can be seen that the resulting distribution of P does not depend on β or the
dimensionality D. The parameter α tilts the distribution toward 0 or 1.

C. The Computational Opportunity of Parallel Message Passing

Algorithms

We have claimed that message passing algorithms offer computational gains for large inference
problems by splitting the data into pieces and performing inference on each of those pieces in
parallel, occasionally sharing information between the pieces. Here we detail those benefits
specifically.

Consider the simple non-hierarchical implementation in Section 3 with a multivariate
normal approximating family, where the likelihood is factored into K sites. The tilted
distribution is approximated with MCMC sampling. Let Nk be the number of data points in
site k and let D be the number of parameters, that is, the length of the vector θ. We assume
that we have K + 1 parallel processing units: one central processor that maintains the global
posterior approximation g(θ) and K worker units on which inference can be computed on
each of the K sites. The central unit stores the global approximation and the worker units
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store the respective site approximation. Each distribution parameters consist of O(D2)
values: mean or precision mean vector of length D and covariance or precision matrix of size
D ×D. Furthermore, we assume a network transmission cost of c per parameter. Finally,
we define h(n, d) as the computational cost of generating a sample from a tilted distribution
with n data points and d parameters. In general case h(n, d) ≫ O(d2 + n), where O(d2 + n)
would be the minimal cost for analytically tractable case.

Each step of the algorithm then incurs the following costs:

1. Partitioning. This loading and caching step will in general have immaterial cost.

2. Initialization. The initialization of the approximations can be performed in parallel
in every unit. Here it is assumed, that single parameter allocation is a constant time
operation.

3. EP iteration. Let m be the number of iterations over all K sites. Empirically m
is typically a manageable quantity; however, numerical instabilities tend to increase
this number. In parallel EP, damped updates are often used to avoid oscillation (van
Gerven et al., 2009).

(a) Computing the cavity distribution. First, the current global approximation needs
to be sent from the master node to the worker nodes with cost O(cKD2). On
the worker nodes in parallel, this step involves only simple subtraction of O(D2)
values per site, which can be parallelized locally. Thus the resulting total cost is
O(cKD2).

(b) Fitting an updated local approximation gk(θ). This step is performed on parallel
in every worker. First a sample from the tilted distribution is generated with
cost h(Nk, D). After this, moment estimates are generated in natural form
based on the obtained sample. As discussed in Appendix A.3, QR-decomposition
is used to form the estimates with cost O(D3). The resulting total cost is
O(h(maxNk, D) +D3).

(c) Return the updated gk(θ) to the central unit. This cost repeats the cost and
consideration of step 3a.

(d) Update the global approximation g(θ). Summing up the updates from all the sites
has the naive cost of O(KD2), or improved cost of O(logK), when summations
are parallelized elementwise and termwise. However, if the cost h of approximating
the posterior distribution is variable across worker units, the central unit could
update g(θ) whenever possible while waiting for other sites to finish.

Considering only the dominating terms, across all these steps and the m EP iterations,
we have the total cost of our parallel message passing algorithm:

O
(
m

(
cKD2 + h(maxNk, D) +D3

))
.

By comparison, consider first the cost of a non-parallel version:

O
(
m

(
KD3 +

∑
kh(Nk, D)

))
.
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Second, consider the cost of full sampling with no partitioning:

O
(
h

(∑
kNk, D

))
.

With these three expressions, we can immediately see the computational benefits of our
scheme. In many cases, sampling will be by far the most costly operation, and will depend
superlinearly on its arguments. Thus, the parallel message passing scheme will dominate.
As the total data size N =

∑
k Nk grows large, our scheme becomes essential. When data is

particularly big (for example N ≈ 109), our scheme will dominate even in the rare case that
h(n, d) is in its minimal O(d2 + n).

D. Comparison of SNEP and Moment Matching

Section 5.1 discussed the SNEP method introduced by Hasenclever et al. (2017), which
can be used for a simulation-based site inference instead of the tilted distribution moment
matching method. In this section, we shortly compare both methods in two experiments.
The experiments do not give an exhaustive view on the difference of the behaviour of the
methods in all situations. However, they show that both of the methods have pros and
cons and that the preferability of the methods is situational. The source code for both
experiments is available online at https://github.com/gelman/ep-stan.

We replicate the simulated hierarchical logistic regression experiment on Section 6.1 in
a smaller scale with J = 16 hierarchical groups and D = 3 dimensions of the explanatory
variable. The problem is distributed into K = 2, 4, 8, 16 sites. We apply a constant damping
factor of 0.8 for SNEP and 0.5 for moment matching. We apply four inner iterations with
auxiliary parameter updating in every other iteration in the site update for SNEP. Because
SNEP is not compatible with uniform initial site distributions, these distributions were set to
N(0, 2K max(Cov(p(θ)))I) instead. All other settings were identical to the bigger experiment
of Section 6.1. The results of the simulation are illustrated in Figure 16, which shows the
accuracy of the approximation as a function of the elapsed sampling time. As with Figure 6
for the bigger experiment in Section 6.1, in order to focus on the significant portion of the
algorithm and ignore some implementation dependent factors, we do not in this graph count
time spent in non-sampling parts of the algorithm. Compared to the moment matching
method, the site update portion of SNEP contains more heavy operations, such as Cholesky
factorizations of order dφ, and consequently SNEP spent more time in non-sampling parts
of the algorithm in our experiment. When the problem was distributed to K = 2 sites,
SNEP algorithm failed in all sites after two iterations by resulting in an improper global
approximation and the iteration had to be terminated. In other runs, both methods converge
to a relatively similar solution but not into identical one. Moment matching converged faster
than SNEP but had more variability in the end. SNEP was slower and had more variability
in the start.

In addition to the single-run simulations, we also set up an experiment for testing the
effect of single site updating in different settings. We set up a randomized three-dimensional
normal target distribution consisting of six normal factorized parts with variances ranging
from e to e−1 and a normal prior distribution p(θ) ∼ N(0, 42eI). Each factor is approximated
in one site. We measure the resulting global approximation KL divergence after performing
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Figure 16: Comparison of simulation-based moment matching EP and SNEP in a simple
hierarchical logistic regression experiment. The plots show the mean squared
error of the mean and approximate Kullback-Leibler divergence from the target
distribution to the resulting posterior approximation as a function of the elapsed
sampling time. The y-axis is in the logarithmic scale. Each column corresponds
to a different number of partitions K. When K = 2, SNEP results in an improper
global approximation and fails after two iterations. In other runs, both methods
converge to a solution with comparable accuracy. SNEP reaches the solution
slower and has more variability in the beginning. Moment matching has a faster
start but more variability in the end.

one site update with different initial site and cavity distributions. These distributions are set

gk(θ) =
(
fk(θ)

)1−dsite
(
gextreme

k (θ)
)dsite

g−k(θ) =


∏

i6=k

fi(θ)




1−dcavity(
gextreme

−k (θ)
)dcavity

,

where dsite and dcavity control the deviation from the converged state, fk(θ) is the true
underlying factor and the site distribution at the convergence, and

∏
i6=k fi(θ) is the cavity

distribution at the convergence. The extreme site and cavity distributions are set to
gextreme

k (θ) ∼ N(0, 22eI) and gextreme
−k (θ) =

(
gextreme

k (θ)
)K−1

p(θ) respectively. For both
methods, the sample size at the site update is 200. For SNEP, we apply one inner iteration
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Figure 17: KL divergence from the target distribution to the resulting posterior approxi-
mation after updating one site with different initial site settings. In each row
and column, dsite and dcavity indicate the divergence of the respective initial
distribution from the convergence, where 0.0 corresponds to the converged state
and 1.0 to a diverged state. In order to focus on the difference between the
methods, the y-axis is in different scale in each tile. The simulation is repeated
2000 times. The bar heights show the medians of the obtained resulting KL
divergences, and the attached black lines indicate 2.5% and 97.5% quantiles. It
can be seen from the figure that moment matching method has greater variability
in general. In this case, moment matching outperforms SNEP when the site
distribution is not completely converged.
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for the site update. We replicate the experiment 2000 times. The results of the experiment
are illustrated in Figure 17. Experimenting with four inner SNEP iterations with auxiliary
parameter update in every other iteration did not change the results much.

Based on the discussed two experiments, it is clear that the methods behave differently
and have characteristics that make them better in different situations. The experiments
suggest that SNEP behaves more chaotically and progresses slower when far away from
the convergence. On the other hand, it seems to be more stable when sufficiently close to
the convergence. We believe this behavior is related to SNEP operating on the moment
domain instead of the natural domain as it is done in moment matching. To the best of our
knowledge, this feature makes SNEP also incompatible with uniform initial site distributions.
One interesting idea would be to apply moment matching in early iterations for possibly
more stable and faster start and switch to using SNEP for later iterations for more stable
convergence. Further study is needed in order to draw more elaborate conclusions about
their differences.

E. Marginal Likelihood

Although not the focus of this work, we mention in passing that EP also offers as no extra
cost an approximation of the marginal likelihood, p(y) =

∫
p0(θ)p(y|θ) dθ. This quantity is

often used in model choice.

To this end, associate a constant Zk to each approximating site gk(θ) and write the
global approximation as,

g(θ) = p0(θ)
K∏

k=1

1

Zk
gk(θ).

Consider the Gaussian case, for the sake of simplicity, so that gk(θ) = e− 1

2
θT Qkθ+rT

k
θ,

under natural parameterization, and denote by Ψ(rk, Qk) the corresponding normalizing
constant:

ψ(rk, Qk) =

∫
e− 1

2
θT Qkθ+rT

k
θ dθ =

1

2
(− log |Qk/2π| + rT

k Qkrk).

Simple calculations (Seeger, 2005) then lead to following formula for the update of Zk at
site k:

log(Zk) = log(Z\k) − Ψ(r,Q) + Ψ(r−k, Q−k),

where Z\k is the normalizing constant of the tilted distribution g\k(θ); (r,Q) is the natural

parameter of g(θ); and r =
∑K

k=1rk, Q =
∑K

k=1Qk, r−k =
∑

j 6=k rj , Q−k =
∑

j 6=k Qj . For
deterministic approaches, we have discussed approximating the moments of g\k(θ), it is
straightforward to obtain an approximation of the normalizing constant; when simulation is
used, some extra efforts may be required, as in Chib (1995).

Finally, after completion of EP, one should return the quantity,

K∑

k=1

log(Zk) + Ψ(r,Q) − Ψ(r0, Q0),

as the EP approximation of log p(y), where (r0, Q0) is the natural parameter of the prior.
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F. Optimizing EP Energy

Consider an EP approximation in the exponential family distribution,

g(θ) =
1

Z
p(θ)

n∏

k=1

gk(θ),

where Z is a normalization constant. The global approximation can be formulated as
g(θ) ∝ p(θ) exp(sT λ) and the cavity distribution as g\k(θ) ∝ p(θ) exp(sT λ\k), where λ

and λ\k denote natural parameters. A fixed point of the EP algorithm corresponds to a
stationary point of the following objective function (Minka, 2001b):

min
λ

max
λ\k

(K − 1) log

∫
p(θ) exp(sT λ) dθ −

K∑

k=1

log

∫
p(θ)p(yk|θ) exp(sTλ\k) dθ

such that(K − 1)λ =
K∑

k=1

λ\k.

This objective function corresponds to − logZ and to the expectation-consistent approxi-
mation (Opper and Winther, 2005). The correspondence and connection to the Bethe free
energy is demonstrated by Heskes et al. (2005).
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