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Abstract

Continuous time Bayesian networks (CTBNS)
describe structured stochastic processes with
finitely many states that evolve over continuous
time. A CTBN is a directed (possibly cyclic) de-
pendency graph over a set of variables, each of
which represents a finite state continuous time
Markov process whose transition model is a
function of its parents. As shown previously, ex-
act inference in CTBNSs is intractable. We ad-
dress the problem of approximate inference, al-
lowing for general queries conditioned on evi-
dence over continuous time intervals and at dis-
crete time points. We show how CTBNs can
be parameterized within the exponential family,
and use that insight to develop a message pass-
ing scheme in cluster graphs and allows us to
apply expectation propagation to CTBNs. The
clusters in our cluster graph do not contain dis-
tributions over the cluster variables at individual
time points, but distributions over trajectories of
the variables throughout a duration. Thus, unlike
discrete time temporal models such as dynamic
Bayesian networks, we can adapt the time gran-
ularity at which we reason for different variables
and in different conditions.
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more slowly; even the same variable can change quickly
in some conditions and slowly in others. Second, our abil-
ity to observe the system can vary significantly over time.
We might have stretches where a variable is not observed
at all, and intervals where we observe its entire trajectory
in other settings, we might only obtain evidence about cer-
tain state transitions (e.g., a marriage, a birth, a graciat
Attempts to model such systems as evolving over uniform
discrete time intervals leads to very coarse approximation
or requires the entire trajectory be modeled at a very fine
granularity, at high computational cost.

An alternative approach is to model such systems as
evolving over continuous time, e.g., as a Markov pro-
cess (Duffie et al., 1996; Lando, 1998). Nodelman et al.
(2002) (NSK from now on) extend Markov processes for
factored domains, definingontinuous time Bayesian net-
works (CTBNs)}— a structured representation for complex
systems evolving over continuous time. A CTBN encodes a
homogeneous continuous-time Markov process over an ex-
ponentially large state space, consisting of the assigtsnen
to a set of variables.

Exact inference in CTBNs involves generating a single
matrix representing the transition model over the entige sy
tem state. As the number of states is exponential in the
number of variables, this approach is generally intraetabl
NSK describe an approximate inference algorithm based
on ideas from clique tree inference, but provide no formal
justification for the algorithm. More importantly, the al-
gorithm covers only point evidence — observations of the
value of a variable at a point in time. As discussed above,
in many applications, we observe a variable for an interval,
or even for its entire trajectory.

tem that evolves over time. A standard approach is to dis
cretize time at fixed intervals, known as time slices, and In this paper, we describe an approximate inference al-
then model the system as evolving discretely from one timegorithm for CTBNs that allows both point and interval ev-
slice to the next. Observations are only incorporated as evdence. The algorithm uses message passing in a cluster

idence at these fixed time points, and queries can only bgraph, where the clusters do not contain distributions over
asked about the system state at these times. the cluster variables at individual time points, but disfri

A time slice model is very appropriate in many appli- tions over trajectories of the variables through a duration

cations, e.g., those where evidence is obtained at reguldVe Provide a new formulation of CTBN parameterization

intervals from some sensor. However, other settings argmt allows the factors in the clusters to be divided as veell a

better modeled using a less rigid notion of temporal evo.Multiplied. With this basic building block, we can execute

lution. In many systems, there is no natural time granularMultiply-marginalize-divide message passing in a cluster

ity: Some variables evolve quickly, whereas others chang@@Ph. as proposed by Lauritzen and Spiegelhalter (1988).



In particular, we can provide an expectation propagatiorwhereexp is matrix exponentiation.

algorithm for CTBNs (Minka, 2001), and prove a charac-

NSK extend this framework to encode the joint dynam-

terization of its convergence points as fixed points of a freqcs of several local variables. Ircantinuous time Bayesian

energy function.

network each variableX is a Markov process whose pa-

A key benefit of our algorithm is that time is not dis- rameterization depends on a subset of other varidiiles
cretized as part of the model. Rather, the inference algo- B )
rithm reasons about entire trajectories over the varighles Definition 2.1 A conditional Markov processY is an
each cluster. Thus, we are not forced to use a fixed, globdhhomogeneous Markov process whose intensity mairix

time granularity for all variables at all times. Rather, iie

varies as a function of the current values of a set of dis-

ference algorithm dynamically determines the appropriat&'€teé conditioning variableW. Itis parameterized using a
granularity to use in order to reason about different clus-conditional intensity matriXCIM) —Q x|y — a set of ho-

ters in the cluster graph, adapting it to the rate at which thé"0geneous intensity matric€y ., one for each instanti-
cluster evolves, in the current state of the system. In othetion of valueaito U. i

words, our inference granularity varies both over variable
and over time. This flexiblity allows us to avoid making
unnecessary update steps, resulting in possibly significa

computational savings over a time-slice approach.

2 Continuous Time Bayesian Networks

n

The parameters @ x|y areq x|, = {gzu : ¥ € Val(X)}
and@ x|y = {Opoju - 2,2’ € Val(X),z # 2'}.

Definition 2.2 A continuous time Bayesian network
over X consists of two components: artial distribution
P, specified as a Bayesian netwdslover X', and acon-
tinuous transition modespecified using a directed (possi-

We begin by briefly reviewing the key definitions of bly cyclic) graphG whose nodes ar& € X; U x denotes

Markov processes and continuous time Bayesian networkf,h

as presented in (Nodelman et al. 2002; 2003).

2.1 Representation and Parameterization

e parents ofX in G. Each variableX € X is associated
with a conditional intensity matrixQ x|y - I

2.2 Semantics

A finite state, continuous time, homogeneous Markov pro-

cessX; with state spac&al(X) = {z1,...,z,} Is de-
scribed by an initial distributio®®9. and ann x n matrix of
transitionintensities

—(z, qxixo 4z,
qrox, —Qx, o Qrox,

Qx = . . _ . ;
Qe z, dx, o —Azx,

whereg;, ., is the intensity of transitioning from staig to
stater; andg,, = Z#i Qoiz;-

GivenQ x we can describe the transient behavioXgf
If Xo = x then it stays in state for an amount of time ex-
ponentially distributed with parameter. Thus, the proba-
bility density functionf for X; remaining at: is f(g.,t) =

g exp(—q,t) for t > 0, and the corresponding probability

distribution functiont” for X; remaining at: for an amount
of time < ¢ is given byF(q,,t) = 1 — exp(—gxt). The ex-
pected time of transitioning i$/q,. Upon transitioning,
X shifts to stater’ with probability 0,., = ¢u./q.. We

can view the distribution in terms of the exponential dis-

tribution parametey,,, encodingwhenthe next transition
occurs, and the multinomial parametéss (z # z'), en-
codingwherethe state transitions.

The distribution over the state of the procéssat some
future timet, Px(t), can be computed directly fro x.
If P{ is the distribution oveX at time 0, then

Px(t) = Px exp(Qx - ) , 1)

There are several equivalent ways to define the semantics
of a CTBN. NSK define one possible semantics using a
“multiplication” operation callecamalgamatioron CIMs.
This operation combines two CIMs to produce a single,
larger CIM. Amalgamation takes two conditional inten-
sity matriceQs, ¢, ; Qs,|c, and combines them to form

a new product CIMQgic = Qs,|c, * Qs.|c, Where

S =8,US;andC = (C,UC2) — S. The new CIM
contains the intensities for the variablesSnconditioned
onthose ofC. A basic assumption is that, as time is contin-
uous, variables cannot transition at the same instant., Thus
all intensities corresponding to two simultaneous changes
are zero. If the changing variable is frash, we can look

up the correct intensity from the factQg, |, . Similarly,

if itis from S5, we can look up the intensity from the factor
Qs,|c,- Intensities along the main diagonal are computed
at the end in order to make the rows sum to zero for each
instantiation of values t@’.

Example 2.3 Consider a CTBM — B with CIMs

The amalgamated CIM assigns intensity O to transitions
that change bot and B simultaneously. For transitions
involving only one of the variables, it simply uses the entry
from the appropriate intensity matrix. The resulting matri
if entries are orderedas,b1), (az2,b1), (a1,b2), (az,bs),



(a1,b3), (az,bs), is continuous evidence includes the possibility of no evigenc
on the interval. This creates a sequence of distinguished
time pointsty, ..., t, with constant continuous evidence
e; on every intervalt;, ;1) and possible point evidence
or observed transitioe? at eacht;,. Bothe? ande! are
assignments to some subset of the variableX in
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) ) ) Example 3.1 Consider a system over the variables
For e.>§an)ple, the entryl, 3), representing the intensity of x vy, 7. One set of evidence might hav&:= z1,Y = v
transitioning from(a., b1) to (a1, b2) is 2, taken from the  for the interval[0,0.7); Y = y», Z = z for the interval
(1,2) entry of the matriXQ g, - [0.7,1.1), Z = z att = 1.1; X = x; for the interval
[1.1,2); andY = y; att = 1.5. The distinguished time
points are0,0.7,1.1,1.5, 2. Note that the value ok may

A CTBN A defines a probability density over complete have changed 0 or more times in the interjgat, 1.1). The
trajectoriess of the set of variablesX. A complete tra- value ofY” changed fromy; to y, at exactly0.7. We observe
jectory can be specified as a sequence of statef X,  a transition forZ at¢ = 1.1, and an isolated observation
each with an associated duration. This means we obsen@ Y's value att = 1.5.

every transition of the system from one state to the next _ _
and the time at which it occurs. We can conveniently write As NSK discuss, there is arange of query types that can

the density over complete trajectories in terms of the sufPe answered using a CTBN. These include the value of a
ficient statistics characterizing the trajectoryz|u] — varlab_le at a given tlme but also the time at which a vari-
the amount of time thafy = = while Ux = u: and ablg first takes a parucular value, or the expected number
Mz, z'|u] — the number of times that transitions from of t|_mes that a variable changes value. We propose an al-
x to 2/ while Ux = u (Nodelman et al., 2003). If we let gorlthm_that can address all _of these types of query, given
Mlz|u] = 3, M|z, 2’|u], we can write the density as both point a_nd continuous ewdence._ _

Our algorithm uses message passing in cluster graphs, of
H Lx(T[X|U], M[X|U]) which clique tree algorithms are a special case. In cluster
Xex graph algorithms, we construct a graph whose nodes corre-

spond to clusters of variables, and pass messages between

2.3 Sufficient Statistics

where these clusters to produce an alternative parameterization
in which the marginal distribution of the variables in each
Lx(T1x]u], MIX|U)) = (2) | be read directly from the d In di
Miz|u] Miz.a/|u] cluster can be read directly from the cluster. In discrete
HH(QI‘U exp(—gz T H 9m/\u graphical models, when the cluster graph is a clique tree,
u = z'#w two passes of message passing produce exact marginals. In

generalized belief propagatidiyedidia et al., 2000), mes-
sage passing is applied to a graph which is not a clique
tree, in which case the algorithm may not converge, and
produces only approximate solutions. There are several
forms of message passing algorithm. Our algorithm is
The inference task on which we focus is that of answeringased on multiply-marginalize-divide scheme of Lauritzen
probability queries given some partial observations abound Spiegelhalter (1988), which we now briefly review.
the current trajectory. Such observations fall into twomai At a high level, a cluster graph is defined in terms of a set
types: point evidence and continuous evidence. Point evief clustersC;, whosescopeis some subset of the variables
dence is an observation of the value of a variable at a parX. Clusters are connected to each other by edges, along
ticular instant in time. Continuous evidence provides thewhich messages are passed. The edges are annotated with
value of a variable throughout an entire interval, which wea set of variables called sepsetS; ; which is the set of
take take to be a half-closed interyal, t2). The endpoints  variables inC; N C;. The messages passed over an edge
of an interval at which a variable is observed do not neces¢;—C; arefactorsover the scopsé; ;.
sarily correspond to transition points of the variable. 'he  Each clustet’; maintains gpotentialr;, a factor which
can start at an arbitrary time, contain zero or more transireflects its current beliefs over the variables in its scope.
tions, and end at an arbitrary time. Each edge similarly maintains a messagg, which en-
Without loss of generality, we can partition our evidencecodes the last message sent over the edge. The potentials
into a sequence of intervals of constant continuous eviare initialized with a product of some subset of factors pa-
dence, possibly punctuated by point evidence or observeshmeterizing the model (CIMs in our setting). Messages
transitions. Within each interval, the set of variables e o are initialized to be uninformative. Clusters then send-mes
serve and their values are both constant. Note that constasages to each other, and use incoming messages to update

is X's likelihood contributionto the overall probability of
the trajectory.

3 Algorithm Overview



their beliefs over the variables in their scope. The messagentials from CIMs, and how they account for the evidence.
d;—; fromC; to C; is the marginal distributios; ; accord-  Finally, we need to show how to perform approximate mar-
ing to ;. The neighboring cluste?; assimilates this mes- galization of CIMs, used to compute the message the ap-
sage by multiplying it intor;, but avoids double-counting proximate marginals of a cluster potential over its sepset.
by first dividing by the stored messagg;. Thus, the mes- We begin by describing these operations in the next sec-
sage update takes the form «— ; - Jimj tion, and then present the algorithm in its entirety in Sec. 5

i j L. .
In our algorithm, the clusters do not represent factors We note that a similar approach — of encoding clus-
over values of random variables. Rather, cluster potentialters as CIMs and approximating messages as homogeneous

and messages both encode measures over entire trajectord@rkov processes — was used in the original clique tree
of the variables in their scope. algorithm of Nodelman et al. (2002), but with impor-

tant differences. Most importantly, the new operations on

Example 3.2 Consider a CTBNA — B — C —  C|Ms allow us to to deal with continuous evidence rather
D. We can form a clique treeA, B}—{B,C}—C, D}, than just point evidence. Second, the NSK algorithm was
where the{A, B} cluster, for example, contains the CIMs pased on multiply-marginalize message passing scheme
Q.4,Qp|a- Note that the message from this cluster to thepf Shafer and Shenoy (1990) algorithm, whereas our al-
{B,C} cluster is a marginal encoding a distribution over gorithm is based on multiply-marginalize-divide scheme
B's trajectories. Although the joint, B distribution is  of Lauritzen and Spiegelhalter (1988). Second, our algo-
a homogeneous Markov process overB, the marginal  rithm performs approximate marginalization so as to min-
distribution overB is not typically a homogeneous Markov jmize KL-divergence, a more principled approach. As a
process. consequence, we can use the iterative EP algorithm for

As in this example, the marginal distributions that form MeSSage propagation, improving the quality of approxima-
the messages are not homogeneous Markov processes; iRN- As an instance of EP, our algorithm has the property
deed, the exact marginal distributions for the true joistdi thatit converges to fixed points of the approximate free en-
tribution can be arbitrarily complex, requiring a number of €9y function, subject to calibration constraints on the ap
parameters which grows exponentially with the size of theProximate messages. Finally, and It also allows us to
network. Thus, we cannot pass messages exactly without . i
giving up the computational efficiency of the algorithm. 4 Basic Operations

VI\E/TD address tt:lislvilssllje uzsolgg thgigc;atior} propagation_ The basis for our algorithm is a reformulation of CIMs that
(EP) approach ( inka, | ), whic hper orms approxi- supports the key operations required for message passing
mate message passing in cluster graphs. in EP: CIM product and division, incorporating evidence

EP addresses the problem where messages can be tpgo 5 CIM, and approximate CIM marginalization.
complex to represent and manipulate by using approximate

messages, projecting each messags into a compactly 4.1 Amalgamating CIMs

representable space so as to minimize the KL-divergenc& CIM Q over variablesS C X conditioned orC
s|c -

betweer, ; and its approximation; ;. In a prototypi- — x" oo dynamics o§ given C. We can rewrite
cal example (Minka, 2001), the cluster potentials and there . : - )
s|c as asingle block matrix over the joint spage< C'.

fore the sepset marginals are mixtures of Gaussians, whic

are projected into the space of Gaussian distributionsan th Qs 0 e 0
message approximation step. For messages in the exponen- 0 Qsje, - 0
tial family, arg ming, D(6;—;]|d;—;) can be obtained by Qsic = :

matching moments of the distribution. EP can be applied 0 0 '
to clique trees or to general cluster graphs. Note that, even Qsjen
in clique trees, the algorithm does not generally convergdhe CIM Qg induces a distribution(S|C) over the dy-
after two passes of message passing (as it does in exact inamics ofS givenC'. Analogousto Eq. (1), exponentiating
ference), so that multiple iterations are generally rezgljir the CIM by taking¢(S|C)" = exp(Qsg|c - t) gives u the
and convergence is not guaranteed. probability that, if we start withS§ = s and continue fot

In our application of EP, we use conditional intensity ma-time, we end up a¢ = s', given thatC' = c for the entire
trices (CIMs), reduced to match the evidence, to encodéme period. Thus, we can view a CIM as the logarithm of
the cluster potentials; we approximate the messages in tH8e distribution over the (conditional) system dynamics.
cluster graph as homogeneous Markov processes, using aWe can now redefine the amalgamation operation in
KL-divergence projection. To apply the EP algorithm to terms of this representation of CIMs. First, note that if we
clusters of this form, we need to define basic operationhave a CIMQg/|c whereS’ C S andC’ C C, we can
over CIMs. First, we need to define the operations of multi-embed it within a matrix ove$ x C by embedding multi-
plying and dividing CIMs, used in the message update steple copies 0lQ s\ in the new, larger matrix. The result-
Second, we need to describe the construction of initial poing matrix would look just as above, except with repeated



copies ofQg/c/. We can choose the order of the states in4.2  Incorporating Evidence into CIMs

the matrix arbitrarily. . . -
y Point observations about the system state affect our-distri

Definition 4.1 Amalgamatioris an operation which takes bution over the state at a single pointin time, which in turn,
two CIMSQg, ¢, Qs,|c,. and forms the new CIM 5| affects the distribution over the behavior of the systent. Bu
whereS = §;, U S, andC = (C, U C,) \ S. First it does not affect our distribution over the dynamics as pa-
we expandds, ¢, and Qs,|c, into single matrices over rameterized by the CIMs. By contrast, consider continuous
S x C and then define the amalgamated matrix as the surgvidence, as in Example 4.2. If we condition on the con-
Qsic = Qs,|c, + Qs,|c,- The inverse of amalgamation tinuous_ evidence f[hazﬁ = a for aII_ t € [O,_l], then the

is computed by matrix subtractiol. dynamics ofZ during that interval is described solely by
QB|q, rather than a mixture @z |,, andQp|,,. An ob-
servation over an interval restricts our transition dyrami
to remain within a subset of the full state space for the du-
ration of the interval.

To account for such evidence, weducethe CIM —
eliminate the rows and columns of the CIM that corre-
spond to states inconsistent with the evidence. In the spe-
cial case where we are conditionits|c on evidencee
over some variable(s) in the conditioning €&t the result
is a CIM Qgc,e that represents the conditional distribu-

. tion ¢(S|C, e). More generally, when we have eviderge
within S ande; within C, the reduced CIM represents the
unnormalized conditional distribution(S,e;|C,e2). In

this case, the reduced intensity mai@x ¢, |c ., Will have

rows that sum to negative numbers. These negative num-
- - bers represent “extra” intensity with which we would nor-
){nally leave the subsystem (if not for the evidence), and rep-
resent the probability flowing out of the subsystem. Note
that a reduced intensity matriX.S, e) cannot, in general,

be normalized and represented as an intensity matrix.

Example 4.2 Consider the CTBN from Example 2.3. We
expand each 0Q 4 and Qp)4 into a single matrix over
the spaced x B, in the order(ay, b1), (asz,b1), (a1,b2),
(QQ, b2), (al, bg), (QQ, bg), Obtaining:

| |
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The amalgamation of these two CIMs is given by the matri
additionQ 4 + Qp 4, producing precisely the matri® 4 5
shown in Example 2.3.

The use of addition for amalgamation of CIMs is very . .
natural when we consider its interpretation as the Ioga_Example 4.3 Consider the system overand B described

rithm of the system dynamics. Specifically, adding CIMs is!" _I(ijamplﬁaéltf; l;: V\fle \;\_/anttto |r(1)C(1)rporate thtﬁ conotlmuodus
equivalent to multiplying their distributions. Recallitigat _e\f[' eq::e i = by fortimet € [0, 1], we use the reduce
ClIMs directly parametrize the instantaneous behavior angtensity matrix

examining the distribution ais— 0, 6 1
¢ t t Qo = { 2 -9 }
P(S1C)" = ¢(S1|C1)" - ¢(S2|C?2)
= exp(Qs,|c, - t) - exp(Qs,ic, 1) As described above, the rows sum to negative numbers,

=+ Qg ot + ot*)) - (I+ Qs,|c,t + O(t?)) whose magnitude corresponds to the intensity with which
— 1+ (Qs,ic, + Qsyo)t + 0(2) we would normally leave the subsystem wites: b, .

= exp((Q(sijcy + Qszlca)t) 4.3 Marginalizing CIMs

= exp QS C - t) . . . .
( ! ) Clusters in our cluster tree are associated with unnormal-

ized CIMs, perhaps reduced by the incorporation of con-
tinuous evidence. In most cases, the marginal dynamics of
such a CIM over a subset of variables cannot be described
using an unconditional intensity matrix. Indeed, in gen-

) eral, the marginal distribution over a single varialllecan

If we amalgamate all the CIMs of a CTBW/, we get
a single intensity matrix encoding the distribution oves th
dynamics of the entire system:

only be correctly described by constructing the entiretjoin
intensity matrix, and considering its marginal distrilouti
over X. However, we can approximately marginalize fac-
This definition of amalgamation handles not only full tors — products of (reduced) CIMs — by projecting them
CIMs, but also CIMs that are reduced to account for condiinto the space of distributions represented as uncondition
tioning on continuous evidence, as we discuss next. intensity matrices.

Py =[] ¢(X[Ux)=exp < > Qxuy

XeX XeX



More precisely, consider the distribution(S) o size. This method traverses the interval in small discrete
P exp(Qst) described by a (possibly reduced) intensity steps each of which has a constant number of matrix mul-
matrix Qg. This distribution induces a marginal distribu- tiplications. Thus, the main factor in the complexity ofghi
tion ¢(V') over the dynamics oV for any subseV C S. algorithm is the number of steps which is a function of the
We would like to project)(V') onto the space of distribu- step size.

tions representable by the intensity mat€d, by min- Importantly, the step size sdaptiveand not fixed. The
imizing the Kullback-Leibler divergence; specificallyew intensities of theQgs matrix represent rates of evolution
want to computerg minp  D(Py[|Pv) wherePy (t) =  for the variables in the cluster, so larger intensities mean

Py exp(QVt). As the set of distributions representable by faster rate of change which usually requires a smaller step
an intensity matrix is in the exponential family, we can min- Size. We begin by setting the step size proportional to the
imize the KL-divergence over an intenjal, ¢) by choos-  inverse of the largest intensity @s. The step size thus
ing Pv(t) to match the moments dby (t) over|[ty, t5). varies across different clusters and is sensitive to theatir
Importantly, a CIM in isolation, or even an unreduced in- €vidence. Also, following Press et al. (1992), we use a
tensity matrix, does not define a distribution over trajecto Standard adaptive procedure that allows larger steps to be
ries. To define a distribution and the requisite moments, w&@ken when possible based on error estimates.
need an initial state distributiaR, at timet, and the dura- Given the expected sufficient statistics orwe can
tion of the intervalit;, t2). Given a reduced CIM(V,e)  calculateE[T'[v]], the expected amount of time in each in-
over the intervalty, t5], we can obtain the conditional dis- Stantiationv of V, and E[M[v, v']], the expected num-
tribution over the system behavior by normalizing the dis-ber of transitions fromv to »". We also compute the to-
tribution: ¢(V']e) = % exp(Qv e - (t2 — t1)), whereZ  tal number of expected transitions from EM[v]] =
is thepartition functionrepresenting the probability of the >_,, M[v,v']. We can now match moments, setting the
evidence:Z = ﬁtf PY exp(Qv e - t)dt. Note thatZ isa  parameters 0y to be the maximum likelihood parame-
function of the amount of time the evidence persists and ofers (Nodelman et al., 2003),
the distributionP), over the state at the beginning of the _— R
evidence. qv = E[[T[['vv]]]]’ Oy = % . (3)
To match moments, we must compute the expected suf-
ficient statistics over the intervgl , ¢2) for the variablesin  We Write(ﬁ(V) — marglsji'g(gb(S)) for the distribution pa-
S. These expected sufficient statistics BYg[j]], the ex-
pected amount of time in each stateandE[M[7, k], the
expected number of transitions frgio k. For simplicity, =~ Example 4.4 Consider the system ovdrand B described
assume that the evidence is constant throughout the intein Example 4.2. If we assume a uniform initial distribution
val. We can compute sufficient statistics for the more genand that we want to use this approximation for unit time
eral case using a forward-backward algorithm (see NodelfT' = 1), then the matrix of expected sufficient statistics
man et al. (2005) for details and derivations). Lf,; be

rameterized by .

a matrix with a one in rowj, columnk, and zeros every- - 18 36 0 54 0
where else. Let be a column vector of ones. Then for 'i;‘ 0 B ;’g 9(1) '4(7)
each instantiatioi of S, we computeE[T'[j]] as M(a,b), (@0 =| "5 49 98 — o 70 |-
" 41 0 103 0 — .21
¢ [ PRexp(Qs(t ~ 0)Ay exp(Qs(ta — et 03 0 7B ;-
t1 _
and T[(a,b)] = [.18 .12 .23 .14 21 .13 ].

that |s we integrat_e over the probability of remaining in Combining sufficient statistics fér (rows 1,2),bs (rows
statej. The normalization constamtmakes the expected 3,4), andbs (rows 5,6) we get the following matrix of ex-
amount of time over all states sumito— ¢;. Similarly, for pected sufficient statistics ovar

each pair of instantiations k, we computéE[M [, k|| as
— 71 1.01 ]

to | ] - —
caj / PSexp(Qs(t — t1))Aj . oxp(Qs(t2 — 1))edt; M[baﬂ—lgg o e

that is, we integrate over the instantaneous probabilitgng 7'y = [ .30 .37 .33 ]. With the expected suffi-

of transitioning and use the same normalization constangjent statistics ove, we can compute the parameters of

These integrals are guaranteed to be finite for any finite in&(B) _ margio’l(cb(/l, B)),

terval[ty, to].

We can calculate the set of these integrals forjahd . —5.73 2.37 3.36
k simultaneously (as a set of differential equations) via QB = [ 235 —6.70  4.35 ]
the Runge-Kutta method of fourth order with adaptive step 242 549 791



There is an additional subtlety to the computatio®§ in the clique tree algorithm of Lauritzen and Spiegelhalter
is conditioned on continuous evidence and has negative ro{d988). As a consequence, when using approximate projec-
sums (representing the probability of the evidence as distion, we can apply the algorithm iteratively, as in expecta-
cussed in Sec. 4.2). In this case, we must account for theon propagation, with the goal of improving our estimates.
extra intensity of leaving the subsystem entirely when com-
puting the expected number of transitions out of each stats.1 EP for Segments

E[M]v]]. To do so, we add an extra statéo Qg before . ider th . lqorithm
computing the expected sufficient statistics. For each in/¥e first consider the message propagation algorithm for

stantiations of S, the intensity of entering the extra state — one segment of our trajectory, with constant continuous ev-
¢, — makes the row sum to zero. Then, when we Computédence. The generalization to multiple segments follows.
VL . il

E[M [v]], we also includdE[M [v, .]] the expected number ~ We first construct the cluster tree for the graphThis

of transitions to the extra state, and use Eq. (3). In the comProcedure is exactly the same as in Bayesian networks —
putation, the normalization constantakes the total ime ~ cycles do not introduce new issues. We simply moralize
spent in all states exceptsum tot, — ¢;. Note that, as the graph, connecting all parents of a node with undirected

. does not correspond to any instantiatiorwe have that edges, and then make all the remaining edges undirected.
S, 0w < 1, and therefore the row sums in the result- !f we ha_ve a cycle, it simply turns into a loop in the result-
ing intensity matrix will also be negative. This correspsnd iNg undirected graph. We then select a set of clusters

to the fact that our marginalized intensity matrix approxi_These clusters can be selected so as to produce a clique tree

mates the marginal dP(e, S | C) in this case. for the graph, using any standard method for constructing
such trees. Or, we can construct a loopy cluster graph, and

Example 4.5 Continuing.ExampIe 4.3, we add a new state ;se generalized belief propagation. The message passing
1, resulting in a new CIM: scheme is the same in both cases.

Let A; C C; be the set of variables whose factors we
associate with clustet;. Let NV; be the set of neighboring
clusters foiC; and letS; ; be the set of variables ity N C;.

~ We also compute, for each clustgr the initial distribution
where the last row/column correspond to the absorblngpcoi using standard BN inference on the netwdik After
state:. Assume a uniform initial distribution over the jnitialization. the algorithm is

states ofA and that we are in this subsystem for total time
T = 1. Then, calculating the integrals by Runge-Kutta Procedure CTBN-Segment-EP°, T e, G)
without normalizing yields the unnormalized matrix over 1. For each clusteaf;

Quap, =

SN
|
S © =
S N Ot

transitions ofA including the additional state, mi — [Ixea, #(X,Ux,e)
_ 105 596 2. For each edgé—C;
pij —1
0.134 — 470 |

Loop until convergence:

3. Choose&;,—C;
and an unnormalized vector over the amount of time in 4. Send-Messagé j, P}, T)
eachstate] .105 .067 .828 |. The normalization con- o
stante = 1/(.105 +.067) = 5.81. So the expected suffi- rocedureSend-Message j, P°, T)

0 0 —

0
cient statistics (given that we spend no time)iare 1.0i; ma,rgé\,;f ()
i ~ 061 3.05 2.mj = T
Mla,d')= | 078  — 273 | | 3. phij i
0 0 —

It takes the initial distributions over the clusteF¥, an
andT[a] = [ .61 .39 0 ]. When we compute parame- amount of timeT’, and possibly some continuous evidence

ters with these statistics, we find that we get back the sam@ Which holds for the total tim@'. We usep(-, e) to denote
Q.., as above because we have not incorporated any adthe CIM reduced by continuous evidenef applicable.
ditional evidence. Incorporating evidence will generally The algorithm iteratively selects an edge;) in the clus-

lead to a different intensity matrix, as in Example 5.1, ter graph, and passes a message forto C;. In clique
tree propagation, we might select edges so as to iteratively
5 Expectation Propagation perform an upward and downward pass. In generalized be-

lief propagation, we might use a variety of message pass-
Based on these operations, we can describe a new messagg schemes. Convergence occurs when messages cease to
propagation algorithm for CTBNs. As discussed above, unaffect the potentials which means that neighboring clgster
like the algorithm of Nodelman et al. (2002), the new algo-C; andC; agree on the approximate marginals over the vari-
rithm uses product-marginalize-divide message passig, abless; ;.



The basic factor operations are performed as describeavhich changes, so that
in Sec. 4. Specifically, lep(-) be a function taking fac-
tors to their CIM parameterization. For the initial poten- ih A . I
tials, p(m;) is computed by adding the intensity matrices p(m2) = 10 0 —22.95 2.95
Qx|u, reduced by evidencefor X € A;. Also, p(1) is 0 boosst —lasl
an intensity matrix of zeros. Factor productis implemented ), next messages are
as addition of intensity matrices, and factor division as-su
tractpn, s0 t_hap.(wlj - ‘L;j) = p(ﬂj)+P(5z‘jj) =p(Wig) p(drn) = [ e ] p(62—3) = [ 7??2 713:4712 ] '
Marginalization is implemented by computing the expected
sufficient statistics, using the evidengghe time period’, This gives us
and the initial distributionP?, as described in Sec. 4.3.

—4.45 1 1 0
Example 5.1 Assume we have a CTBN with 4 binary vari- (m1) = 1 —13.45 0 10
ables and grapl — B — C' — D with CIMs P = 10 0 -8 Lo
—4.43 3.43
—1QA 1 —?B‘al 1 —1((?3‘“120 plms) = [ 3.76  —13.76 } '
1 -1 10 —10 1 -1

At this point we have converged. If we useto compute
Wherch‘B and QD|C have the same parameterization the distribution overd attime 1, we get 703 .297 } If
asQp|a. S04 switches randomly between statgsand ~ We do exact inference by amalgamating all the factors and

az, and each child tries to match the behavior of its par- exponentiating, we ggt .738 262 |.

ent. Suppose we have a uniform initial distribution over

all variables exceptD which starts in statel; and re- 52 EP for Trajectories

mains in that state for unit time (T=1). Our cluster tree

is AB—BC—C'D and our initial potentials are: When we have a trajectory containing multiple segments of

continuous evidence, we apply this algorithm separately to
I (1) 18 every segment, passing information from one to the other
p(m) =Qas = | 0o -1 1 | in the form of distributions. More precisely, consider a tra
o1 jectory defining a sequence of time points. . . , t,,, with
- B R T constant continuous evidenegon every intervalt;, ti+1)
p(m2) = Qpc = | g 0o -1 0 |°> and possible point evidence or observed transitifrat

ot 0 eacht;. We construct a sequence of cluster gra@hs. , . ,
p(ms) = Qea, = [ ‘(1) _18 ] . each over a segmeftt, ¢;1). Starting from the initial seg-
ment, we run inference on each cluster graph uSimgN-
Our initial messages are Segment-ERand compute the resulting distribution at time
t;+1; we condition on any point evidence or the observed
p(61-2) = [ e e } p(d3—2) = [ 0 } transition, and use the new distribution as the initialréist
bution from the next interval. The formal algorithm is as
These messages leawg 73 unchanged and give us: follows:
—4.62 2.62 1 0 Procedure CTBN-Filter-ER PY, (to, ..., t,),
e = [ soh o } e (o)
0 1 262 —13.62 Fori=0,....,n—1
_ 1. Construct a cluster gragh, .,
Our next messages are: 2. CTBN-Segment-BP", (i1 — t;, %, Gr, 1.,.)
_5.02  2.62 449 3.42 3. ExtractP'+! from the calibrated;, ;, ,)
pO2-1) = [ 262 —8.57 ] p(02—3) = [ 3.62 —13.62 ] 4. Recalibrate”*+* and condition ore?
These leaves unchanged and give us The last point addresses a subtlety relating to the propa-
gation of messages from one interval to another. If a vari-
I Y o ableX appears in two clustet andC; in a cluster graph,
p(mi) = 10 0 —16.94 1] the distribution over its values in the two clusters is nat-ge
0 ! ool erally the same, even if the EP computation converges. The
p(ms) = [ Tiey ae ] . reason is that even calibrated clusters only agree on the pro
jected marginals over their sepset, not the true marginals.
Nowds_,o would have no effect om,, however, Thus, to obtain a coherent distributigtii+! to transmit to

the next cluster graph, we should take the individual cluste
—5.34 2.95 . . .
p(d1-2) = [ 331 —0.96 ] marginals and sepsets for the state variables attimeas



obtained fromg;, ;. ,, and recalibrate them to form a co-
herent distribution; the conditioning on point evidenca ca
be done at the same time. We then extiBtt-: as a set

of calibrated cluster and sepset factors, and introdude eac

factor into the appropriate cluster or sepser@in, ;, . .-

Average KL-divergence from Exac
L [ SS] EP

No Evidence

1segment | .102 | .083 || .0629

6 segments| .016 | .010 || .0077

. ) S Point Evidence
The algorithmCTBN-Filter-EPperforms filtering — for- 3 segments| .027 | .015 || .0086

ward message passing. To perform smoothing, we can 6 segments| .023 | .014 || .0076
also pass messages in reverse, where the cluster graph (@) (b)
for [t;,t;+1) passes a message to the cluster graph for

t[ti*tl.’ ti), re_prestehntlntg ;[he pr(’)\lbib"t';y to ftthe Eyldence af- Figure 1:(a)Drug effect network (b) Average KL-div. between
er imet; given the state ;. Note that, to achieve more g exact joint distribution and approximate distribu@veraged

accurate beliefs, we can also repeat the forward-backwargler 60 time points.
propagation until the entire network is calibrated, essen-

tially treating the entire network as a single cluster graph

We omit details for lack of space. di—;(Si,;) such that

Finally, we note that we chose to use one cluster graph
for each segment of fixed continuous evidence. As a conse-
guence, each cluster will approximate the trajectory of the

PO T 0
0y oc marg; s | x H Spsi

. . . keN;—{j}
variables it contains as a homogeneous Markov process,
for the duration of the segment. We can modify the qual- T o Y X H 0ji
ity of the approximation by either refining or coarsening JEN;
our choice of segments. In particular, if a set of variatdes i fij = Oj—i X Disj

changing rapidly, we might want to partition a segment into
subsegments, even if the evidence remains constant. Alteorollary 5.3 Convergence points of the proce-
natively, we can reduce computational cost by collapsinglure CTBN-Segment-EP are stationary points of
several intervals of continuous evidence, approximatiegt maximizing Eq. (4) subject to Eq. (5).
trajectory distribution over the entire interval as a homog
neous Markov process. This step requires a more comple%
computation of sufficient statistics over the combinedrinte
val, but is not substantially different. The decision of how
to partition time into .|nter_vals is aqalogous to a sm_Jatlon6 Experimental Results
where we are approximating a distribution over continuous
variables as a set of Gaussians, each defined over a subggtour experiments, we used the drug effect network of
of the space. The choice of how to partition the space intaysk shown in Figure 1(a) allowing us to compare to the
subsets determines the quality of our approximation. previous inference algorithm. We compared the results
of our implementation of expectation propagation with ex-
act inference and the approximate inference algorithm from
As for any EP algorithm over the exponential family, we NSK when possible. We ran three scenarios. In each one,
can show that the convergence points of the EP algorithmtt = 0, the person modelled by the system experiences
in Sec. 5.1 are fixed points of the constrained optimizatiorjoint pain due to falling barometric pressure and takes the
of the Kikuchi free energy functional, subject to caliboati ~ drug to alleviate the pain, is not eating, has an empty stom-
constraints on the projected marginals. ach, is not hungry, and is not drowsy. The drug is uptaking
The Kikuchi free energy function for a cluster graglis ~ @nd the current concentration is 0. All scenarios ended at
t = 6 (after 6 hours). We compare to exact inference by

The proof of these results is a special case of the general
sult on convergence of EP, which applies to any class of
distributions in the exponential family.

5.3 Energy Functional

F[PN, ]5] = (4)  computing the average KL-divergence as discussed below.
In the first scenario, there was no evidence after the given
E. [l H, (C;)— H, (S;; ’ ) R
gf ms [ 6] + cze:g i (C:) c.—zc:-eg pig (Sis) initial distribution. We ran the algorithms viewing the en-

' v tire trajectory as a single segment. We tried using one ap-
subject to the constraints: proximation to describe the dynamics over the system and
also broke it down into 6 evenly spaced segments. In the

O,T 1 -

fij = mar@i\si,j () . (5)  second second scenario, we observe-at1 that the per

son is not hungry and at= 3, that he is drowsy. We ran
Theorem 5.2 A set of potentialsr;, u, ; is a stationary the algorithms with 3 segments and again with 6 segments.
point of maximizing Eq. (4) subject to Eq. (5) if and only NSK provide two approximate marginalizations: the lin-
if, for every edge’;—C; there are potentials of the form earization (L) and subsystem (SS) approximations. Also



note that the NSK algorithms are single-pass multiply-contrast, in DBNSs, all variables in the system must be mod-
marginalize instead of the multiply-marginalize-divide eled at the time granularity of the variable that evolvestmos
scheme of the EP algorithm. Figure 1(b) shows the avquickly. We can hope to extend this property further, by
erage KL-divergence between exact joint distribution andallowing one cluster in our network to cover a long inter-
the approximate joint distributions averaged over 60 gvenl val, whereas another (over a different subset of variables)
spaced time points betweénr= 0 andt = 6 for the experi- is partitioned into smaller segments. This could provide
ments described above. From the table, one can see the ake basis for an algorithm that automatically and flexibly
pectation propagation easily beats the previous algosthm assigns computational resources to the parts of the system
In the third scenario, we have continuous observationgvhere the most interesting changes are occurring.
over the variables representing hunger, eating, and drowsjcknowledgments. This work was funded by DARPA's EPCA
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