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Abstract
Purpose of Review Artificial intelligence (AI) is often presented as a transformative technology for clinical medicine even 
though the current technology maturity of AI is low. The purpose of this narrative review is to describe the complex reasons 
for the low technology maturity and set realistic expectations for the safe, routine use of AI in clinical medicine.
Recent Findings For AI to be productive in clinical medicine, many diverse factors that contribute to the low maturity level 
need to be addressed. These include technical problems such as data quality, dataset shift, black-box opacity, validation and 
regulatory challenges, and human factors such as a lack of education in AI, workflow changes, automation bias, and deskill-
ing. There will also be new and unanticipated safety risks with the introduction of AI.
Summary The solutions to these issues are complex and will take time to discover, develop, validate, and implement. 
However, addressing the many problems in a methodical manner will expedite the safe and beneficial use of AI to augment 
medical decision making in psychiatry.
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Introduction

Artificial intelligence (AI) is presented today as a trans-
formative technology in the delivery of healthcare that will 
improve the quality of care and increase physician efficiency. 
Amid the promise and excitement, there is little focus on 

realistic expectations for the time and effort required for the 
successful adaptation of new technology. In 1987, Nobel 
prize winning economist Robert Solow observed, “You can 
see the computer age everywhere but in the productivity 
statistics” [1]. This productivity paradox, a delay of years 
or even decades between the adoption of a new technology  
and productivity increases, has been found across all eco-
nomic sectors [2]. The productivity paradox after invest-
ment in computer technology was repeatedly detected in the 
healthcare sector [3–5]. Successful adaption of any major 
technology requires complementary investment in process 
engineering, organizational changes, and widespread train-
ing on new skills and techniques, before there is an increase 
in productivity [2, 6].

In contrast to the high expectations for AI in medicine, 
the widespread adoption of AI products is associated with  
a similar productivity paradox [6, 7]. For example, the USA 
productivity growth from 2005 to 2019 was half of that from 
1995 to 2004 [6, 7]. No amount of enthusiasm can overcome 
the difficulties in deploying new technology in any industry, 
especially medicine. The many unique and difficult issues 
involved in the delivery of healthcare will delay productivity 
increases with the implementation of AI technology.

The purpose of this narrative review is to discuss major 
challenges to successfully implementing AI in clinical 
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practice, with a focus on psychiatry. The issues relate to 
the maturity of AI technology, physician attitudes toward 
and knowledge of technology, workflow impacts, ongoing 
organizational support, patient safety, and problems of treat-
ing mental illness.

What AI is and is Not

AI is often promoted as the solution for many problems. 
Despite this assertion, the current AI technology does not 
possess human general intelligence, high-level reasoning, 
common sense, or the superhuman intelligence of science 
fiction [8–10]. Current AI technology is made possible by 
the massive databases available from the continuous crea-
tion and collection of data, including numbers, text, video,  
and audio, from diverse, interconnected computers and 
smart, everyday devices embedded with computing tech-
nology. Commercial AI products do not involve high-level 
reasoning or thought, but typically provide services based 
on large datasets that may augment human intelligence and 
decision making [8, 11•]. For example, after human evalua-
tion, results from a search engine result may augment knowl-
edge, or a spell checker may improve a document. In the 
commercial world, business models using AI tie decisions 
to large-scale datasets and focus on profits. The product rec-
ommender system used by Amazon is one example [12]. A 
profitable AI model with known errors may be acceptable  
to the corporate decision makers, regardless of inconvenience  
or costs to some customers [13, 14].

Most AI is based on machine learning (ML), including 
in medicine. ML blends concepts from many disciplines 
including computer science, statistics, and linguistics and 
includes many subsets such as deep learning [11•, 15–17]. 
ML algorithms use large training datasets to determine the 
best model for predicting an outcome, but the model itself 
remains an opaque “black box” [18–20]. ML has had the 
greatest success in situations with a very large signal-to-
noise ratio (few data errors), such as visual or voice pattern 
recognition, or games with concrete rules [10, 20]. In con-
trast to ML, traditional statistical methods can be success-
fully estimated using both large and small datasets, but the 
model variables must be specified in advance. The focus 
of traditional statistical methods such as logistic regression 
is on understanding the relationships between independent 
data variables and the outcome or dependent variable. One 
example is using hypothesis testing to evaluate outcomes 
of controlled, clinical trials [21]. However, vast amounts of  
diverse data are increasingly available in medicine, includ-
ing provider data from EHR, imaging, and genomics; 
patient data from Internet, smartphone and wearable activi-
ties, and data from non-medical sources such as govern-
ment agencies [22, 23]. ML offers new approaches to the 

practice of psychiatry to analyze the massive datasets for 
prediction of the diagnosis, treatment selection, and illness  
course [24–26].

Maturity of AI Technology

The productivity paradox is related to the maturity of AI 
technology. When considering the introduction of AI in a 
safety–critical setting such as patient care, it is important 
to appreciate the current state of maturity of AI technology 
[27]. The technology readiness level (TRL) scale was devel-
oped by NASA in the 1970s to evaluate technical maturity, 
and has evolved to contain 9 levels [28]. The TRL scale 
produces a consistent measure to monitor progress in the 
development of new technology, promotes testing and veri-
fication to assess maturity, and provides assurance that the 
technology will function as intended [28, 29]. In the TRL 
scale, levels 1–4 refer to basic research in the laboratory, 
levels 5–6 to demonstrating the technology in a representa-
tive environment, and levels 7–9 to testing, validation, and 
successful deployment in an operational environment [28, 
29]. The TRL scale is widely used internationally by govern-
ments and diverse industries [30].

The TRL scale was recently customized for rating the 
maturity of ML projects in a clinical setting, with TRL lev-
els 3–4 referring to model prototyping and development 
and level 5 referring to model validation on other than the 
training population [31]. In an evaluation of 172 studies in 
intensive care medicine using ML, 160 (93%) scored a TRL 
level of 4 or below, with none successfully integrated into 
routine clinical care at level 9 [31]. In another evaluation of 
494 studies in intensive care medicine using AI, 441 stud-
ies (89.3%) scored level 4 or below, 35 (7.1%) at level 5, 
with none successfully integrated into routine clinical care at 
level 9 [32•]. Technical maturity is very difficult to achieve 
for a new technology. The distance between academic dis-
covery and successful commercialization is referred to as 
the “valley of death” [33–35]. The failure to advance the 
technology typically occurs between TRL levels 4–7, a stage 
often viewed as too applied for academia and too risky for 
commercial funding.

Recent Clinical Experiences Suggest AI 
Technology is Not Mature

Although there have been successes using AI in medicine, 
it is not widely deployed in routine clinical practice. There 
have also been unexpected results, errors, and failures using 
AI algorithms in many fields including medicine, as funda-
mental technological properties are being learned. AI image 
detection algorithms are routinely described as fragile and 
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brittle since very small changes to the data may result in 
incorrect labels [27, 36], as demonstrated by a change to 
just 2% of pixels in an image [37], and even after a one pixel 
attack [38]. AI image detection algorithms may incorrectly 
learn to include confounding variables, such as the label 
“PORTABLE” from a chest X-ray machine when diagnosing 
pneumonia [39], a ruler present in an image when diagnos-
ing malignant skin cancer [40, 41], the scanner model and 
brand, and orders marked “urgent” when diagnosing a hip 
fracture [42], and the chest tube used for treatment when 
identifying a pneumothorax [43]. The inclusion of confound-
ing variables, often not clinical, may limit generalization, 
lead to incorrect findings, and emphasize the need to further 
understand and validate AI algorithms.

Automated speech recognition is impacted by individual 
accents, by historical and cultural stereotypes, and a lack of 
diversity in ML training data that results in disparities and 
biases by race and for non-native English speakers [44–47]. 
Racial bias was found in automated measurements of speech 
coherence designed to identify thought disorders [48, 49]. 
The amount of environmental noise including indoor back-
ground conversations decreases the reliability of speech rec-
ognition systems [50, 51]. A review of speech recognition 
for clinical documentation across specialties found the word 
error rate ranged from 7.4 to 38.7%, and the percentage of 
documents with errors ranged from 4.8 to 71% [52]. In an 
analysis of notes generated by speech recognition dictated by  
emergency department physicians, 71% contained errors and 
15% of errors were potentially critical [53]. Conversational 
clinical speech recognition is even more complex [54], with 
estimates of word error rates using 7 commercial products 
ranging between 34 and 65% [55]. In a psychotherapy set-
ting, the word error rate in psychiatrist identified harm-
related sentences using a commercial product was 34% [56]. 
Many challenges and biases remain that impact the safe use  
of speech recognition in clinical practice.

The most advanced use of medical AI is in radiology with 
over 150 products for radiology containing AI algorithms 
cleared for use by the FDA [57]. Additionally, many sites 
use locally developed rather than commercial AI algorithms 
[58]. However, systematic reviews of medical imaging 
studies found little evidence that AI-based CDS improved 
clinician diagnostic performance [59], and there are few 
randomized and prospective trials behind AI claims [60]. 
In a 2020 survey from the American College of Radiolo-
gists with 1427 respondents, about 30% were using AI in 
clinical practice, but 94% of these rated the performance of 
AI as inconsistent [58]. The ECRI 2022 Top Ten Technol-
ogy Hazards List includes AI-based image reconstruction, 
which can distort images reconstructed from the raw data 
obtained during MRI, CT, or other scans [61–63]. In addi-
tion to complex technical issues related to radiation dose, 
image capture, and reconstruction, radiology faces the same 

AI related problems found throughout medicine including 
unrepresentative and biased training data, workflow changes, 
productivity impacts, lack of external validation and valida-
tion standards, and performance deterioration over time [58, 
64, 65]. A review of 62 studies to detect COVID-19 from 
chest X-rays and computed tomography images concluded 
that none were ready for clinical use due to methodological 
flaws and/or underlying biases [66].

Impediments to Maturity

There are impediments to the maturity of AI technology for 
routine use in clinical medicine that need to be recognized 
and directly addressed. Some of the key issues are briefly 
described.

Data Quality

The success of an AI algorithm is tied to the training data 
[67]. EHR and claim data were not developed for medical 
research, and there are many data quality issues related to 
missing data, inaccuracy, coding errors, biases, timeliness, 
redundancies, types of healthcare facilities, provenance or 
ownership trails, and lack of interoperability between vendor 
products [22, 68, 69]. Various factors contribute to the biases 
in EHR data. These include a lack of patient diversity, miss-
ing or discordant data on race and ethnicity, confounding 
medical interventions, oversampling of the sickest, fractured 
care across multiple providers, loss to follow-up, divergent 
processes within healthcare systems, measurement errors, 
and differences between recommended treatments in high 
versus low-resource settings [70–78].

There are special data quality concerns for psychiatry. 
Behavioral health related data are often missing or inaccu-
rate in the EHR, including diagnoses, visits, and hospitali-
zations [79]. For example, studies have reported discrepan-
cies and missing diagnoses in the EHR for PTSD [80–82] 
and a lack of documentation of suicidal ideation or attempts 
[83]. Stigmatizing symptoms may be underreported by the 
patient, and symptoms and diagnoses intentionally omitted 
by the physician [78, 82, 84, 85]. In large studies in the USA, 
27–60% of patients prescribed psychotropic medications 
did not have a psychiatric diagnosis [86–89]. The transition 
from ICD-9-CM to ICD-10-CM in the USA in 2015 was 
associated with some coding changes, including reports of 
a decrease in the diagnosis of schizophrenia from 48 to 33 
per 100,000 [90], and an abrupt increase in hospital stays for 
opioid and alcohol abuse [91, 92]. The electronic transfer of 
health information after discharge from inpatient psychiatric 
units occurs less often than from other areas of the hospital 
[93]. In an international review, less than half of studies 
in mental health settings reported implementing an EHR 
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[94]. Additionally, many people seek help for mental health 
problems in non-medical settings that are not integrated into 
the EHR [95]. The data quality issues and biases in the EHR  
contribute to the substantial challenges and risks for develop-
ing a ML algorithm for the prediction of suicide attempts 
and deaths [96, 97].

Public databases are an important resource for ML 
research. However, using a database published for one task 
to train algorithms for a different task (“off-label” use) 
can lead to biased results [98]. As an example, the use of 
reconstructed and processed MRI images from public data-
bases to generate raw MRI data to train image recognition 
algorithms can result in artificial improvement in algorithm 
performance of 25 to 48% [98]. This is due to the implicit 
filtering and smoothing of the reconstructed MRI image data 
that is used to recreate the raw image data.

Dataset Shift

When an AI algorithm is deployed in a setting where the 
production data differs from the training data, the algorithm 
often does not perform well. This is referred to as dataset 
shift [99•, 100, 101]. Dataset shift may be the result of a 
wide range of differences between the training dataset and 
the production population, including population demo-
graphics, treatments available, standard of care, measure-
ment technology, practice settings, disease classification, 
and disease prevalence. Since healthcare practices change 
over time, temporal dataset shifts occur, and the size of the 
shifts vary with the clinical outcome being predicted [102, 
103]. Dataset shifts also occur after changing from one EHR 
system to another [104].

For example, gender imbalance in training datasets led 
to decreased performance for diagnosis of thoracic diseases 
from X-ray images for the underrepresented gender [105]. 
The diagnostic performance of a ML algorithm to detect 
tuberculosis that was developed using a chest X-ray train-
ing dataset of one population fell when used with another 
population [106]. Population diversity in age, sex, and brain 
scanning site substantially affected the predictive accuracy 
of ML neuroimaging studies, including for autism spec-
trum disorder [107]. An algorithm to predict clinical orders 
by hospital admission diagnosis performed better when 
trained on a small amount of recent data (one month) than 
when trained on larger amounts of older data (12 months 
of 3-year-old data) due to changing practice patterns [108]. 
The performance of an ML algorithm to predict the risk of 
sepsis in ICU patients decreased over time, related to the 
shift from ICD-9 to ICD-10, and to hospital expansion that 
reshaped the population served [109]. AI algorithms to diag-
nose lesions in dermatology that were trained predominantly 
using white populations may underperform in patients with 
skin of color [110].

Dataset shift can also occur when a sensor in a measure-
ment device, such as a wearable or smartphone, is different 
from the sensor used to create the training data [111, 112]. 
The sensors embedded in wearables and smartphones dif-
fer between manufacturers and between makes and models 
from the same manufacturer, resulting in measurement inac-
curacies and inconsistencies [113–115]. Patient behaviors 
such as placement of the wearable may also contribute to 
measurement inconsistencies and dataset shifts [111, 112].

Before AI can be safely integrated into clinical practice, 
the many difficult issues related to data quality, EHR, dataset 
shift, and public databases must be addressed.

Physician Attitudes About AI

The success of AI technology in clinical settings depends on 
the physicians that use it.

Physician attitudes towards the use of AI in clinical medi-
cine are generally positive, although there are concerns  
about ethical and legal issues, and perspectives often vary  
by specialty [116]. In an international survey of 791 psychia-
trists, only 17% thought a computer could replace a human 
in providing empathetic care, while 75% thought a com-
puter could replace a human in documentation tasks [117]. 
The overall acceptance of several new technologies by 515 
psychiatrists in France was moderate, with 79.6% describ-
ing them as risky [118]. In a survey of 303 physicians of 
all specialties in Germany, the overall attitude toward AI in 
medicine was positive, but only 20.5% thought AI would 
help with the diagnosis of psychiatric disease [119]. The 
dominant perspective held by 720 general practitioners in 
the UK was that AI would have a limited impact on primary 
care, with the major benefits due to reducing administra-
tive burdens [120]. Of 121 dermatologists in the USA, in 
a survey about AI screening tools, 49 (42%) were worried 
about human deskilling [121]. In a survey of 100 physicians 
in all specialties in the USA, although over 70% thought 
chatbots could assist patients with administrative tasks such 
as scheduling appointments and locating clinics, over 70% 
also thought that chatbots cannot effectively provide care for 
all patient needs or display emotion and could be a risk to 
patients due to incorrect self-diagnosis [122].

Several studies noted that most physicians lack education 
in AI. Although 71% of 632 radiologists, dermatologists, 
and ophthalmologists in Australia and New Zealand felt AI 
would improve their field, 80.9% had not used AI in clinical 
practice and 86.2% thought there was a need for improved 
education and guidelines to prepare for the introduction of 
AI [123]. In a survey of 699 physicians and medical students 
in South Korea, while 83.4% thought AI would be useful in 
medicine, only 6% said they had good familiarity with AI 
[124]. A survey of 210 postgraduate trainee physicians in 
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the UK rated the current level of AI training as insufficient 
[125]. In an international survey of 209 psychiatrists, only 
23.9% had any formal training in technology [126]. Physi-
cians also have varied levels of formal training and knowl-
edge of statistics [127, 128]. These survey responses high-
light the importance of quality education in AI for clinical 
medicine. Physicians will need to understand how to criti-
cally assess the capabilities, benefits, limitations, and risks 
of AI in clinical practice, and AI training must be integrated 
across the wide range of medical education [67, 129, 130]. 
Education must also emphasize that the physician remains 
the primary decision maker, and the ongoing importance of 
human intelligence and skills in patient care [68, 131].

Safety Challenges

There are many reported safety challenges that need to be 
understood and addressed before AI can be routinely used 
in a clinical setting. The safety issues with AI are especially 
troubling, given the disconnect between the exuberant claims 
and the current maturity of AI technology.

Automation Bias and Deskilling

The interaction of humans and an automated decision sup-
port tool often leads to automation bias. Automation bias 
occurs when a user attributes more authority to an automated 
tool than to other sources of advice [132, 133]. This can 
result in the user following incorrect advice despite con-
tradictory evidence or prior training, and the user failing to 
act without explicit prompting. There are examples of auto-
mation bias across medicine including for interpretation of 
electrocardiograms [134, 135], e-prescribing [136], whole 
slide image classification in pathology [137], and diagnosis 
of skin cancers [138]. Although the least experienced physi-
cians may be most susceptible to automation bias [134], a 
major concern is that incorrect decision support misleads 
clinicians of all experience levels [134, 135, 138]. For 
example, incorrect AI has reduced the accuracy of expert 
physicians in the diagnosis of skin cancers [138], and the 
histopathologic classification of liver cancer [137]. To reach 
the potential for AI products to improve decision making  
in clinical practice, the vulnerability of even experienced 
physicians to faulty AI must be understood and addressed.

A possible long-term consequence of the overreliance on 
technology is deskilling of the physician workforce, due to a 
loss of individual skills and a reduction in skill development 
[139–142]. This is of particular concern given the frequently 
promoted perspective that AI is inherently exceptional, will 
outperform other technologies, and will outperform physi-
cians [143, 144]. Another risk of overreliance on technology 
is that even when a failure is detected, some users do not 

want to proceed without the AI system [145]. Implemen-
tation plans for AI in medicine should include long-term 
efforts to reduce deskilling of physicians and other medical 
personnel.

Black‑box Opacity

The black-box nature of AI algorithms poses a major obsta-
cle for routine use in clinical medicine. Beyond the many 
technical issues, the opacity of AI algorithms is often due 
to intentional secrecy by private commercial organizations 
[146, 147]. Modern AI techniques were originally devel-
oped for low risk decisions such as online advertising and 
search engines [148]. In sharp contrast, where patient safety 
is at risk in medicine, physicians need to understand why 
an AI algorithm made a prediction [149]. A lack of inter-
pretability will undermine trust in an AI algorithm, and the 
explanations must be presented to physicians in a manner 
that is clearly understandable. There are many ongoing 
efforts to provide interpretability of AI algorithms, with 
research often focused on healthcare. Although there are 
various approaches to provide interpretability, each method 
currently has important technical challenges and limita-
tions [149–154]. Another problem is that explanations may 
contribute to inappropriate trust in the capability of an AI 
algorithm [155]. Due to automation bias, even incorrect 
explanations may increase trust in AI algorithms [156]. In a 
study presenting patient vignettes to 220 clinicians including  
195 psychiatrists, ML recommendations did not improve 
selection of an antidepressant drug, and incorrect ML rec-
ommendations paired with easily understood explanations 
decreased selection accuracy [157•]. Additionally, physi-
cians may not understand the limitations of the explana-
tory methods with respect to individual treatment decisions 
[150]. System design for the safe use of AI in medicine must  
focus on improving human–computer interactions [158].

Unanticipated Safety Challenges

Complex automated systems typically fail due to the unan-
ticipated and unintended consequences of the design, even 
if the nominal purpose is achieved [159]. Adding any new 
technology will change the workflow, often profoundly, 
including the creation of new failure paths [68]. In medi-
cine, a failing AI system can result in entirely new and 
unexpected types of safety hazards that physicians have not 
seen previously [160•]. Some failure modes for AI systems 
may be less obvious and harder to detect than those of con-
ventional systems [161]. The study of AI system failures 
should also include identification of the worst possible 
mistake [162]. Any AI system that automatically initiates 
actions must provide explicit human alerting and override 
abilities [160•]. Significant human oversight of AI systems 
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is especially important in safety–critical situations [27, 163]. 
When unexpected automation errors occur, a human must 
solve the problem [68, 164]. The more complex the auto-
mated system, the more essential the role of humans as the 
exception handlers, and the greater the negative impacts of 
deskilling. The safety of any software system, including AI, 
must be thoroughly evaluated in the specific environment, 
workflow, and context in which it is used [165].

Validation Issues

When using an AI product, the physician relies on the vali-
dation and regulatory approval process to confirm the prod-
uct works as promised, and to understand the limitations and 
risks. There are many challenges to validating AI algorithms 
including data quality and dataset shift issues, brittleness 
and fragility of algorithms, black-box opacity, human fac-
tors, overall system context and complexity, and software 
errors [166–168]. The acceptable level of accuracy for the 
AI algorithm must be determined, given the intended use. 
The inappropriate choice of internal validation method can 
artificially inflate estimates of ML algorithm performance 
[169]. Notably, it is more difficult to validate AI algorithms 
than traditional statistical models since the results may 
change over time as the algorithm learns [167]. The repro-
ducibility of ML in healthcare compares poorly to ML used 
in other fields, as only 23% of over 200 studies between 2017 
and 2019 used multiple datasets to establish results [170]. 
Additionally, multiple testing approaches are required even  
for high performing algorithms, since unexpected and  
potentially harmful errors may appear when using different 
methodologies [162, 171].

Although the number of approved AI-based medical 
devices has increased in the USA and EU in recent years 
[172], the current state of USA regulation of medical AI 
demonstrates that many problems remain [173]. From a 
regulatory perspective, traditional medical device regula-
tion was not designed for adaptive AI/ML technologies, and 
continual learning poses many challenges [174, 175]. The 
guidelines for regulatory approval of medical AI devices are 
not finalized in either the USA or EU, and new regulatory 
frameworks are being proposed [174, 176–178]. Post-market 
surveillance of approved medical AI devices is also needed 
[178, 179]. The validation requirements for AI algorithms 
that fall outside of regulatory frameworks, such as hospital 
developed AI, also need clarification [180].

Validation Examples from Radiology

The regulatory problems are readily apparent in recent stud-
ies of validated imaging products in the USA and Europe. 
Recent studies of FDA approved AI algorithms in medical 

devices based on publicly available summary information 
emphasize various validation problems. Of 130 medical 
devices with AI algorithms approved between 2015 and 
2020, 126 devices were evaluated by the FDA using only 
retrospective studies, and 59 (45%) did not include the sam-
ple size [181]. Of the 130 approved devices, only 37 (28%) 
reported evaluation at more than one site [181]. In another 
study of 118 FDA approved AI algorithms across imag-
ing modalities approved between 2008 and 2021, only 66 
reported the sample size, with 45/66 (68%) having a sample  
size less than 500 patients [182]. Most FDA summary  
documents available to the public do not provide the demo-
graphics or details of the sample studied [182]. Of 100 Euro-
pean Conformity marked AI radiology products, of which  
51 were also cleared by the FDA, only 36 had peer-reviewed 
evidence of efficacy [183•]. Of 237 studies obtained for the 
100 products, 192 were retrospective, and only 71/237 (30%) 
included multicenter data [183•]. With considerable hetero-
geneity in deployment and pricing, most products brought 
to market in recent years, and with clinical impacts unclear, 
the authors concluded that “artificial intelligence in radiol-
ogy is still in its infancy” [183•]. Validation and reporting 
standards must be improved to increase safety, and physician 
product knowledge and trust before AI is routinely used in 
clinical medicine.

Discussion

The promise of AI in medicine is real, but the current techni-
cal maturity of AI is low. AI is not routinely used in clinical 
practice. In the USA, knowledge of AI-related skills is not 
a standard requirement for employment in the healthcare 
field [184]. Between 2015 and 2018, only 1 in 1250 online 
job postings for skilled jobs in hospitals required some AI-
related skills, lower than in other skilled industries [184]. It  
is important to have realistic expectations given the wide 
ranging problems confronting the successful adoption of AI 
in routine clinical medicine. The many complex technical, 
validation, regulatory, implementation, maintenance, and 
monitoring issues need to be solved carefully and rigorously. 
There needs to be a strong emphasis on the human–computer 
interface, understanding how the introduction of AI prod-
ucts will modify the workflow in specific clinical settings, 
and training for unexpected safety hazards. Physicians need 
education in AI fundamentals, and should be involved in the  
entire process of AI software development, implementation, 
training, and ongoing monitoring throughout the life of the 
system. Additionally, psychiatrists should be involved in 
understanding the behavioral issues related to automation 
bias and deskilling in medicine, as well as in the develop-
ment of AI technology that predicts human behavior [185].
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Many challenges for physicians to successfully augment 
decision making with AI are unique to medicine. Physicians 
must understand and trust AI sufficiently to incorporate the 
advice in the treatment of individual patients. The physician 
must interpret the AI prediction given the overall clinical 
context, including patient-specific characteristics, comor-
bid medical conditions, unique medication regimens, and 
socioeconomic issues. Today, the physician hears promises  
of accuracy of AI tools that may not be validated and  
sees explanations of AI tools that may not be clear. For 
example, the performance measures used to describe an ML  
algorithm may hide the uncertainty in the predictions [186]. 
This is especially relevant in psychiatry given the frequent 
use of categorical, probabilistic diagnoses in training data 
[186]. Another concern is that AI output may be plausible 
but incorrect and potentially dangerous for an individual 
patient [161]. Patients frequently have comorbid illnesses, 
yet the separate predictive algorithms being developed for 
each comorbid condition could provide conflicting advice 
[187]. The impacts of AI on the humanistic aspects of medi-
cine, including the doctor-patient relationship, patient trust, 
and communications, need to be understood [188, 189]. AI 
technologies will become an important source of medical 
knowledge for physicians, but human inductive reasoning, 
situational awareness, and creative problem solving will 
remain fundamental for individual patient care, as exempli-
fied by psychiatry [68, 163]. The successful deployment of 
AI in clinical medicine will require coordinated and ongoing 
efforts of physicians working with professionals with a wide 
range of skills from a number of disciplines.

Limitations

There are many limitations to this review. Technical details 
about the problems noted in AI software development, vali-
dation, and interpretability were not discussed. The risks of 
cyber attacks on AI systems, including ML vulnerability to 
adversarial attacks [190, 191], and the difficulty in detect-
ing and tracing software errors were not mentioned [165]. 
Approaches to select appropriate tasks for AI in medicine, 
enhance integration of AI tools into EHR and other con-
nected hospital systems, improve data quality, or for ongoing 
safety monitoring were not discussed. The wide range of col-
laborative skills needed for successful AI development and 
implementation were not included [158]. The many ethical 
[192, 193] and legal issues related to AI including fairness 
and inclusion, privacy, physician liability, algorithm failure, 
and vendor contract terms were not discussed [194, 195]. 
Patient perspectives of the use of AI in clinical medicine 
[196, 197], and the economic impacts of implementing AI 
in healthcare were not mentioned [198]. Finally, detailed 
recommendations to address the many noted problems are 
outside the scope of this review.

Conclusion

AI for clinical medicine has enormous potential but lacks 
technical maturity. The safe and effective implementation of 
AI technology to augment medical decision making poses 
wide-ranging challenges involving technical and human fac-
tors, regulatory issues, and safety risks. These challenges 
must be recognized and methodically addressed to maximize 
the benefits from AI technology in psychiatry in the future. 
It is important to set reasonable expectations. The solutions 
are complex and will take time to discover, develop, validate, 
and implement, but will lead to the safe and beneficial use 
of AI to augment medical decision making in psychiatry.
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