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Abstract 

Virtually all genome sequencing efforts in national biobanks, complex and Mendelian disease programs, and emerging 

clinical diagnostic approaches utilize short-reads (srWGS), which present constraints for genome-wide discovery of 

structural variants (SVs). Alternative long-read single molecule technologies (lrWGS) offer significant advantages for 

genome assembly and SV detection, while these technologies are currently cost prohibitive for large-scale disease 

studies and clinical diagnostics (~5-12X higher cost than comparable coverage srWGS). Moreover, only dozens of such 

genomes are currently publicly accessible by comparison to millions of srWGS genomes that have been commissioned 

for international initiatives. Given this ubiquitous reliance on srWGS in human genetics and genomics, we sought to 

characterize and quantify the properties of SVs accessible to both srWGS and lrWGS to establish benchmarks and 

expectations in ongoing medical and population genetic studies, and to project the added value of SVs uniquely 

accessible to each technology. In analyses of three trios with matched srWGS and lrWGS from the Human Genome 

Structural Variation Consortium (HGSVC), srWGS captured ~11,000 SVs per genome using reference-based 

algorithms, while haplotype-resolved assembly from lrWGS identified ~25,000 SVs per genome. Detection power and 

precision for SV discovery varied dramatically by genomic context and variant class: 9.7% of the current GRCh38 

reference is defined by segmental duplications (SD) and simple repeats (SR), yet 91.4% of deletions that were 

specifically discovered by lrWGS localized to these regions. Across the remaining 90.3% of the human reference, we 

observed extremely high concordance (93.8%) for deletions discovered by srWGS and lrWGS after error correction 

using the raw lrWGS reads. Conversely, lrWGS was superior for detection of insertions across all genomic contexts. 

Given that the non-SD/SR sequences span 90.3% of the GRCh38 reference, and encompass 95.9% of coding exons in 

currently annotated disease associated genes, improved sensitivity from lrWGS to discover novel and interpretable 

pathogenic deletions not already accessible to srWGS is likely to be incremental. However, these analyses highlight the 

added value of assembly-based lrWGS to create new catalogues of functional insertions and transposable elements, as 

well as disease associated repeat expansions in genomic regions previously recalcitrant to routine assessment.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.168831doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.168831
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

Main Text 

 

The field of genomics has seen remarkable advances in the 

accuracy and efficiency of massively parallel sequencing-by-

synthesis technology that generates pairs of short reads from the 

ends of small 400-800 base pair (bp) fragments (referred to herein 

as short-read WGS [srWGS]). This technical leap, and derivative 

approaches such as targeted exome capture sequencing (WES), 

have catalyzed a deluge of gene discoveries for rare diseases and 

insights into population genetics and genome biology. 

Correspondingly, srWGS has been adopted by all major human 

disease and biobank sequencing initiatives, including the NHGRI 

Centers for Common Disease Genomics (CCDG)1 and Centers for 

Mendelian Genetics (CMG),2 the Deciphering Developmental 

Disorders (DDD) project,3 the Trans-Omics for Precision 

Medicine (TOPMed),4 the All of Us Research Program,5 the 

NICHD Gabriella Miller Kids First (GMKF) initiative, the UK 

BioBank,6 and Genomics England,7 to name just a few. As such, a 

critical step for the field is to establish uniform methods for srWGS 

data processing and rational benchmarking standards to set 

expectations for variant detection. 

 

The technical processes of genome alignment and single 

nucleotide variant (SNV) detection have been an intensive focus 

of genomics since the inception of the 1000 Genomes Project,8–10 

and more recently updated for cross-institute functional 

equivalence as part of the NHGRI Genome Sequencing Program.11 

However, no standardized methods have been adopted for 

structural variants (SVs), defined as genomic alterations greater 

than 50 bp in size, and consequently no gold-standard 

benchmarking approaches exist for SV discovery. This lack of 

uniformity has introduced a barrier to the establishment of reliable 

estimates of the SV counts and characteristics per genome that are 

comparable to those established for short variants. Not surprisingly, 

as shown in Figure 1A these estimates have varied considerably 

across studies. The initial discovery effort from the 1000 Genomes 

Project12,13 revealed that a diverse landscape of SVs could be 

captured from srWGS with just 4-7X coverage (3,422 SVs per 

genome), and more recent population genetic and human disease 

studies using deeper (30X or higher) srWGS and diverse methods 

have varied in estimates of SVs that can be captured using srWGS 

from 401 – 10,884 per genome, with the highest end of this range 

generated from the Human Genome Structural Variation 

Consortium (HGSVC; Figure 1A) .1,13–18 

 

Emerging long-read WGS (lrWGS) technologies, which involve 

sequencing thousands to millions of contiguous nucleotides from 

a single strand of DNA, are better suited for SV discovery than 

srWGS. The most widely tested lrWGS technologies include 

single-molecule real-time (SMRT) sequencing from Pacific 

Biosciences (PacBio) and sequencing by ionic current through a 

nanopore channel (Oxford Nanopore Technologies [ONT]). A key 

advantage of lrWGS is the abundance of reads that span entire SVs, 

allowing for direct observation rather than detection by inference 

as required for srWGS. These unique properties of lrWGS are 

beginning to revolutionize de novo assembly approaches,19,20 with 

methods already maturing for telomere-to-telomere assembly of 

individual human chromosomes.21,22 The most recent lrWGS 

analyses have at least doubled the number of SVs able to be 

captured in each genome to ~25,000 as compared to srWGS14,22 

(Figure 1A). The impact of these studies has exceeded the sheer 

volume of variants detected: assembly-based long-read analyses 

have opened access to variants in the genome that have been 

traditionally refractory to delineation by short read sequencing or 

interpretation in disease association studies, such as repeat 

expansions and alterations within repetitive segmental 

duplications and centromeres.23 Unfortunately, the current cost of 

lrWGS is a significant premium over srWGS, depending on the 

technology used. By example, the current cost for generation of 

PacBio lrWGS over srWGS for equivalent coverage at leading 

academic platforms from the HGSVC ranges from 5.9-fold 

increase for continuous long read (CLR) technology to 12-fold 

increase for circular consensus sequencing (CCS) HiFi technology. 

Moreover, the low throughput of modern lrWGS platforms renders 

them impractical for adoption in most large-scale population 

studies. The largest published assembly-based PacBio study has 

analyzed just 15 genomes,22 while a recent study from Iceland 

analyzed 1,817 ONT genomes,24 by comparison to millions of 

genomes that have already been sequenced or commissioned using 

srWGS. Given this predominance of srWGS in the current 

landscape of genomics research, we present here a series of 

analyses from the HGSVC to: (i) define and quantify the 

limitations of SV detection from srWGS; (ii) benchmark 

expectations for the number and class of variants that can be 

reliably detected from srWGS; (iii) predict the genomic features 

that drive false positive and false negative discoveries for each 

technology; and (iv) establish the scientific and clinical advances 

offered by state-of-the-art lrWGS assembly as a complementary 

approach to srWGS. 
 

In this study, we performed a detailed comparison of SV detection 

from alignment-based srWGS and assembly-based lrWGS 

methods on matched samples. In the HGSVC, we recently 

generated SV callsets from srWGS and lrWGS of three parent-

child trios from the 1000 Genomes Project.14 For srWGS, this 

initial HGSVC study applied a highly sensitive ensemble approach, 

involving 13 SV detection algorithms (Supplemental Methods), 

and discovered 10,884 SVs per genome. The emphasis on 

sensitivity suggests that ~11,000 SVs per genome likely reflects an 

upper bound on the total number of SVs that can be captured from 

srWGS with alignment-based algorithms applied by the HGSVC, 

as demonstrated in Figure 1A by comparison to other 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.168831doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.168831
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

contemporary studies. However, this sensitivity came at the 

significant cost of specificity, with 685 de novo SVs 

observed per genome, or >1,000-fold more than expected 

from srWGS based on family studies, population genetic 

estimators, and molecular validation, therefore representing 

many variant predictions that are likely false 

positives.15,16,25 The lrWGS-derived SV callset combined 

whole genome phasing with two state-of-the-art genome 

assembly approaches (Phase-SV and MS-PAC19,20,26) and 

was supplemented by additional technologies (HiC and 

StrandSeq, see Chaisson et al.14). These methods 

discovered an average of 24,825 haplotype-resolved SVs 

per genome, or over two-fold more than the most sensitive 

srWGS approaches. Surprisingly, although the srWGS and 

lrWGS callsets were generated on identical samples, only a 

limited subset of SVs (66.7% of srWGS and 33.5% of 

lrWGS) overlapped between technologies. Moreover, the 

mutational class of SVs dramatically impacted 

concordance: 60.5% of srWGS and 48.7% of lrWGS 

deletions demonstrated overlap as compared to 81.5% of 

srWGS and 24.1% of lrWGS insertions (Figure 1B). 
 

We sought to define and quantify the factors contributing 

to the poor concordance between SVs derived from each 

technology on matched samples, as these factors might be 

used to improve SV discovery, filtering, and prioritization 

in medical and population genetic initiatives. We first 

explored the role of genomic features such as repetitive 

sequences that are enriched for SVs due to repeat-mediated 

mechanisms,22,27,28 as short-read alignment has well-

documented limitations within these genomic regions.29,30 

We annotated all SVs with sequence context based on 

RepeatMasker31 and segmental duplication32,33 tracks from 

the UCSC genome browser.34,35 For simplicity, we 

consolidated all repetitive sequence annotations into three 

categories: segmental duplication (SD; 5.1% of the 

genome), simple repeat (SR; 4.6%), and referred to all other 

repetitive sequence not overlapping SD/SR elements as 

‘repeat masked’ (RM; 42.9%). The remaining 47.4% of the 

genome not overlapping any of these repeat categories was 

labeled as ‘Unique’ sequence, which is a term used for 

simplicity here but these regions are not completely devoid 

of some duplicated sequences. The Unique and RM 

categories collectively encompass 90.3% of the annotated 

human reference sequence, 90.9% of all currently annotated 

protein-coding sequence, 95.8% of all currently annotated 

coding sequence from evolutionarily constrained genes, 

and 95.9% of genes currently associated with human disease from 

the Online Mendelian Inheritance in Man (OMIM; Figure 1C).36–

39 

 

As expected, the distribution of SVs was non-uniform and varied 

by sequence context for each technology (Figure 1D). Most 

prominently, the enrichment of SV breakpoints in highly repetitive 

genomic sequences (SD/SR regions) was dramatic and their 

Figure 1. Comparison of SV callsets from srWGS and lrWGS. 
  

(A) The substantially increased yield of lrWGS in SV detection is displayed 

from the HGSVC (Chaisson et al 2019)14 and the largest Pacific Biosciences 

(PacBio) lrWGS study published to date (Audano et al 2019)22 by comparison 

to contemporary srWGS studies. As shown, there is wide variability of SV 

detection across srWGS studies to date that report SVs detected per individual 

in more than 100 genomes. Parentheses next to each study label indicate the 

number of genomes analyzed, and bold numbers next to each bar represent 

the number of SVs per genome reported by each study. (B) Overlap of SVs 

from the HGSVC srWGS and lrWGS callsets across children of the three trio 

families, partitioned by SV class. (C) Distribution of repetitive sequences 

across the genome, genes, and exons. Constrained refers to genes and exons 

with pLI > 0.9,36 and OMIM Genes include a curated list of autosomal 

dominant genes that were defined in both Berg et al.43 and Blekhman et al.44 

GB = gigabase, MB = megabase. Percentage listed within each bar is the 

fraction of each group composed of Unique + RM sequences. (D) Distribution 

of SVs from srWGS and lrWGS split by repetitive sequence context. 

Formatting conventions are the same as panel C. (E-F) Concordance of (E) 

deletions and (F) insertions and duplications between srWGS and lrWGS split 

by repetitive sequence context. 
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distribution differed significantly between technologies: 

despite representing just 9.7% of the reference genome, 

SD/SR annotated sequences contained at least one 

breakpoint from 49.8% of all SVs from srWGS and 70.4% 

of all SVs from lrWGS (P < 2.2e-16 for both technologies, 

chi-square test, Table S2, see Supplemental Methods for 

details). This enrichment of SVs in repetitive sequence was 

also strongly correlated with concordance between srWGS 

and lrWGS, as SVs located in repetitive SD/SR sequences 

displayed 57.0% concordance among srWGS variants and 

22.5% in lrWGS variants, whereas those ratios improved 

considerably in less repetitive sequences (Unique + RM) to 

76.5% in srWGS and 59.9% in lrWGS (Figure 1E-F).  
 

While the divergent distributions and diminished 

concordance of SV detection by technology aligned with 

expectations for SD/SR regions, the paucity of overlap 

between technologies in Unique + RM regions was 

unexpected as breakpoints localized to these regions should 

not suffer from the technical confounds that profoundly 

impact SV discovery in highly repetitive sequences. We next 

sought to decouple and quantify the discordance driven by 

underlying biological features of the genome from technical 

noise driven by false positive SVs present in the underlying 

HGSVC callsets, which were optimized for sensitivity as 

described above. We also reasoned that determining the 

covariates that have the greatest influence on false positive 

calls would be of high value. To accomplish this, we 

developed an in silico SV assessment procedure to improve 

the precision of srWGS and lrWGS callsets in non-repetitive 

regions. This procedure re-evaluated the following three 

pieces of orthogonal information from both lrWGS and 

srWGS for each SV: (1) supporting evidence from an 

algorithm that surveys the raw lrWGS reads for the presence 

of an SV (VaPoR;40 Figure 2A); (2) copy states based on 

srWGS normalized read depth (RD) within SVs (Figure 2B, 

S1); (3) discordant paired-end (PE) and split reads (SR) at 

the breakpoint of each predicted SV (Figure 2C-D, S2, Table 

S1). We considered the SVs with one or more modes of 

supporting evidence as “high confidence” and explored their 

overlap based on repeat context for SV calls from different 

technologies (see Supplemental Methods for further details).  
 

We initially applied this in silico SV refinement procedure 

to deletions, which represent the most interpretable class of 

SVs for genomics applications (Figure S3). As expected, the 

in silico confirmation rate—i.e., the proportion of SVs 

supported by one or more of the evidence classes described 

above—was high (93.5%) for deletions concordant between 

technologies in Unique + RM regions, compared to just 13.5% and 

33.1% for those that were only discovered by a single technology 

for srWGS or lrWGS, respectively (Figure S4). After restricting to 

high confidence deletions with supportive information, just 6.2% 

of the deletions in Unique + RM regions were specific to either 

Figure 2. Error correction methods for SVs in Unique + RM region and 

the updated concordance. 
 

(A) In silico evaluation results from VaPoR on deletions (left), insertions 

(middle) and duplications (right). Deletions and insertions were reported 

in both srWGS and lrWGS callsets; duplications were only reported in the 

srWGS callset. (B) Distribution of normalized read depth of srWGS across 

deletions (left), insertions (middle) and duplications (right) that were 

supported by VaPoR (red), and the 1Kb genomic regions that flank each 

SV (grey). (C-D) Distribution of (C) aberrant srWGS read pairs and (D) 

split reads around deletions (left), insertions (middle) and duplications 

(right) that were either homozygous (red), heterozygous (green) or false 

positives (blue). The homozygous, heterozygous and likely false positive SV 

sets were selected using the criteria described in supplemental methods. 

(E-F) Concordance of (E) deletions and (F) insertions and duplications in 

Unique + RM sequences that were supported by the in silico SV refinement 

procedure. Percentages represent the fraction of total variants shared 

between srWGS and lrWGS. 
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srWGS or lrWGS (Figure 2E). Although we cannot rule out 

explanations such as somatic SVs or sub-clonal mutations arising 

in cell culture, these results imply that the most of the discordance 

reported between srWGS and lrWGS for deletion discovery in the 

90.3% of the genome not encompassed by SD/SR sequence was 

likely technical and driven by false positive SV calls that can be 

pruned by post hoc heuristic filtering. 
 

In contrast to this strong concordance between srWGS and lrWGS 

observed for deletions, nearly half (46.3%) of high confidence 

lrWGS insertions in Unique + RM regions had no matching SV 

call from srWGS, while the majority (94.7%) of srWGS insertions 

and duplications were captured by lrWGS SV calls (Figure 2F, S5). 

To further investigate the properties of insertions specifically 

captured by lrWGS in Unique + RM sequences, we aligned the 

assembled sequences of high-confidence insertions against a 

catalog of known repeat elements.31 Most of these insertions 

aligned to specific types of repeat elements (61.8%, N = 2,485 / 

genome), such as short and long interspersed nuclear elements 

(SINEs, N = 1,494 / genome; LINEs, N = 312 / genome) and long 

terminal repeat (LTR, N = 139 / genome) retrotransposons (Figure 

3A,D). Yet another 19.0% of the insertions exhibited partial 

alignments to multiple different repeat types (Figure 3A, C). 

Notably, most (70.1%) of the lrWGS insertions that were shared 

by srWGS aligned to a specific type of repeat element, whereas 

nearly one-third (31.7%) of the insertions specifically discovered 

by lrWGS were partially aligned to multiple different repeats types 

(Figure 3B, C), indicating that the complexity of chimeric repeat 

structures is a major determinant of srWGS sensitivity for insertion 

SVs, as has been previously demonstrated in certain classes of 

nested insertions.41 We further observed high variability in the 

current capabilities of srWGS detection depending on the type of 

transposable element insertions when comparing with lrWGS as 

74.4%, 44.2% and 50.7% of lrWGS insertions were discovered by 

srWGS for SINEs, LINEs and LTRs, respectively (Figure 3D). 

Intriguingly, 95.8% of the high confidence lrWGS insertions in 

Unique + RM regions that did not overlap an srWGS insertion 

nevertheless had some detectable support in the raw srWGS data, 

indicating that continued development of detection algorithms 

could improve sensitivity for these missed insertion SVs (Figure 

3E). Taken together, these analyses indicate that lrWGS and 

assembly-based approaches provide substantial improvements 

over srWGS for insertion discovery, particularly for those events 

with complex repeat structures.  
 

Finally, we examined SVs in highly repetitive SD/SR regions 

using the same in silico evaluation framework (Figure S6A-D) as 

described above with the caveat that the orthogonal evaluation of 

variants within these regions is much more challenging and our 

results are certainly less accurate than in the less repetitive regions 

of the genome. In contrast to the high concordance for deletions in 

Unique + RM sequences, 30.2% and 59.3% of high confidence 

deletions from srWGS and lrWGS, respectively, were not shared 

by the other technology (Figure S6E). The distinct patterns of 

concordance were more dramatic for insertions: only 17.4% of 

insertions from lrWGS were overlapped with an srWGS variant, 

whereas 74.4% of srWGS insertions were captured by lrWGS 

(Figure S6F). These results highlighted that a major source of 

added value from lrWGS over srWGS is found in increased SV 

sensitivity within highly repetitive regions of the genome. 

Figure 3. Alignment of assembled lrWGS insertion sequences 

against known repeat elements.  
 

(A) Count of lrWGS insertions in Unique + RM sequences per genome 

by alignment of inserted sequence to known repeat elements. Number 

on top of bar represents the averaged count of high confidence 

insertions in Unique + RM sequences per genome. (B) Count of lrWGS 

insertions that are specifically discovered by lrWGS and shared by 

srWGS, by alignment of inserted sequences to known repeat elements. 

Formatting conventions used are the same as panel A. (C) Example of 

an insertion SV assembled by lrWGS, annotated with sequences that 

align to known repeat element classes. (D) Counts of lrWGS insertions 

in Unique + RM sequences per genome by the class of inserted 

sequence and the proportion of variants that overlap with srWGS. 

“OTH*” represents insertions aligned to multiple known repeat 

elements, as the example shown in panel (B). “OTH#” 

represents insertions not aligned to any repeat elements. Number in 

parentheses represents the proportion of insertions that overlap 

with srWGS. (E) Count of split reads around the lrWGS high 

confidence insertions displayed in the histogram. 
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In conclusion, we demonstrate the influence of genomic context 

on setting expectations for SV detection from srWGS in genomic 

studies, as well as estimating the anticipated yields of emerging 

lrWGS technologies. Initial genome-wide surveys have implied 

highly variable outcomes and limited overall concordance in SV 

detection between the two technologies; however, in-depth 

analyses of these variants emphasize that genome organization, 

variant type, and high type I error rates in SV detection from each 

technology were the three predominant features driving 

discordance. After applying post hoc filters to correct for the 

relatively high type I error rates for SV detection from this 

ensemble srWGS approach optimized for sensitivity and the 

assembly based lrWGS approach that was optimized with 

orthogonal data types, we were able to extrapolate the informative 

biological factors that influenced differences in SV distributions 

between technologies. The concordance between srWGS and 

lrWGS was remarkably high (93.8%) for deletions localized to the 

least-repetitive regions of the genome, while almost all lrWGS-

specific deletions were localized to repetitive SD/SR regions. 
 

The value added for long-read assembly to discover new disease 

associated SVs, or provide resolution to ‘unsolved’ cases in 

Mendelian genetics, is thus a complex calculus. As we note above, 

srWGS captures virtually all high-quality deletions derived from 

lrWGS assembly in the regions of the genome that encompass 

more than 95% of currently annotated coding sequence in genes 

with existing evidence for dominant-acting pathogenic mutations 

from OMIM, so we anticipate that a minority of ‘unsolved’ cases 

will be explained by cryptic lrWGS SVs from this readily 

interpretable class of heterozygous deletions in currently known 

disease-associated genes. However, given that the most highly 

repetitive regions of the genome have been traditionally 

inaccessible for genomics studies of disease, it is anticipated that 

new disease-associated genes and sequences will emerge from 

these existing blind spots in the human genome. Indeed, germline 

and somatic repeat expansions and contractions are already well 

established mechanisms of human disease, particularly 

neurodegenerative disorders,42 and this is an exciting area for 

future discoveries from lrWGS. As telomere-to-telomere assembly 

methods continue to mature and eventually reach into centromeres, 

telomeres, and segmental duplications, the catalogue of disease 

associated variants will certainly expand beyond what is applied to 

current clinical interpretation. Similarly, lrWGS was superior for 

the detection of insertions, irrespective of genomic context, and the 

near-term value of lrWGS to better delineate coding and 

noncoding insertions and mobile elements across all genomic 

contexts is high. 
 

Collectively, we estimate from these analyses that genomic studies 

and clinical initiatives using srWGS can expect to capture upwards 

of 10,000 SVs in each human genome, and current large-scale 

international initiatives are poised to provide exciting new insights 

into the 90% of the annotated reference genome that encompasses 

almost all known genic sequence. We also confirm that assembly-

based lrWGS methods will access regions of the genome that are 

intractable to srWGS, and advancements in lrWGS technologies, 

as well as computational annotation and interpretation tools, will 

provide significant long-term value in expanding the catalogue of 

functional variation associated with insertions and mobile 

elements, as well as variation localized to the most challenging 

sequence features in the human genome. 
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