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A bstract. Rating players in sports competitions based on game re­
sults is one example of paired comparison data analysis. Since an exact 
Bayesian treatment is intractable, several techniques for approximate 
inference have been proposed in the literature. In this paper we com­
pare several variants of expectation propagation (EP). EP generalizes 
assumed density filtering (ADF) by iteratively improving the approxi­
mations that are made in the filtering step of ADF. Furthermore, we 
distinguish between two variants of EP: EP-Correlated, which takes into 
account the correlations between the strengths of the players and EP- 
Independent, which ignores those correlations. We evaluate the differ­
ent approaches on a large tennis dataset to find that EP does signifi­
cantly better than ADF (iterative improvement indeed helps) and EP- 
Correlated does significantly better than EP-Independent (correlations 
do matter).

1 Introduction

O ur goal is to  develop and evaluate m ethods for the  analysis of paired com parison 
data . In th is paper we illustrate  such m ethods by ra ting  players in sports, in 
particu lar in tennis.

We consider the  p layer’s streng th  as a probabilistic variable in a Bayesian 
framework. Before taking into account the m atch outcomes, inform ation avail­
able about the  players can be incorporated  in a prior distribution . Using Bayes’ 
rule we com pute the  posterior d istribu tion  over the players’ strengths. We take 
the m ean of the posterior d istribu tion  as our best estim ate of the players’ 
strengths and the covariance m atrix  as the uncerta in ty  about our estim ation.

An exact Bayesian trea tm en t is in tractab le, even for a small num ber of play­
ers; the posterior d istribu tion  cannot be evaluated analytically, and therefore we 
need approxim ations for it. E xpectation  propagation  [7] is a popular approxi­
m ation technique. We will use it in th is paper for approxim ating the posterior 
d istribu tion  over the  players’ strengths. The question th a t we w ant to  answer 
here is: how do different variants of expectation  propagation  perform  for this 
setting? In particular, does it make sense to  perform  backw ard and forward ite r­
ations for the  approxim ations and does it help to  have a more com plicated (full) 
covariance structu re?
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The paper is s truc tu red  as follows: in the  next section we introduce the 
probabilistic framework used to  estim ate players’ strengths; in Section 3 we 
present algorithm s for approxim ate inference and the way they  apply to  our 
setting; in Section 4 we show experim ental results for real da ta , which we use to 
com pare the perform ance of the algorithm s; and in the last section we draw  the 
conclusions.

2 Probabilistic Framework to Estim ate Players’ Strengths

Let 9 be an n players-dim ensional probabilistic variable whose com ponents rep­
resent the  players’ strengths. We define r ij  =  1 if player i beats player j ,  and 
Tij =  —1 otherwise. For the probability  of r ij  as a function of the  strengths Oi 
and Oj, we take the B radley-Terry model [2]:

^  0 j )  =  1 +  e x p [—'r.y(0j — 0 j ) \  ■ (1)

A straightforw ard m ethod to  approxim ate the players’ s trengths is to  build 
the  likelihood of 9 given R; where R  stands for the outcom es of all played 
m atches. We take the m axim um  of the likelihood as the  estim ate for the  strengths 
of the players.

The m axim um  likelihood approach gives a point estim ate, the  Bayesian ap­
proach, on the o ther hand, yields a whole d istribu tion  over the players’ strengths. 
Furtherm ore, useful sources of inform ation, like results in previous com petitions 
and  additional inform ation about the players, can be incorporated  in a prior 
d istribu tion  over the strengths. Using Bayes’ rule we com pute the posterior dis­
tribu tion  over the players’ strengths:

p (e \R ) = ± p (R \0 )p (0 )  =  ip ( 0 )  \ \ r  0,(1, , (2)
i=j

where p (9 ) is the  prior, p (r ij  |Oi , Oj) from (1), and d is a norm alization constant.
We take the  m ean or the mode of the  posterior as the best estim ate for 

the players’ strengths. W hile com puting the m ean of the  posterior d istribution  
is com putationally  in tractable, its mode (M AP) can be determ ined using opti­
m ization algorithm s. For the M AP estim ate the com putation tim e is linear in the 
num ber of m atches, and the num ber of iterations needed to  ob tain  convergence. 
Typically, the num ber of iterations needed scales linearly w ith the num ber of 
players w ith a sta te-of-the-art optim ization m ethod such as conjugate gradient.

For m aking predictions and estim ating the confidence of these predictions, we 
need the whole posterior d istribu tion  over the players’ strengths. The posterior 
obtained using B ayes’ rule in equation (2) cannot be evaluated analytically, hence 
we need to  make approxim ations for it. For this task , sam pling m ethods are very 
costly because of the high-dim ensionality of the  sam pling space: the dimension 
is equal to  the num ber of players. Therefore, for ra ting  players, we here focus on 
determ inistic approxim ation techniques, in particu lar expectation propagation 
and variants of it.
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3 Expectation Propagation

E xpectation  propagation (EP) [7] is an approxim ation technique which tunes the 
param eter of a simpler approxim ate distribution, to  m atch the exact posterior 
d istribu tion  of the  model param eters given the data.

A s s u m e d  D e n s ity  F i l te r in g  ADF is an approxim ation technique in which 
the  term s of the  posterior d istribu tion  are added one a t a time, and in each step 
the result of the  inclusion is projected  back into the assum ed density. As the 
assum ed density we take the Gaussian, to  which we will refer below as q.

The first te rm  which is included is the prior, q(9) =  p(9); then  we add term s 
one a t a tim e p(9 ) =  ÿ ij  (Oi ,O j)q(9), where ÿ ij (Oi , Oj) =  p (rij  |Oi , Oj); and at 
each step  we approxim ate the  resulting d istribu tion  as closely as possible by a 
G aussian qnew(9) =  Project{p(9)} . Using the Kullback-Leibler (KL) divergence 
as the  m easure between the non-G aussian p  and  the G aussian approxim ation, 
projection becomes m om ent m atching: the  result qnew of the projection is the 
G aussian th a t has the first two m om ents, m ean and covariance, the  same as p.

After we add a te rm  and project, the  G aussian approxim ation changes. We 
call the quotient between the new and old G aussian approxim ation a term  ap­
proximation.

I t e r a t iv e  Im p ro v e m e n t  E P  generalizes ADF by perform ing backward-forward 
iterations to  refine the term  approxim ations until convergence. The final ap­
proxim ation will be independent of the  order of incorporating  the term s. The 
algorithm  perform s the following steps.

1. Initialize the  term  approxim ations ÿ j (Oi , Oj), e.g., by perform ing ADF; and
com pute the initial approxim ation

q(9) =  p ( 9 ) n *ij(O i,O j) .
i=j

2. R epeat until all ÿ j  converge:
(a) Remove a te rm  approxim ation ÿ j  from the approxim ation, yielding

\ i j ( 0 ) =  _
V ' < % ( ^ )

(b) Combine q \ij (9) w ith the exact factor ÿ ij  =  p (r ij  |Oi , Oj) to  obtain

p ( 9 ) =  ÿ jj  (Oi, Oj)q \ij (9 ) . (3)

(c) P ro jec t p (9 ) into the approxim ation family

qnew(9 ) =  argm inK L[p||q] .
q£Q

(d) Recom pute the term  approxim ation through the division

qnew(9)
*nrw(Oi,Oj ) q \ij (9)
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C o m p u ta t io n a l  C o m p le x ity  W hen minimizing the KL divergence in step  (c) 
we can take advantage of the locality p roperty  of E P  [10]. From equation (3), 
because the term  ÿ ij  does not depend on 9 \ i j , we can rew rite p  as:

p(9 ) =  p (9 \ij  |Oi, Oj)p(Oi,Oj) =  p(Oi, Oj)q \ij (9 \ij |Oi,Oj).

Furtherm ore we obtain:

K L [p(9)||q (9)] =  KL[p(Oi, Oj )||q(O< ,Oj )]

+ E m ,ei) [K L[q\i j ( 9 \ i j |O i,Oj)||q(9w |Oi,Oj)]]. (4)

The two term s on the right-hand side can be minimized independently. Mini­
m ization of the second term  gives:

qnew (9 \ij |Oi,Oj ) =  q \ij (9 \ij |Oi,Oj ) .  (5 )

Minimizing the KL divergence for the  first te rm  in the right-hand side in (4) re­
duces to  m atching the  moments, m ean and covariance, between the 2-dim ensional 
distributions p(Oi ,O j) and q(Oi ,O j).

Exploiting this locality property, we m anaged to  go from n players-dimensional 
integrals to  2-dim ensional integrals, which can be further reduced to  1 dimension, 
by rew riting them  in the following way (see e.g., the  appendix of [1]):

= {F(a0i:j ) ) ^ mtc) = {F{0'J~aFC a  + aT m))  0,i)

where a  is the vector [—1, 1] if player i is the  winner, or a  =  [1, —1] if player 
j  is the  winner, 9 ij  =  [Oi , Oj ], F  is defined through equation (1), and N  (m , C  ) 
stands for a G aussian w ith m ean m  and covariance m atrix  C . S ubstitu ting  the 
solution (5), we see th a t the  term  approxim ation, in step  (d) of the  algorithm , 
indeed only depends on Oi and Oj.

We can simplify the com putations by using the canonical form of the G aus­
sian d istribution. Because, when projecting, we need the m om ent form of the 
d istribution , we go back and forth between d istributions in term s of m om ents 
and in term s of canonical param eters. For a Gaussian, this requires com puting 
the inverse of the covariance m atrix , which is of the order nplayers. Since the 
covariance m atrix , when refining the term  corresponding to  the game between 
players i and  j  , changes only for the  elem ents corresponding to  players i and 
j ,  we can use the W oodbury formula [8] to  reduce the cubic com plexity of the 
m atrix  inversion to  a quadratic  one. Thus, the  com plexity of E P  is:

C (EP) =  O (n iterations X n piayers X n matches)

where n iterations is the  num ber of iterations back and forth in refining the term  
approxim ations. In practice, the num ber of iterations to  converge seems largely 
independent of the num ber of players or m atches. In our experim ents, we needed
^iterations ~  5 to  converge.

We will refer to  th is version of E P  as E P-C orrelated: by projecting into a non- 
factorized Gaussian, it takes into account the correlations between the players’ 
strengths.



E P - I n d e p e n d e n t  The com plexity of the E P  algorithm  can be reduced further 
if we keep track  only of the diagonal elem ents of the covariance m atrix , ignoring 
the correlations. The m atrix  inversion has in this case linear complexity. The 
algorithm  is faster and requires less memory.

4 Experim ents

We applied the approxim ation algorithm s, presented in the  previous section, to 
the analysis of a real da tase t. The d a tase t consists of results of 38538 tennis 
m atches played on ATP events am ong 1139 players between 1995 and 2006. 
The goal was to  com pute ratings for the players based on the m atch outcomes. 
The m ethods described yield a G aussian d istribu tion  of the  players’ strengths; 
the m ean of the  d istribu tion  represents our estim ate of the players’ strengths, 
the rating , and the variance relates to  the  uncertainty. Furtherm ore, we predict 
results of future games, and estim ate the  confidence of our predictions. We take 
as the  prior a G aussian d istribu tion  w ith m ean zero and covariance equal to  the 
iden tity  m atrix .

Figure 1 shows the  em pirical d istribu tion  of the  players’ strengths (means of 
the posterior d istribution) in com parison w ith the average w idth  of the  posterior 
for an individual player. I t can be seen th a t the uncertain ty  for individual players 
is com parable to  the diversity between players.
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players’ strengths

Fig. 1. A histogram of the players' strengths (means of the posterior distribution) for 
all years. The bar indicates the average width of the posterior distribution for each of 
the individual players. The results shown are for EP-Correlated.
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4 .1  A c c u ra c y

We com puted the ratings for the  players a t the end of each year, based on the 
m atches from th a t year. Furtherm ore, based on these ratings we m ade predictions 
for m atches in the next year: in a m atch we predicted the player w ith the highest 
ra ting  to  win.

E P - C o r r e la te d  v e r s u s  A D F  We com pared the  accuracy of the predictions 
based on E P-C orrelated  ratings w ith the ones based on ADF ratings. We divided 
all jo in t predictions into 4 categories as shown in Table 1. We applied a binomial 
test on the  m atches for which the  two algorithm s gave different predictions to 
check the significance of the  difference in perform ance [9]. The p-value obtained 
for th is one-sided binom ial test is 3 x 10-14 , which indicates th a t the difference 
is highly significant: E P -C orrelated  perform s significantly b e tte r th a n  ADF.

E P - C o r r e la te d  v e rs u s  E P - I n d e p e n d e n t  The same type of com parison was 
perform ed between E P -C orrela ted  and EP-Independent, the  results are shown in 
Table 1. As for the previous com parison, the p-value is very small, 3 x 10- 7 : the 
binom ial test suggests th a t the  difference between the two algorithm s is again 
highly significant.

Table 1. Comparison between EP-Correlated, ADF and EP-Independent based on the 
number of matches correctly/incorrectly predicted.

ADF E P-Independent

correct incorrect correct incorrect

E P-C orrelated

correct
incorrect

16636 (54.48%) 2395 (7.81%) 
1902 (6.21%) 9620 (31.50%)

17857 (58.46%) 1174 (3.83%) 
945 (3.09%) 10577 (34.62%)

E P - C o r r e la te d  v e rs u s  L a p la c e  a n d  A T P  R a t in g  We com pared Laplace 
and  E P-C orrela ted  to  find out th a t E P -C orrela ted  does slightly, bu t not signifi­
can tly  b e tte r (p-value is 0.3). They disagree on only 0.2% of all matches.

We also com pared the accuracy of the  predictions based on the E P  ratings 
w ith the accuracy of the predictions obtained using the ATP ratings a t the  end 
of the year. The ATP ra ting  system  gives points to  players according to  the type 
of the  tournam ent and how far in the  tournam ent they  reached. Averaged over 
all the  years, b o th  E P  and ATP ratings, give sim ilar accuracy of predictions for 
the next, about 62%.
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4 .2  C o n fid e n c e

W ith  a posterior probability  over the players’ s trengths we can com pute the 
confidence of the predictions.

The algorithm s presented perform  about the same in estim ating the confi­
dence. However, they  all tend  to  be overconfident, in the sense th a t the  actual 
fraction of correctly predicted m atches is smaller th an  the predicted confidence, 
as indicated  by the solid line in the  left plot of Figure 2. We can correct this 
by adding noise to  the players’ strengths, to  account for the  fact th a t a p layer’s 
streng th  changes over time:

$í+i =  @t +  e

where e has m ean zero and variance a 2. To evaluate the  confidence estim ation, 
we plot on the right side of Figure 2 the Brier score [3] for different values of a. 
The optim um  is ob tained for a  =  1.4, which then  yields the dashed line in the 
left plot of Figure 2.

Fig. 2. Left: the actual fraction of correctly predicted matches as a function of the 
predicted confidence; without added noise (solid line) and with noise of standard de­
viation 1.4 added (dashed line); the dotted line represents the ideal case and is drawn 
for reference. Right: the Brier score for the confidence of the predictions as a function 
of the standard deviation of the noise added to each player's strength.

5 Conclusions

Based on the experim ental results reported  in this s tudy  we draw the conclu­
sion th a t E P-C orrelated  perform s b e tte r in doing predictions for th is type of 
da tase t th a n  its modified versions, ADF and EP-Independent. Further experi­
m ents should reveal w hether th is also applies to  o ther types of data.

O ur results are generalizable to  more complex models, e.g. including dynam ­
ics over tim e, which m eans th a t a players ra ting  in the  present is related  to  his 
perform ance in the  past [4]; and team  effects: a p layer’s ra ting  is inferred from
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team  perform ance [5, 6]. Specifically for tennis, the more complex models should 
also incorporate the  effect of surface because the perform ance of tennis players in 
a m atch is influenced by the type of surface they  play on (grass, clay, hard  court, 
indoor). In this paper we considered the m ost basic probabilistic ra ting  model; 
this model perform s as good as the  A TP ranking system . We would expect th a t 
the more complex models could outperform  ATP.
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