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Abstract

Continuous time Bayesian networks (CTBNs)
describe structured stochastic processes with
finitely many states that evolve over continuous
time. A CTBN is a directed (possibly cyclic) de-
pendency graph over a set of variables, each of
which represents a finite state continuous time
Markov process whose transition model is a
function of its parents. As shown previously, ex-
act inference in CTBNs is intractable. We ad-
dress the problem of approximate inference, al-
lowing for general queries conditioned on evi-
dence over continuous time intervals and at dis-
crete time points. We show how CTBNs can
be parameterized within the exponential family,
and use that insight to develop a message pass-
ing scheme in cluster graphs and allows us to
apply expectation propagation to CTBNs. The
clusters in our cluster graph do not contain dis-
tributions over the cluster variables at individual
time points, but distributions over trajectories of
the variables throughout a duration. Thus, unlike
discrete time temporal models such as dynamic
Bayesian networks, we can adapt the time gran-
ularity at which we reason for different variables
and in different conditions.

1 Introduction

Many applications involve reasoning about a complex sys-
tem that evolves over time. A standard approach is to dis-
cretize time at fixed intervals, known as time slices, and
then model the system as evolving discretely from one time
slice to the next. Observations are only incorporated as ev-
idence at these fixed time points, and queries can only be
asked about the system state at these times.

A time slice model is very appropriate in many appli-
cations, e.g., those where evidence is obtained at regular
intervals from some sensor. However, other settings are
better modeled using a less rigid notion of temporal evo-
lution. In many systems, there is no natural time granular-
ity: Some variables evolve quickly, whereas others change

more slowly; even the same variable can change quickly
in some conditions and slowly in others. Second, our abil-
ity to observe the system can vary significantly over time.
We might have stretches where a variable is not observed
at all, and intervals where we observe its entire trajectory;
in other settings, we might only obtain evidence about cer-
tain state transitions (e.g., a marriage, a birth, a graduation).
Attempts to model such systems as evolving over uniform
discrete time intervals leads to very coarse approximations,
or requires the entire trajectory be modeled at a very fine
granularity, at high computational cost.

An alternative approach is to model such systems as
evolving over continuous time, e.g., as a Markov pro-
cess (Duffie et al., 1996; Lando, 1998). Nodelman et al.
(2002) (NSK from now on) extend Markov processes for
factored domains, definingcontinuous time Bayesian net-
works (CTBNs)— a structured representation for complex
systems evolving over continuous time. A CTBN encodes a
homogeneous continuous-time Markov process over an ex-
ponentially large state space, consisting of the assignments
to a set of variables.

Exact inference in CTBNs involves generating a single
matrix representing the transition model over the entire sys-
tem state. As the number of states is exponential in the
number of variables, this approach is generally intractable.
NSK describe an approximate inference algorithm based
on ideas from clique tree inference, but provide no formal
justification for the algorithm. More importantly, the al-
gorithm covers only point evidence — observations of the
value of a variable at a point in time. As discussed above,
in many applications, we observe a variable for an interval,
or even for its entire trajectory.

In this paper, we describe an approximate inference al-
gorithm for CTBNs that allows both point and interval ev-
idence. The algorithm uses message passing in a cluster
graph, where the clusters do not contain distributions over
the cluster variables at individual time points, but distribu-
tions over trajectories of the variables through a duration.
We provide a new formulation of CTBN parameterization
that allows the factors in the clusters to be divided as well as
multiplied. With this basic building block, we can execute
multiply-marginalize-divide message passing in a cluster
graph, as proposed by Lauritzen and Spiegelhalter (1988).



In particular, we can provide an expectation propagation
algorithm for CTBNs (Minka, 2001), and prove a charac-
terization of its convergence points as fixed points of a free
energy function.

A key benefit of our algorithm is that time is not dis-
cretized as part of the model. Rather, the inference algo-
rithm reasons about entire trajectories over the variablesin
each cluster. Thus, we are not forced to use a fixed, global
time granularity for all variables at all times. Rather, thein-
ference algorithm dynamically determines the appropriate
granularity to use in order to reason about different clus-
ters in the cluster graph, adapting it to the rate at which the
cluster evolves, in the current state of the system. In other
words, our inference granularity varies both over variables
and over time. This flexiblity allows us to avoid making
unnecessary update steps, resulting in possibly significant
computational savings over a time-slice approach.

2 Continuous Time Bayesian Networks

We begin by briefly reviewing the key definitions of
Markov processes and continuous time Bayesian networks,
as presented in (Nodelman et al. 2002; 2003).

2.1 Representation and Parameterization

A finite state, continuous time, homogeneous Markov pro-
cessXt with state spaceVal(X) = {x1, . . . , xn} is de-
scribed by an initial distributionP 0

X and ann×n matrix of
transitionintensities:

QX =











−qx1
qx1x2

· · · qx1xn

qx2x1
−qx2

· · · qx2xn

...
...

. . .
...

qxnx1
qxnx2

· · · −qxn











,

whereqxixj
is the intensity of transitioning from statexi to

statexj andqxi
=
∑

j 6=i qxixj
.

GivenQX we can describe the transient behavior ofXt.
If X0 = x then it stays in statex for an amount of time ex-
ponentially distributed with parameterqx. Thus, the proba-
bility density functionf for Xt remaining atx isf(qx, t) =
qx exp(−qxt) for t ≥ 0, and the corresponding probability
distribution functionF for Xt remaining atx for an amount
of time≤ t is given byF (qx, t) = 1− exp(−qxt). The ex-
pected time of transitioning is1/qx. Upon transitioning,
X shifts to statex′ with probabilityθxx′ = qxx′/qx. We
can view the distribution in terms of the exponential dis-
tribution parameterqx, encodingwhenthe next transition
occurs, and the multinomial parametersθxx′ (x 6= x′), en-
codingwherethe state transitions.

The distribution over the state of the processX at some
future timet, PX(t), can be computed directly fromQX .
If P 0

X is the distribution overX at time 0, then

PX(t) = P 0
X exp(QX · t) , (1)

whereexp is matrix exponentiation.

NSK extend this framework to encode the joint dynam-
ics of several local variables. In acontinuous time Bayesian
network, each variableX is a Markov process whose pa-
rameterization depends on a subset of other variablesU.

Definition 2.1 A conditional Markov processX is an
inhomogeneous Markov process whose intensity matrix
varies as a function of the current values of a set of dis-
crete conditioning variablesU. It is parameterized using a
conditional intensity matrix(CIM) —QX|U — a set of ho-
mogeneous intensity matricesQX|u, one for each instanti-
ation of valuesu to U.

The parameters ofQX|U areqX|u = {qx|u : x ∈ Val(X)}
andθX|u = {θxx′|u : x, x′ ∈ Val(X), x 6= x′}.

Definition 2.2 A continuous time Bayesian networkN
overX consists of two components: aninitial distribution
P 0

X
, specified as a Bayesian networkB overX, and acon-

tinuous transition model, specified using a directed (possi-
bly cyclic) graphG whose nodes areX ∈X ; UX denotes
the parents ofX in G. Each variableX ∈X is associated
with a conditional intensity matrix,QX|UX

.

2.2 Semantics

There are several equivalent ways to define the semantics
of a CTBN. NSK define one possible semantics using a
“multiplication” operation calledamalgamationon CIMs.
This operation combines two CIMs to produce a single,
larger CIM. Amalgamation takes two conditional inten-
sity matricesQS1|C1

,QS2|C2
and combines them to form

a new product CIM,QS|C = QS1|C1
∗ QS2|C2

where
S = S1 ∪ S2 andC = (C1 ∪ C2) − S. The new CIM
contains the intensities for the variables inS conditioned
on those ofC. A basic assumption is that, as time is contin-
uous, variables cannot transition at the same instant. Thus,
all intensities corresponding to two simultaneous changes
are zero. If the changing variable is fromS1, we can look
up the correct intensity from the factorQS1|C1

. Similarly,
if it is from S2, we can look up the intensity from the factor
QS2|C2

. Intensities along the main diagonal are computed
at the end in order to make the rows sum to zero for each
instantiation of values toC.

Example 2.3 Consider a CTBNA→ B with CIMs

QA QB|a1
QB|a2

»

−1 1
2 −2

–

2

4

−5 2 3
2 −6 4
2 5 −7

3

5

2

4

−7 3 4
3 −8 5
3 6 −9

3

5 .

The amalgamated CIM assigns intensity 0 to transitions
that change bothA andB simultaneously. For transitions
involving only one of the variables, it simply uses the entry
from the appropriate intensity matrix. The resulting matrix,
if entries are ordered(a1, b1), (a2, b1), (a1, b2), (a2, b2),



(a1, b3), (a2, b3), is

QAB =

2

6

6

6

6

6

4

−6 1 2 0 3 0
2 −9 0 3 0 4
2 0 −7 1 4 0
0 3 2 −10 0 5
2 0 5 0 −8 1
0 3 0 6 2 −11

3

7

7

7

7

7

5

.

For example, the entry(1, 3), representing the intensity of
transitioning from(a1, b1) to (a1, b2) is 2, taken from the
(1, 2) entry of the matrixQB|a1

.

2.3 Sufficient Statistics

A CTBN N defines a probability density over complete
trajectoriesσ of the set of variablesX. A complete tra-
jectory can be specified as a sequence of statesxi of X,
each with an associated duration. This means we observe
every transition of the system from one state to the next
and the time at which it occurs. We can conveniently write
the density over complete trajectories in terms of the suf-
ficient statistics characterizing the trajectory:T [x|u] —
the amount of time thatX = x while UX = u; and
M [x, x′|u] — the number of times thatX transitions from
x to x′ while UX = u (Nodelman et al., 2003). If we let
M [x|u] =

∑

x′ M [x, x′|u], we can write the density as

PN (σ) =
∏

X∈X

LX(T [X |U], M [X |U])

where

LX(T [X |U], M [X |U]) = (2)
∏

u

∏

x

(q
M [x|u]
x|u exp(−qx|uT [x|u])×

∏

x′ 6=x

θ
M [x,x′|u]
xx′|u )

is X ’s likelihood contributionto the overall probability of
the trajectory.

3 Algorithm Overview

The inference task on which we focus is that of answering
probability queries given some partial observations about
the current trajectory. Such observations fall into two main
types: point evidence and continuous evidence. Point evi-
dence is an observation of the value of a variable at a par-
ticular instant in time. Continuous evidence provides the
value of a variable throughout an entire interval, which we
take take to be a half-closed interval[t1, t2). The endpoints
of an interval at which a variable is observed do not neces-
sarily correspond to transition points of the variable. They
can start at an arbitrary time, contain zero or more transi-
tions, and end at an arbitrary time.

Without loss of generality, we can partition our evidence
into a sequence of intervals of constant continuous evi-
dence, possibly punctuated by point evidence or observed
transitions. Within each interval, the set of variables we ob-
serve and their values are both constant. Note that constant

continuous evidence includes the possibility of no evidence
on the interval. This creates a sequence of distinguished
time pointst1, . . . , tn with constant continuous evidence
es

i on every interval[ti, ti+1) and possible point evidence
or observed transitionep

i at eachti. Both es
i ande

p
i are

assignments to some subset of the variables inX.

Example 3.1 Consider a system over the variables
X, Y, Z. One set of evidence might have:X = x1, Y = y1

for the interval[0, 0.7); Y = y2, Z = z1 for the interval
[0.7, 1.1), Z = z2 at t = 1.1; X = x1 for the interval
[1.1, 2); and Y = y1 at t = 1.5. The distinguished time
points are0, 0.7, 1.1, 1.5, 2. Note that the value ofX may
have changed 0 or more times in the interval[0.7, 1.1). The
value ofY changed fromy1 toy2 at exactly0.7. We observe
a transition forZ at t = 1.1, and an isolated observation
of Y ’s value att = 1.5.

As NSK discuss, there is a range of query types that can
be answered using a CTBN. These include the value of a
variable at a given time, but also the time at which a vari-
able first takes a particular value, or the expected number
of times that a variable changes value. We propose an al-
gorithm that can address all of these types of query, given
both point and continuous evidence.

Our algorithm uses message passing in cluster graphs, of
which clique tree algorithms are a special case. In cluster
graph algorithms, we construct a graph whose nodes corre-
spond to clusters of variables, and pass messages between
these clusters to produce an alternative parameterization,
in which the marginal distribution of the variables in each
cluster can be read directly from the cluster. In discrete
graphical models, when the cluster graph is a clique tree,
two passes of message passing produce exact marginals. In
generalized belief propagation(Yedidia et al., 2000), mes-
sage passing is applied to a graph which is not a clique
tree, in which case the algorithm may not converge, and
produces only approximate solutions. There are several
forms of message passing algorithm. Our algorithm is
based on multiply-marginalize-divide scheme of Lauritzen
and Spiegelhalter (1988), which we now briefly review.

At a high level, a cluster graph is defined in terms of a set
of clustersCi, whosescopeis some subset of the variables
X. Clusters are connected to each other by edges, along
which messages are passed. The edges are annotated with
a set of variables called asepsetSi,j which is the set of
variables inCi ∩ Cj. The messages passed over an edge
Ci—Cj arefactorsover the scopeSi,j .

Each clusterCi maintains apotentialπi, a factor which
reflects its current beliefs over the variables in its scope.
Each edge similarly maintains a messageµi,j , which en-
codes the last message sent over the edge. The potentials
are initialized with a product of some subset of factors pa-
rameterizing the model (CIMs in our setting). Messages
are initialized to be uninformative. Clusters then send mes-
sages to each other, and use incoming messages to update



their beliefs over the variables in their scope. The message
δi→j from Ci to Cj is the marginal distributionSi,j accord-
ing to πi. The neighboring clusterCj assimilates this mes-
sage by multiplying it intoπi, but avoids double-counting
by first dividing by the stored messageµi,j . Thus, the mes-
sage update takes the formπj ← πj ·

δi→j

µi,j
.

In our algorithm, the clusters do not represent factors
over values of random variables. Rather, cluster potentials
and messages both encode measures over entire trajectories
of the variables in their scope.

Example 3.2 Consider a CTBNA → B → C →
D. We can form a clique tree{A, B}—{B, C}—{C, D},
where the{A, B} cluster, for example, contains the CIMs
QA,QB|A. Note that the message from this cluster to the
{B, C} cluster is a marginal encoding a distribution over
B’s trajectories. Although the jointA, B distribution is
a homogeneous Markov process overA, B, the marginal
distribution overB is not typically a homogeneous Markov
process.

As in this example, the marginal distributions that form
the messages are not homogeneous Markov processes; in-
deed, the exact marginal distributions for the true joint dis-
tribution can be arbitrarily complex, requiring a number of
parameters which grows exponentially with the size of the
network. Thus, we cannot pass messages exactly without
giving up the computational efficiency of the algorithm.
We address this issue using theexpectation propagation
(EP) approach (Minka, 2001), which performs approxi-
mate message passing in cluster graphs.

EP addresses the problem where messages can be too
complex to represent and manipulate by using approximate
messages, projecting each messageδi→j into a compactly
representable space so as to minimize the KL-divergence
betweenδi→j and its approximation̂δi→j . In a prototypi-
cal example (Minka, 2001), the cluster potentials and there-
fore the sepset marginals are mixtures of Gaussians, which
are projected into the space of Gaussian distributions in the
message approximation step. For messages in the exponen-
tial family, arg min

δ̂i→j
D(δi→j ||δ̂i→j) can be obtained by

matching moments of the distribution. EP can be applied
to clique trees or to general cluster graphs. Note that, even
in clique trees, the algorithm does not generally converge
after two passes of message passing (as it does in exact in-
ference), so that multiple iterations are generally required,
and convergence is not guaranteed.

In our application of EP, we use conditional intensity ma-
trices (CIMs), reduced to match the evidence, to encode
the cluster potentials; we approximate the messages in the
cluster graph as homogeneous Markov processes, using a
KL-divergence projection. To apply the EP algorithm to
clusters of this form, we need to define basic operations
over CIMs. First, we need to define the operations of multi-
plying and dividing CIMs, used in the message update step.
Second, we need to describe the construction of initial po-

tentials from CIMs, and how they account for the evidence.
Finally, we need to show how to perform approximate mar-
galization of CIMs, used to compute the message the ap-
proximate marginals of a cluster potential over its sepset.
We begin by describing these operations in the next sec-
tion, and then present the algorithm in its entirety in Sec. 5.

We note that a similar approach — of encoding clus-
ters as CIMs and approximating messages as homogeneous
Markov processes — was used in the original clique tree
algorithm of Nodelman et al. (2002), but with impor-
tant differences. Most importantly, the new operations on
CIMs allow us to to deal with continuous evidence rather
than just point evidence. Second, the NSK algorithm was
based on multiply-marginalize message passing scheme
of Shafer and Shenoy (1990) algorithm, whereas our al-
gorithm is based on multiply-marginalize-divide scheme
of Lauritzen and Spiegelhalter (1988). Second, our algo-
rithm performs approximate marginalization so as to min-
imize KL-divergence, a more principled approach. As a
consequence, we can use the iterative EP algorithm for
message propagation, improving the quality of approxima-
tion. As an instance of EP, our algorithm has the property
that it converges to fixed points of the approximate free en-
ergy function, subject to calibration constraints on the ap-
proximate messages. Finally, and It also allows us to

4 Basic Operations

The basis for our algorithm is a reformulation of CIMs that
supports the key operations required for message passing
in EP: CIM product and division, incorporating evidence
into a CIM, and approximate CIM marginalization.

4.1 Amalgamating CIMs

A CIM QS|C over variablesS ⊆ X conditioned onC ⊂
X defines the dynamics ofS given C. We can rewrite
QS|C as a single block matrix over the joint spaceS ×C:

QS|C =











QS|c1
0 · · · 0

0 QS|c2
· · · 0

...
...

. . .
...

0 0 · · · QS|cN











.

The CIMQS|C induces a distributionφ(S|C) over the dy-
namics ofS givenC. Analogous to Eq. (1), exponentiating
the CIM by takingφ(S|C)t = exp(QS|C · t) gives u the
probability that, if we start withS = s and continue fort
time, we end up atS = s′, given thatC = c for the entire
time period. Thus, we can view a CIM as the logarithm of
the distribution over the (conditional) system dynamics.

We can now redefine the amalgamation operation in
terms of this representation of CIMs. First, note that if we
have a CIMQS′|C′ whereS′ ⊆ S andC′ ⊆ C, we can
embed it within a matrix overS ×C by embedding multi-
ple copies ofQS′|C′ in the new, larger matrix. The result-
ing matrix would look just as above, except with repeated



copies ofQS′|C′ . We can choose the order of the states in
the matrix arbitrarily.

Definition 4.1 Amalgamationis an operation which takes
two CIMSQS1|C1

, QS2|C2
, and forms the new CIMQS|C

whereS = S1 ∪ S2 and C = (C1 ∪ C2) \ S. First
we expandQS1|C1

andQS2|C2
into single matrices over

S×C and then define the amalgamated matrix as the sum
QS|C = QS1|C1

+ QS2|C2
. The inverse of amalgamation

is computed by matrix subtraction.

Example 4.2 Consider the CTBN from Example 2.3. We
expand each ofQA and QB|A into a single matrix over
the spaceA × B, in the order(a1, b1), (a2, b1), (a1, b2),
(a2, b2), (a1, b3), (a2, b3), obtaining:

QA =

2

6

6

6

6

6

4

−1 1 0 0 0 0
2 −2 0 0 0 0
0 0 −1 1 0 0
0 0 2 −2 0 0
0 0 0 0 −1 1
0 0 0 0 2 −2

3

7

7

7

7

7

5

QB|A =

2

6

6

6

6

6

4

−5 0 2 0 3 0
0 −7 0 3 0 4
2 0 −6 0 4 0
0 3 0 −8 0 5
2 0 5 0 −7 0
0 3 0 6 0 −9

3

7

7

7

7

7

5

.

The amalgamation of these two CIMs is given by the matrix
additionQA +QB|A, producing precisely the matrixQAB

shown in Example 2.3.

The use of addition for amalgamation of CIMs is very
natural when we consider its interpretation as the loga-
rithm of the system dynamics. Specifically, adding CIMs is
equivalent to multiplying their distributions. Recallingthat
CIMs directly parametrize the instantaneous behavior and
examining the distribution ast→ 0,

φ(S|C)t = φ(S1|C1)
t · φ(S2|C2)

t

= exp(QS1|C1
· t) · exp(QS2|C2

· t)

= (I + QS1|C1
t + O(t2)) · (I + QS2|C2

t + O(t2))

= I + (QS1|C1
+ QS2|C2

)t + O(t2)

= exp((Q(S1|C1
+ QS2|C2

)t)

= exp(QS|C · t) .

If we amalgamate all the CIMs of a CTBNN , we get
a single intensity matrix encoding the distribution over the
dynamics of the entire system:

PN =
∏

X∈X

φ(X |UX) = exp

(

∑

X∈X

QX|UX

)

.

This definition of amalgamation handles not only full
CIMs, but also CIMs that are reduced to account for condi-
tioning on continuous evidence, as we discuss next.

4.2 Incorporating Evidence into CIMs

Point observations about the system state affect our distri-
bution over the state at a single point in time, which in turn,
affects the distribution over the behavior of the system. But
it does not affect our distribution over the dynamics as pa-
rameterized by the CIMs. By contrast, consider continuous
evidence, as in Example 4.2. If we condition on the con-
tinuous evidence thatA = a1 for all t ∈ [0, 1], then the
dynamics ofZ during that interval is described solely by
QB|a1

rather than a mixture ofQB|a1
andQB|a2

. An ob-
servation over an interval restricts our transition dynamics
to remain within a subset of the full state space for the du-
ration of the interval.

To account for such evidence, wereducethe CIM —
eliminate the rows and columns of the CIM that corre-
spond to states inconsistent with the evidence. In the spe-
cial case where we are conditioningQS|C on evidencee
over some variable(s) in the conditioning setC, the result
is a CIM QS|C,e that represents the conditional distribu-
tionφ(S|C, e). More generally, when we have evidencee1

within S ande2 within C, the reduced CIM represents the
unnormalized conditional distributionφ(S, e1|C, e2). In
this case, the reduced intensity matrixQS,e1|C,e2

will have
rows that sum to negative numbers. These negative num-
bers represent “extra” intensity with which we would nor-
mally leave the subsystem (if not for the evidence), and rep-
resent the probability flowing out of the subsystem. Note
that a reduced intensity matrixφ(S, e) cannot, in general,
be normalized and represented as an intensity matrix.

Example 4.3 Consider the system overA andB described
in Example 4.2. If we want to incorporate the continuous
evidence thatB = b1 for timet ∈ [0, 1], we use the reduced
intensity matrix

QA,b1 =

[

−6 1
2 −9

]

.

As described above, the rows sum to negative numbers,
whose magnitude corresponds to the intensity with which
we would normally leave the subsystem whenB = b1.

4.3 Marginalizing CIMs

Clusters in our cluster tree are associated with unnormal-
ized CIMs, perhaps reduced by the incorporation of con-
tinuous evidence. In most cases, the marginal dynamics of
such a CIM over a subset of variables cannot be described
using an unconditional intensity matrix. Indeed, in gen-
eral, the marginal distribution over a single variableX can
only be correctly described by constructing the entire joint
intensity matrix, and considering its marginal distribution
overX . However, we can approximately marginalize fac-
tors — products of (reduced) CIMs — by projecting them
into the space of distributions represented as unconditional
intensity matrices.



More precisely, consider the distributionφ(S) ∝
P 0

S
exp(QSt) described by a (possibly reduced) intensity

matrix QS. This distribution induces a marginal distribu-
tion φ(V ) over the dynamics ofV for any subsetV ⊂ S.
We would like to projectφ(V ) onto the space of distribu-
tions representable by the intensity matrixQ̂V , by min-
imizing the Küllback-Leibler divergence; specifically, we
want to computearg min

P̂V
D(PV ||P̂V ) whereP̂V (t) =

P 0
V

exp(Q̂V t). As the set of distributions representable by
an intensity matrix is in the exponential family, we can min-
imize the KL-divergence over an interval[t1, t2) by choos-
ing P̂V (t) to match the moments ofPV (t) over[t1, t2).

Importantly, a CIM in isolation, or even an unreduced in-
tensity matrix, does not define a distribution over trajecto-
ries. To define a distribution and the requisite moments, we
need an initial state distributionP 0

V
at timet1 and the dura-

tion of the interval[t1, t2). Given a reduced CIMφ(V , e)
over the interval[t1, t2], we can obtain the conditional dis-
tribution over the system behavior by normalizing the dis-
tribution: φ(V |e) = 1

Z
exp(QV ,e · (t2 − t1)), whereZ

is thepartition functionrepresenting the probability of the
evidence:Z =

∫ t2

t1
P 0

V
exp(QV ,e · t)dt. Note thatZ is a

function of the amount of time the evidence persists and of
the distributionP 0

V
over the state at the beginning of the

evidence.

To match moments, we must compute the expected suf-
ficient statistics over the interval[t1, t2) for the variables in
S. These expected sufficient statistics areE[T [j]], the ex-
pected amount of time in each statej, andE[M [j, k]], the
expected number of transitions fromj to k. For simplicity,
assume that the evidence is constant throughout the inter-
val. We can compute sufficient statistics for the more gen-
eral case using a forward-backward algorithm (see Nodel-
man et al. (2005) for details and derivations). Let∆j,k be
a matrix with a one in rowj, columnk, and zeros every-
where else. Lete be a column vector of ones. Then for
each instantiationj of S, we computeE[T [j]] as

c

∫ t2

t1

P 0
S exp(QS(t− t1))∆j,j exp(QS(t2 − t))e dt ;

that is, we integrate over the probability of remaining in
statej. The normalization constantc makes the expected
amount of time over all states sum tot2− t1. Similarly, for
each pair of instantiationsj, k, we computeE[M [j, k]] as

c qjk

∫ t2

t1

P 0
S exp(QS(t− t1))∆j,k exp(QS(t2 − t))e dt ;

that is, we integrate over the instantaneous probability
of transitioning and use the same normalization constant.
These integrals are guaranteed to be finite for any finite in-
terval[t1, t2].

We can calculate the set of these integrals for allj and
k simultaneously (as a set of differential equations) via
the Runge-Kutta method of fourth order with adaptive step

size. This method traverses the interval in small discrete
steps each of which has a constant number of matrix mul-
tiplications. Thus, the main factor in the complexity of this
algorithm is the number of steps which is a function of the
step size.

Importantly, the step size isadaptiveand not fixed. The
intensities of theQS matrix represent rates of evolution
for the variables in the cluster, so larger intensities meana
faster rate of change which usually requires a smaller step
size. We begin by setting the step size proportional to the
inverse of the largest intensity inQS . The step size thus
varies across different clusters and is sensitive to the current
evidence. Also, following Press et al. (1992), we use a
standard adaptive procedure that allows larger steps to be
taken when possible based on error estimates.

Given the expected sufficient statistics overS, we can
calculateE[T [v]], the expected amount of time in each in-
stantiationv of V , andE[M [v, v′]], the expected num-
ber of transitions fromv to v′. We also compute the to-
tal number of expected transitions fromv, E[M [v]] =
∑

v′ M [v, v′]. We can now match moments, setting the
parameters of̂QV to be the maximum likelihood parame-
ters (Nodelman et al., 2003),

qv = E[M [v]]
E[T [v]] ; θvv′ = E[M [v,v′]]

E[M [v]] . (3)

We writeφ̂(V ) = margP
0,T

S\V
(φ(S)) for the distribution pa-

rameterized bŷQV .

Example 4.4 Consider the system overA andB described
in Example 4.2. If we assume a uniform initial distribution
and that we want to use this approximation for unit time
(T = 1), then the matrix of expected sufficient statistics

M̄ [(a, b), (a′, b′)] =













− .18 .36 0 .54 0
.24 − 0 .35 0 .47
.45 0 − .23 .91 0

0 .42 .28 − 0 .70
.41 0 1.03 0 − .21

0 .39 0 .78 .26 −













,

and T̄ [(a, b)] =
[

.18 .12 .23 .14 .21 .13
]

.
Combining sufficient statistics forb1 (rows 1,2),b2 (rows
3,4), andb3 (rows 5,6) we get the following matrix of ex-
pected sufficient statistics overB

M̄ [b, b′] =

[

− .71 1.01
.87 − 1.61
.80 1.81 −

]

.

and T̄ [b] =
[

.30 .37 .33
]

. With the expected suffi-
cient statistics overB, we can compute the parameters of

φ̂(B) = marg
P 0,1
A (φ(A, B)),

Q̂B =

[

−5.73 2.37 3.36
2.35 −6.70 4.35
2.42 5.49 −7.91

]

.



There is an additional subtlety to the computation ifQS

is conditioned on continuous evidence and has negative row
sums (representing the probability of the evidence as dis-
cussed in Sec. 4.2). In this case, we must account for the
extra intensity of leaving the subsystem entirely when com-
puting the expected number of transitions out of each state
E[M [v]]. To do so, we add an extra stateι to QS before
computing the expected sufficient statistics. For each in-
stantiations of S, the intensity of entering the extra state —
qvι — makes the row sum to zero. Then, when we compute
E[M [v]], we also includeE[M [v, ι]] the expected number
of transitions to the extra state, and use Eq. (3). In the com-
putation, the normalization constantc makes the total time
spent in all states exceptι sum tot2 − t1. Note that, as
ι does not correspond to any instantiationv, we have that
∑

v′ θvv′ < 1, and therefore the row sums in the result-
ing intensity matrix will also be negative. This corresponds
to the fact that our marginalized intensity matrix approxi-
mates the marginal ofP (e, S | C) in this case.

Example 4.5 Continuing Example 4.3, we add a new state
ι, resulting in a new CIM:

QA,b1 =





−6 1 5
2 −9 7
0 0 0



 ,

where the last row/column correspond to the absorbing
state ι. Assume a uniform initial distribution over the
states ofA and that we are in this subsystem for total time
T = 1. Then, calculating the integrals by Runge-Kutta
without normalizing yields the unnormalized matrix over
transitions ofA including the additional stateι,





− .105 .526
0.134 − .470

0 0 −



 ,

and an unnormalized vector over the amount of time in
each state,

[

.105 .067 .828
]

. The normalization con-
stantc = 1/(.105 + .067) = 5.81. So the expected suffi-
cient statistics (given that we spend no time inι) are

M̄ [a, a′] =





− 0.61 3.05
0.78 − 2.73

0 0 −



 ,

and T̄ [a] =
[

.61 .39 0
]

. When we compute parame-
ters with these statistics, we find that we get back the same
QA,b1 as above because we have not incorporated any ad-
ditional evidence. Incorporating evidence will generally
lead to a different intensity matrix, as in Example 5.1.

5 Expectation Propagation

Based on these operations, we can describe a new message
propagation algorithm for CTBNs. As discussed above, un-
like the algorithm of Nodelman et al. (2002), the new algo-
rithm uses product-marginalize-divide message passing, as

in the clique tree algorithm of Lauritzen and Spiegelhalter
(1988). As a consequence, when using approximate projec-
tion, we can apply the algorithm iteratively, as in expecta-
tion propagation, with the goal of improving our estimates.

5.1 EP for Segments

We first consider the message propagation algorithm for
one segment of our trajectory, with constant continuous ev-
idence. The generalization to multiple segments follows.

We first construct the cluster tree for the graphG. This
procedure is exactly the same as in Bayesian networks —
cycles do not introduce new issues. We simply moralize
the graph, connecting all parents of a node with undirected
edges, and then make all the remaining edges undirected.
If we have a cycle, it simply turns into a loop in the result-
ing undirected graph. We then select a set of clustersCi.
These clusters can be selected so as to produce a clique tree
for the graph, using any standard method for constructing
such trees. Or, we can construct a loopy cluster graph, and
use generalized belief propagation. The message passing
scheme is the same in both cases.

Let Ai ⊆ Ci be the set of variables whose factors we
associate with clusterCi. Let Ni be the set of neighboring
clusters forCi and letSi,j be the set of variables inCi ∩ Cj.
We also compute, for each clusterCi, the initial distribution
P 0
Ci

using standard BN inference on the networkB. After
initialization, the algorithm is

ProcedureCTBN-Segment-EP(P 0, T, e,G)
1. For each clusterCi

πi ←
∏

X∈Ai
φ(X,UX , e)

2. For each edgeCi—Cj
µi,j ← 1

Loop until convergence:
3. ChooseCi—Cj
4. Send-Message(i, j, P 0

Ci
, T )

ProcedureSend-Message(i, j, P 0, T )

1. δi→j ← margP
0,T

Ci\Si,j
(πi)

2. πj ← πj ·
δi→j

µi,j

3. µi,j ← δi→j

It takes the initial distributions over the clustersP 0, an
amount of timeT , and possibly some continuous evidence
e which holds for the total timeT . We useφ(·, e) to denote
the CIM reduced by continuous evidencee if applicable.
The algorithm iteratively selects an edge(i, j) in the clus-
ter graph, and passes a message fromCi to Cj. In clique
tree propagation, we might select edges so as to iteratively
perform an upward and downward pass. In generalized be-
lief propagation, we might use a variety of message pass-
ing schemes. Convergence occurs when messages cease to
affect the potentials which means that neighboring clusters
Ci andCj agree on the approximate marginals over the vari-
ablesSi,j .



The basic factor operations are performed as described
in Sec. 4. Specifically, letρ(·) be a function taking fac-
tors to their CIM parameterization. For the initial poten-
tials, ρ(πi) is computed by adding the intensity matrices
QX|UX

reduced by evidencee for X ∈ Ai. Also, ρ(1) is
an intensity matrix of zeros. Factor product is implemented
as addition of intensity matrices, and factor division as sub-
traction, so thatρ(πj ·

δi→j

µi,j
) = ρ(πj)+ ρ(δi→j)− ρ(µi,j).

Marginalization is implemented by computing the expected
sufficient statistics, using the evidencee, the time periodT ,
and the initial distributionP 0, as described in Sec. 4.3.

Example 5.1 Assume we have a CTBN with 4 binary vari-
ables and graphA→ B → C → D with CIMs

QA QB|a1
QB|a2

»

−1 1
1 −1

– »

−1 1
10 −10

– »

−10 10
1 −1

–

,

whereQC|B andQD|C have the same parameterization
asQB|A. SoA switches randomly between statesa1 and
a2, and each child tries to match the behavior of its par-
ent. Suppose we have a uniform initial distribution over
all variables exceptD which starts in stated1 and re-
mains in that state for unit time (T=1). Our cluster tree
is AB—BC—CD and our initial potentials are:

ρ(π1) = QAB =

2

4

−2 1 1 0
1 −11 0 10

10 0 −11 1
0 1 1 −2

3

5 ,

ρ(π2) = QBC =

2

4

−1 0 1 0
0 −10 0 10

10 0 −10 0
0 1 0 −1

3

5 ,

ρ(π3) = QCd1
=

h

−1 0
0 −10

i

.

Our initial messages are

ρ(δ1→2) =
h

−2.62 2.62
2.62 −2.62

i

ρ(δ3→2) =
h

−1 0
0 −10

i

These messages leaveπ1, π3 unchanged and give us:

ρ(π2) =

2

4

−4.62 2.62 1 0
2.62 −13.62 0 10

10 0 −22.62 2.62
0 1 2.62 −13.62

3

5 .

Our next messages are:

ρ(δ2→1) =
h

−5.02 2.62
2.62 −8.57

i

ρ(δ2→3) =
h

−4.42 3.42
3.62 −13.62

i

.

These leaveπ2 unchanged and give us

ρ(π1) =

2

4

−4.40 1 1 0
1 −13.40 0 10

10 0 −16.94 1
0 1 1 −7.94

3

5 ,

ρ(π3) =
h

−4.42 3.42
3.62 −13.62

i

.

Nowδ3→2 would have no effect onπ2, however,

ρ(δ1→2) =
h

−5.34 2.95
3.31 −9.26

i

which changesπ2 so that

ρ(π2) =

2

4

−4.95 2.95 1 0
3.31 −14.31 0 10

10 0 −22.95 2.95
0 1 3.31 −14.31

3

5 .

Our next messages are

ρ(δ2→1) =
h

−5.39 2.95
3.31 −9.16

i

ρ(δ2→3) =
h

−4.43 3.43
3.76 −13.76

i

.

This gives us

ρ(π1) =

[

−4.45 1 1 0
1 −13.45 0 10

10 0 −16.85 1
0 1 1 −7.85

]

,

ρ(π3) =
[

−4.43 3.43
3.76 −13.76

]

.

At this point we have converged. If we useπ1 to compute
the distribution overA at time 1, we get

ˆ

.703 .297
˜

. If
we do exact inference by amalgamating all the factors and
exponentiating, we get

ˆ

.738 .262
˜

.

5.2 EP for Trajectories

When we have a trajectory containing multiple segments of
continuous evidence, we apply this algorithm separately to
every segment, passing information from one to the other
in the form of distributions. More precisely, consider a tra-
jectory defining a sequence of time pointst1, . . . , tn, with
constant continuous evidencees

i on every interval[ti, ti+1)
and possible point evidence or observed transitione

p
i at

eachti. We construct a sequence of cluster graphsGti,ti+1
,

each over a segment[ti, ti+1). Starting from the initial seg-
ment, we run inference on each cluster graph usingCTBN-
Segment-EP, and compute the resulting distribution at time
ti+1; we condition on any point evidence or the observed
transition, and use the new distribution as the initial distri-
bution from the next interval. The formal algorithm is as
follows:

ProcedureCTBN-Filter-EP(P 0, 〈t0, . . . , tn〉,
〈es

1, . . . , e
s
n〉, 〈e

p
1, . . . , e

p
n〉)

For i = 0, . . . , n− 1
1. Construct a cluster graphGti,ti+1

2. CTBN-Segment-EP(P ti, (ti+1 − ti, e
s
i ,Gti,ti+1

)
3. ExtractP ti+1 from the calibratedGti,ti+1

)
4. RecalibrateP ti+1 and condition onep

i+1

The last point addresses a subtlety relating to the propa-
gation of messages from one interval to another. If a vari-
ableX appears in two clustersCi andCj in a cluster graph,
the distribution over its values in the two clusters is not gen-
erally the same, even if the EP computation converges. The
reason is that even calibrated clusters only agree on the pro-
jected marginals over their sepset, not the true marginals.
Thus, to obtain a coherent distributionP ti+1 to transmit to
the next cluster graph, we should take the individual cluster
marginals and sepsets for the state variables at timeti+1, as



obtained fromGti,ti+1
, and recalibrate them to form a co-

herent distribution; the conditioning on point evidence can
be done at the same time. We then extractP ti+1 as a set
of calibrated cluster and sepset factors, and introduce each
factor into the appropriate cluster or sepsent inGti+2,ti+2

.

The algorithmCTBN-Filter-EPperforms filtering — for-
ward message passing. To perform smoothing, we can
also pass messages in reverse, where the cluster graph
for [ti, ti+1) passes a message to the cluster graph for
[ti−1, ti), representing the probability of the evidence af-
ter timeti given the state atti. Note that, to achieve more
accurate beliefs, we can also repeat the forward-backward
propagation until the entire network is calibrated, essen-
tially treating the entire network as a single cluster graph.
We omit details for lack of space.

Finally, we note that we chose to use one cluster graph
for each segment of fixed continuous evidence. As a conse-
quence, each cluster will approximate the trajectory of the
variables it contains as a homogeneous Markov process,
for the duration of the segment. We can modify the qual-
ity of the approximation by either refining or coarsening
our choice of segments. In particular, if a set of variables is
changing rapidly, we might want to partition a segment into
subsegments, even if the evidence remains constant. Alter-
natively, we can reduce computational cost by collapsing
several intervals of continuous evidence, approximating the
trajectory distribution over the entire interval as a homoge-
neous Markov process. This step requires a more complex
computation of sufficient statistics over the combined inter-
val, but is not substantially different. The decision of how
to partition time into intervals is analogous to a situation
where we are approximating a distribution over continuous
variables as a set of Gaussians, each defined over a subset
of the space. The choice of how to partition the space into
subsets determines the quality of our approximation.

5.3 Energy Functional

As for any EP algorithm over the exponential family, we
can show that the convergence points of the EP algorithm
in Sec. 5.1 are fixed points of the constrained optimization
of the Kikuchi free energy functional, subject to calibration
constraints on the projected marginals.

The Kikuchi free energy function for a cluster graphG is

F̂ [PN , P̂ ] = (4)
∑

φ∈N

Eπφ
[ln φ] +

∑

Ci∈G

Hπi
(Ci)−

∑

Ci—Cj∈G

Hµi,j
(Si,j)

subject to the constraints:

µi,j = margP
0,T

Ci\Si,j
(πi) . (5)

Theorem 5.2 A set of potentialsπi, µi,j is a stationary
point of maximizing Eq. (4) subject to Eq. (5) if and only
if, for every edgeCi—Cj there are potentials of the form

Full
stomach

Concentration

Uptake

Joint
pain

Barometer

Drowsy

Eating Hungry Average KL-divergence from Exact
L SS EP

No Evidence
1 segment .102 .083 .0629
6 segments .016 .010 .0077
Point Evidence
3 segments .027 .015 .0086
6 segments .023 .014 .0076

(a) (b)

Figure 1: (a)Drug effect network (b) Average KL-div. between
the exact joint distribution and approximate distributions averaged
over 60 time points.

δi→j(Si,j) such that

δi→j ∝ margP 0,T

Ci\Si,j



π0
i ×

∏

k∈Ni−{j}

δk→i





πi ∝ π0
i ×

∏

j∈Ni

δj→i

µi,j = δj→i × δi→j

Corollary 5.3 Convergence points of the proce-
dure CTBN-Segment-EP are stationary points of
maximizing Eq. (4) subject to Eq. (5).

The proof of these results is a special case of the general
result on convergence of EP, which applies to any class of
distributions in the exponential family.

6 Experimental Results

In our experiments, we used the drug effect network of
NSK shown in Figure 1(a) allowing us to compare to the
previous inference algorithm. We compared the results
of our implementation of expectation propagation with ex-
act inference and the approximate inference algorithm from
NSK when possible. We ran three scenarios. In each one,
at t = 0, the person modelled by the system experiences
joint pain due to falling barometric pressure and takes the
drug to alleviate the pain, is not eating, has an empty stom-
ach, is not hungry, and is not drowsy. The drug is uptaking
and the current concentration is 0. All scenarios ended at
t = 6 (after 6 hours). We compare to exact inference by
computing the average KL-divergence as discussed below.

In the first scenario, there was no evidence after the given
initial distribution. We ran the algorithms viewing the en-
tire trajectory as a single segment. We tried using one ap-
proximation to describe the dynamics over the system and
also broke it down into 6 evenly spaced segments. In the
second second scenario, we observe att = 1 that the per-
son is not hungry and att = 3, that he is drowsy. We ran
the algorithms with 3 segments and again with 6 segments.

NSK provide two approximate marginalizations: the lin-
earization (L) and subsystem (SS) approximations. Also



note that the NSK algorithms are single-pass multiply-
marginalize instead of the multiply-marginalize-divide
scheme of the EP algorithm. Figure 1(b) shows the av-
erage KL-divergence between exact joint distribution and
the approximate joint distributions averaged over 60 evenly
spaced time points betweent = 0 andt = 6 for the experi-
ments described above. From the table, one can see the ex-
pectation propagation easily beats the previous algorithms.

In the third scenario, we have continuous observations
over the variables representing hunger, eating, and drowsi-
ness. After the initial distribution given above, these three
variables persisted in their initial state untilt = 0.5, after
which the person became hungry. Att = 1 the person be-
gins to eat. Att = 1.5 the hunger is gone and att = 2
the person stops eating. Att = 2.5 the person becomes
drowsy and these three variables maintain their final value
to the end of the trajectory att = 6. We ran the EP forward
filter with one segment for each interval of continuous ev-
idence — a total of 6 segments (not evenly spaced). We
again measured the average KL-divergence between the ac-
tual and approximate joint distributions as above, measur-
ing at 60 evenly spaced time points betweent = 0 and
t = 6. The average KL-divergence was 0.00122. Allowing
EP to run for only a single pass instead of going until con-
vergence had a negligible effect — worsening the average
KL-divergence by6.7 × 10−7. This is not surprising, as
we found EP to converge rapidly: of the 6 segments we ran
for the continuous evidence, all but one converged within a
single pass.

7 Discussion and Conclusions

We have presented a new, well-founded, approximate in-
ference algorithm for CTBNs that, for the first time, al-
lows us to answer a full range of queries including the
ability to handle continuous observations. We provided
a view of CIM parametrization that enables cluster graph
message passing algorithms that include division. Further-
more, we showed how we can compute a KL-divergence
minimizing approximate marginalization of the distribution
parametrized by the CIM.

These results enabled us to provide an expectation propa-
gation algorithm for CTBNs which, subject to our approxi-
mate marginalizations, converges to stationary points of the
approximate free energy function. Other approaches to ap-
proximate inference, such as sampling based methods, are
ongoing work.

One of the most appealing properties of the algorithm
that we proposed in this paper is that it adaptively se-
lects the time granularity used for reasoning about a cluster
based on the rate at which the cluster evolves. Different
clusters will be discretized at different granularities, auto-
matically selected by the integration algorithm. The same
cluster may be discretized at one granularity in one inter-
val of continuous evidence, and differently in another. By

contrast, in DBNs, all variables in the system must be mod-
eled at the time granularity of the variable that evolves most
quickly. We can hope to extend this property further, by
allowing one cluster in our network to cover a long inter-
val, whereas another (over a different subset of variables)
is partitioned into smaller segments. This could provide
the basis for an algorithm that automatically and flexibly
assigns computational resources to the parts of the system
where the most interesting changes are occurring.
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