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1 Introduction

When the anomalous magnetic moment of the muon, (g − 2)µ, was measured at BNL

several years ago [1], it showed a discrepancy with the Standard Model (SM) expectation

that has since been widely interpreted as a hint for new physics not far from the electroweak

symmetry-breaking (EWSB) scale. After taking into account a recent update [2] of the

lowest-order hadronic contributions to the SM calculation, the discrepancy, δ (g − 2)µ, is

estimated to be at the level of ∼ 3.5σ: δ (g − 2)µ = (27.4± 7.6)× 10−10. (A second recent

review of the hadronic vacuum polarization contributions and uncertainties [3] yields an

even more convincing δ (g − 2)µ = (31.3± 7.7)× 10−10.)

While the interest in this anomaly never really went away, it is bound to receive a

boost by the start of the new Muon g-2 experiment at Fermilab [4, 5], which will improve

the statistical precision of the measurement by a factor of four or so with respect to BNL.

Additionally, just a few years after the Fermilab experiment, (g − 2)µ will also be mea-

sured at J-PARC [6–10], which is expected to reach a comparable sensitivity even if the

experimental setup is different.

From the theory standpoint, the anomaly can be accommodated in many scenarios

beyond the Standard Model (BSM) (see, e.g., [11] for a comprehensive review). Early

on, the impact of new physics 1-loop contributions to δ (g − 2)µ [12, 13] was investigated
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predominantly in the framework of supersymmetry [14–24], but the consequences of a

positive measurement for more generic models were also explored [25, 26]. Recently, among

the large number of studies appearing every year on the topic, ref. [27] and refs. [28, 29] have

adopted a systematic approach based on simplified models instead of focusing on specific

constructions. Simplified models are characterized by a limited number of free parameters

and classified according to the gauge quantum numbers of the particles introduced and the

Lorentz structure of their interactions, and can be confronted with a variety of experimental

information, like LEP/LHC constraints in [27] or flavor observables in [29].

In this paper, extending the approach of [27–29], we try to answer the following ques-

tion: in case a positive measurement of δ (g − 2)µ is obtained with large significance at

Fermilab, what information can we infer on the couplings, masses, and quantum numbers

of the new particles involved in the process, provided we require that the same physics also

yields the relic density of dark matter in the Universe. As the nature of dark matter consti-

tutes one of the greatest mysteries in contemporary particle physics, we think it is enticing

to entertain the idea that a positive measurement at Fermilab and J-PARC could open a

window into the nature of the dark sector, possibly in conjunction with other experimental

signatures. In fact, we will show that requiring the same physics to be responsible for the

(g − 2)µ anomaly and dark matter leads to strong bounds on the allowed parameter space

and introduces a series of complementary signatures, in particular at the high-luminosity

LHC, in future electroweak precision experiments and, to a lesser extent, in dark matter

direct detection searches.

Obviously, this complementary approach is not original. It is invoked for instance

in supersymmetry, where neutralinos, sleptons, and charginos often provide at the same

time a good fit to δ (g − 2)µ and the correct relic abundance. It has also been recently

adopted for other BSM models [30], and there exists at least one previous study of possible

complementary signatures for (g − 2)µ and dark matter in simplified models based on a

minimal set of assumptions [31].

Like ref. [31], we define in this paper a set of minimal extensions of the SM that provide

a viable weakly interactive massive particle (WIMP) dark matter candidate and have the

potential to give a positive signal in the upcoming (g− 2)µ experiments. Unlike that work,

however, we will not employ the effective field theory approach, nor limit ourselves to SM

singlets in the interactions with the muons. Rather, inspired by ref. [27], we consider a set

of scenarios in which both the dark matter and the BSM lepton mediator can transform

non-trivially under the SU(2) gauge group. We will also always adopt the relic abundance

as an important constraint on the parameter space.

The models we construct are based on the following requirements:

• The dark matter interacts with the muons through renormalizable couplings

• Interactions are CP conserving and invariant under the SM gauge group, SU(2)×U(1)

• Each model satisfies the constraints from perturbativity and unitarity

• The measurement of the relic abundance is an active constraint on the parameter

space.
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We do not consider in this paper dark matter lighter than the mass of the muon so that,

to make it stable, we introduce an additional discrete symmetry, Z2, under which the dark

matter is odd and the SM is even. Also note that the dark matter must be leptophilic to

evade the stringent current bounds from direct detection experiments, and for this reason

we neglect dark-matter interactions with quarks.

The first of the requirements listed above limits the allowed interactions to fermion-

(pseudo)scalar-fermion and fermion-(axial)vector-fermion types. As one of the partici-

pating fermions is necessarily the muon, the discrete symmetry forces us to additionally

introduce Z2-odd colorless fermions, which must be vector-like (VL) to evade the bounds

from electroweak precision observables (EWPOs) and to not introduce gauge anomalies.

Note that all our assumptions are trivially satisfied by Yukawa-type interactions

fermion-(pseudo)scalar-fermion, once the appropriate scalar potential is spelled out.

Conversely, interactions involving (axial)vector particles require additional assumptions,

namely the definition of extra dark gauge groups and charges, as well as a careful treat-

ment of lepton-flavor violating processes. For this reason, in this paper we limit ourselves

to discussing fermion-(pseudo)scalar-fermion interactions only.

For the sake of simplicity, and unlike refs. [27, 31], we also do not require universal

Yukawa interactions of the BSM sector with the SM leptons, which could give extra con-

straints from LEP measurements. We rather assume that the new scalars and fermions

couple exclusively to the SM muons. Lepton-flavor violating processes are obviously absent

in such a setup. This assumption may seem somewhat ad hoc, but it allows us to focus

on effects arising in the muon sector only, without imposing additional model-dependent

symmetries aimed at enforcing Minimal Flavor Violation. It can also perhaps be seen as

realistic in light of the recent flavor anomalies at LHCb [32], which seem to point to the

existence of lepton-flavor non-universality.

The paper is organized as follows. In section 2 we briefly review the expressions of the

1-loop new physics contributions to (g − 2)µ in the case of scalar couplings. In section 3

we introduce the Lagrangians of our simplified models and describe their couplings to the

muons. In section 4 we review the constraints we apply, and in section 5 we present and

extensively discuss the results of our numerical analyses. We finally summarize our findings

and conclude in section 6.

2 Muon g − 2 contributions from scalar interactions

The generic 1-loop contribution to the muon anomalous magnetic moment involving the

Z2-odd sector is schematically shown in figure 1, where at least one of the particles in

the loop must be electrically charged, and there is an implied photon line attached to the

charged propagator. Interaction terms in the Lagrangian of the models we consider are

given by

L ⊃ (gs ψ̄EψµφS + igp ψ̄Eγ
5ψµφS + h.c.)−mE ψ̄EψE − V (φS), (2.1)

in terms of a Yukawa coupling gs (gp) of the muon to a (pseudo)scalar field S — whose

dynamics is described by an appropriate scalar potential V (φS) — and a generic heavy

fermion E of mass mE .
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Figure 1. The 1-loop contribution to δ (g − 2)µ in the presence of a new scalar field S and a new

lepton E. A photon line attached to whichever particle is electrically charged is implied.

The specific value of (g−2)µ depends on the electric charge and spin quantum numbers

of the particles running in the loop. Considering, for example, a charged fermion and a

neutral scalar, one gets (see, e.g., [11, 29] for a review of the calculation)

δ (g − 2)µ =
m2

µ

8π2m2
S

[(
|gs|2 + |gp|2

) ∫ 1

0
dx

x2(1− x)

(1− x)(1− λ2x) + ǫ2λ2x

+ ǫ
(
|gs|2 − |gp|2

) ∫ 1

0
dx

x2

(1− x)(1− λ2x) + ǫ2λ2x

]
, (2.2)

in terms of the mass ratios of the new particles to the muon, ǫ = mE/mµ, λ = mµ/mS .

Note that the chiral structure of the underlying model plays a crucial role in determin-

ing the size of (g−2)µ. If one sets gp = 0, the dominant contribution in eq. (2.2) arises from

the second term, which is enhanced by a large factor ǫ. On the other hand, the presence

of a non-zero pseudoscalar coupling will reduce the size of this term, and in the case when

|gs| = |gp| the only remaining contribution is the one in the first line of eq. (2.2).

This well-known fact is often used to obtain, by simple inspection of the Lagrangian,

back-of-the-envelope estimates of how well a specific model can perform with respect to

(g − 2)µ. The prescription is best recast in terms of cL and cR, the couplings of the new

physics to the left- and right-chiral Weyl components of the muon. One can explicitly write

the scalar and pseudoscalar coupling of eq. (2.1) as gs = (cR+cL)/2 and igp = (cR−cL)/2,
and the integrals can be easily calculated for ǫλ fixed in the approximation λ ≪ 1. By

defining ǫ2λ2 = m2
E/m

2
S ≡ r, one gets

∫ 1

0
dx

x2(1− x)

1− x+ rx
=

2 + 3r − 6r2 + r3 + 6r ln r

6 (r − 1)4
≡ F1(r) (2.3)

∫ 1

0
dx

x2

1− x+ rx
=

3− 4r + r2 + 2 ln r

2 (r − 1)3
≡ F2(r) , (2.4)

which lead to the well known formula

δ (g − 2)µ =
1

16π2

∑

S0,E±

[
m2

µ

m2
S

(
|cL|2 + |cR|2

)
F1(r) + 2

mµmE

m2
S

ℜ(cLc∗R)F2(r)

]
, (2.5)

where we have generalized eq. (2.2) to include all possible charged fermion and neutral

scalar states coupling to the muon.
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Equation (2.5) expresses the fact that much larger values of (g − 2)µ can be expected

if the new physics cross-couples to both chiral states of the muon, providing a chirality-flip

term that is enhanced proportionally to the mass of the new fermions. Note, incidentally,

that if ℜ(cLc∗R) is positive, δ (g − 2)µ is positive.

One can follow a similar procedure to derive the (g−2)µ formula for the case of charged

scalars and neutral fermions in the loop, obtaining

δ (g − 2)µ =
1

16π2

∑

S±,E0

[
−
m2

µ

m2
S

(
|cL|2 + |cR|2

)
G1(r) + 2

mµmE

m2
S

ℜ(cLc∗R)G2(r)

]
, (2.6)

where

G1(r) ≡
1− 6r + 3r2 + 2r3 − 6r2 ln r

6(r − 1)4
(2.7)

G2(r) ≡
−1 + r2 − 2r ln r

(r − 1)3
. (2.8)

This contribution is negative when either cL or cR are equal zero, but can become positive

for ℜ(cLc∗R) 6= 0.

Finally we will also need the contribution to (g − 2)µ from a doubly charged fermion

and a charged scalar in the loop. In this work we will just use the one for the cL coupling,

which reads [27]

δ (g − 2)µ =
1

16π2

∑

S∓,E±±

(
m2

µ

m2
S

|cL|2H1(r)

)
, (2.9)

where H1(r) = 2F1(r) + G1(r).

3 Muophilic portal models

Before we introduce our simplified models for (g−2)µ and dark matter, we start by defining

the notation we adopt throughout the paper.

We indicate the SM Weyl spinor fields with lower-case letters, and the new Z2-odd

fields with capital letters. The quantum numbers of the leptons and Higgs boson of the

SM are

l : (1,2,−1/2) eR : (1,1,−1) φ : (1,2, 1/2), (3.1)

with respect to SU(3)×SU(2)×U(1). When written explicitly, the lepton doublet reads

l = (νL, eL)
T and the Higgs field is φ = [0, (v + h)/

√
2]T after EWSB. The Dirac fermion

of charge −1 is constructed as ψe = (eL, eR)
T , as usual.

For the SM muon Yukawa coupling we use the convention, in Weyl notation,

L ⊃ −yµ φ†l e∗R + h.c. (3.2)

As was discussed in section 1, we limit ourselves to considering CP conserving, renor-

malizable Yukawa interactions. We extend the SM particle content with new heavy scalar

fields and VL leptons, which provide generally safe extensions of the SM because they do
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not introduce gauge anomalies and they avoid the stringent bounds on chiral fermions from

LEP and SLC precision measurements. In the context of non-supersymmetric models, VL

leptons for the (g − 2)µ anomaly have also been considered in [25, 27, 30, 33–35].

We will next classify our models according to the transformation properties of the new

scalar and fermion fields under the SM gauge group.

3.1 Models with a real neutral scalar singlet

We begin with the simplest case, extending the SM by a singlet real scalar field,

s : (1,1, 0). (3.3)

For simplicity, we assume in this work that any new introduced scalar is inert, in the sense

that it does not develop a vacuum expectation value (vev).

The most general Z2-symmetric renormalizable scalar potential that includes mass

terms and quartic interactions for both the Higgs and the BSM scalar, as well as a portal

coupling between the two, takes the form

V = −µ2φ†φ+
λ

2
(φ†φ)2 +

µ2s
2
s2 +

λs
2
s4 + λ12s

2φ†φ , (3.4)

in terms of 5 free parameters: µ and λ, the SM mass and quartic coupling, µs, λs, and the

portal coupling λ12. The tree level mass of the BSM scalar is in this case given by

m2
s = µ2s + λ12v

2. (3.5)

The parameters of the scalar potential are constrained by theoretical requirements. In

order to guarantee that the electroweak vacuum is a global minimum, it is required that

µ2s + λ12 v
2 > 0. One also needs µ2s > 0, so that the direction v = 0, vs 6= 0 is not a

minimum and the scalar s remains inert. The latter also guarantees that the Z2 symmetry

is preserved in the electroweak broken phase. As a result, there is no mixing between the

new scalar and the SM Higgs. Vacuum stability, i.e. requiring that the potential is bounded

from below, requires λ > 0, λs > 0, and λ12 > −
√
λλs. Moreover, perturbative unitarity

bounds give λ < 4.2, λs < 4.2, and λ12 < 25 [36].

The scalar potential given in eq. (3.4) features well known dark matter properties

(see [37–42] for early papers exploring the Higgs portal). The WIMP is here the scalar s,

which efficiently annihilates in the early Universe through the interaction vertices depicted

in the first three diagrams of figure 2. However, it is also well known that the portal coupling

and dark matter mass are subject to strong bounds from direct detection searches, which,

after the most recent bound from XENON-1T [43] are considered, exclude the mass range

mDM = ms ≈ 10–800GeV if one imposes the relic density constraint. This is precisely

the mass range where the new scalar field and VL leptons can positively contribute to the

(g − 2)µ anomaly.

Interestingly, the presence of VL fermions opens up additional mechanisms for dark

matter annihilation, as shown in the last diagram on the right of figure 2. The limits from

direct detection searches can be then easily evaded, thanks to the leptophilic nature of the

– 6 –
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Figure 2. Starting from the left, the first 3 diagrams show the well-known scalar portal interactions

that can potentially lead to the correct dark matter relic abundance. The last diagram on the right

depicts the t-channel “bulk” mechanism via a new heavy fermion E.

interaction between the dark matter scalar and the SM. By borrowing a term often used in

supersymmetry, we will hence refer to this mechanism as the bulk. (See, e.g, refs. [44, 45]

for a definition of the bulk in supersymmetry, [46] in the context of simplified models,

and [30, 47] in relation to (g − 2)µ.)

We will see in what follows that, once the new fermions are introduced in the theory

to explain the (g − 2)µ anomaly, the bulk emerges in the vast majority of cases as the

favored mechanism for the dark matter relic density. However, we leave in our numerical

scans the portal parameters of the scalar potential free to float, as they are allowed by the

symmetries and can be constrained to small values case by case by the phenomenology.

Besides, this also allows us to investigate regions of the parameter space characterized by

a mixed bulk/portal mechanism for dark matter.

For the nature of the VL fermions, we consider all possibilities allowed by the SM

gauge symmetry:

Model 1. Fermion singlets. In the first class of models we add a pair of charged lepton

SU(2) singlets,

E : (1,1,−1), E′ : (1,1, 1), (3.6)

which are odd under Z2. We can write new muophilic Weyl terms in the Lagrangian,

L ⊃ −YS E e∗Rs−MEE
′E + h.c., (3.7)

in terms of a new Yukawa coupling to the second generation, YS , and a new VL mass, ME .

One can also construct a new Dirac spinor, ψ
Ẽ
= (E,E′∗)T , which leads to the Dirac-

type interaction

L ⊃ −YS ψ̄Ẽ
PRψe s+ h.c. , (3.8)

with PR = (1 + γ5)/2.

From eq. (3.8) one can immediately read off the scalar and pseudoscalar couplings of

eq. (2.1): gs = YS/2 and igp = YS/2. Alternatively, one can use the chiral formalism

defined before eq. (2.5) and get cL = 0, cR = YS , which can be then plugged in to calculate

δ (g − 2)µ. Since in this scenario the amplitude is not enhanced by a chirality-flip term

one expects to fit the (g − 2)µ anomaly either in the presence of large YS values, or with

relatively small mass for the new scalar and fermion particles.

– 7 –
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We subject Model 1, and all the models we define in the next paragraphs and sections,

to several constraints from different experiments, which we describe in detail in section 4.

This will allow us to systematically discriminate which region of the parameter space is

more likely to give a signature in future (g− 2)µ experiments, within the individual model

themselves and in relation to the others.

The constraints we consider in Model 1 are

• LHC 13TeV bounds from searches for leptons and missing ET [48, 49]

• LHC 13TeV mono-jet search bounds [50]

• EWPO constraints from the Z lineshape and asymmetry data at LEP and measure-

ments of the muon lifetime and W mass [51]

• Where applicable (portal couplings), direct detection constraints from LUX [52] and

XENON1T [43].

Model 2. Fermion doublets. One can instead add to the Lagrangian a VL pair of

SU(2) doublets,

L : (1,2,−1/2), L′ : (1, 2̄, 1/2), (3.9)

where we explicitly write the doublets as L = (N1, E1)
T and L′ = (N2, E2). The heavy

Dirac lepton of charge −1 is given, similarly to Model 1, by ψE = (E1, E
∗
2)

T , and there is

also a heavy Dirac neutrino, whose mass is at the tree level degenerate with the charged

lepton’s.

As before we write new muophilic Weyl terms,

L ⊃ −YD L′ls−MLL
′L+ h.c. (3.10)

or, explicitly,

L ⊃ −YD E2 eL s− YDN2 νL s+ h.c. , (3.11)

which lead to the same type of Dirac interaction with muons as in eq. (3.8):

L ⊃ −YD ψ̄EPLψe s+ h.c. , (3.12)

where PL = (1− γ5)/2. As before, one can read off gs = YD/2, −igp = YD/2, or cL = YD,

cR = 0. The effect on the calculation of (g − 2)µ ends up being the same as in Model 1.

Model 3. Fermion singlets and fermion doublets. The most straightforward way

of introducing a chirality-flip term in the (g − 2)µ calculation is letting the singlet and

doublet fermions of Model 1 and Model 2 mix with each other through the SM Higgs vev.

One can thus write down

L ⊃ −YS E e∗Rs− YD L
′ls− Ỹ1 φ

†LE′ − Ỹ2 L
′φE −MEE

′E −MLL
′L+ h.c. , (3.13)

where, in agreement with the SM and Z2 symmetries, we have introduced two additional

Yukawa couplings to the Higgs boson, Ỹ1 and Ỹ2.

– 8 –
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There are now two, charged, heavy Dirac leptons, and their mass matrix in the basis

{(E2, E
′)× (E1, E)T } is given by

MC =


ML

Ỹ2 v√
2

Ỹ1 v√
2
ME


 , (3.14)

and is diagonalized in the usual way by two unitary matrices U and V , with the convention

that diag(mEp
1
,mEp

2
) = U∗MCV

†.
For each heavy lepton, Ep

i=1,2, the product ciLc
i ∗
R depends on the mixing parameters:

ciLc
i ∗
R = −YDVi1 YSUi2

≈ YDYS
max(ML,ME)MC{ij} +min(ML,ME)MC{ji}

m2
Ep

j

−m2
Ep

i

∣∣
j 6=i

, (3.15)

where the second line of eq. (3.15) is given in terms of MC{12} = Ỹ2v/
√
2 and MC{21} =

Ỹ1v/
√
2. Note that ciLc

i ∗
R vanishes when both Ỹ1 and Ỹ2 are zero, thus reproducing the

limit of Models 1 and 2.

We subject Model 3 to the constraints described above for Model 1. Since the explicit

mixing terms of eq. (3.13) break chiral symmetry, we expect the constraints from EWPOs

to bite significantly into the parameter space that produces an enhancement in δ (g − 2)µ.

Note also that by introducing an additional source of chiral-symmetry breaking this terms

potentially induce large loop corrections to the muon mass. However, as was pointed out

in, e.g., [47] for the equivalent supersymmetric case, these first order corrections do not

depend on the cut-off scale and can be simply treated as a mild source of fine tuning, which

should be minimal after the constraints from EWPOs are taken into account.

3.2 Models with a complex neutral scalar singlet

We extend the models of section 3.1 by replacing the real scalar field of eq. (3.3) with a

complex scalar. We define S = (s+ia)/
√
2 , expressed in terms of 2 real degrees of freedom.

The Z2 symmetric scalar potential now reads,

V = −µ2φ†φ+ λ/2 (φ†φ)2 + µ2S/2 |S|2 + λS/2 |S|4 + λ12|S|2φ†φ
+ (µ′2S /2 S

2 + λ′S/2 S
4 + λ′12S

2φ†φ+ λ′22/2 S
2|S|2 + h.c.) , (3.16)

where we have introduced new portal couplings, λ′12 and λ′22, which again we leave free to

float but will not play an important role in the dark matter discussion.

Tree-level vacuum stability requires in this case λ>0, λ̃s>0, λ̃a>0, λS > −1/6
√
λ̃aλ̃s,

λ12 − 2λ′12 > −
√
λλ̃a, and λ12 + 2λ′12 > −

√
λλ̃s, where λ̃s = λS + 2λ′S + 2λ′22,

λ̃a = λS + 2λ′S − 2λ′22. The Z2 symmetry is preserved if µ2S − 2µ′2S > 0 and µ2S + 2µ′2S > 0.

The masses of dark sector scalars are given at the tree level by

m2
s =

1

2
(µ2S + λ12v

2 + 2µ′2S + 2λ′12v
2)

m2
a =

1

2
(µ2S + λ12v

2 − 2µ′2S − 2λ′12v
2) . (3.17)

– 9 –
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Thus, this scenario is endowed with two possible dark matter candidates, a scalar and a

pseudoscalar WIMP (see, e.g., [53, 54] for early studies of the complex scalar/Higgs portal).

By mirroring the models of section 3.1, we introduce Model 1a, Model 2a, and

Model 3a, obtained by performing in the Lagrangians of eqs. (3.7), (3.10), and (3.13)

the substitutions s → S and s → S∗. For example, Model 1a is characterized by the

Lagrangian

L ⊃ −YS E e∗RS − YS∗ E e∗RS
∗ −MEE

′E + h.c., (3.18)

from which one reads the chiral couplings of the muon to the scalar and pseudoscalar fields:

c
(s)
R = (YS + YS∗)/

√
2 , which can become significant even within the perturbativity bound

for the individual Yukawa couplings, and c
(a)∗
R = i(YS − YS∗)/

√
2, which instead, being

expressed as a difference, is in general a bit smaller. Besides, c
(s)
L = c

(a)
L = 0 like in the

model with a real scalar.

Similar arguments apply to the corresponding extensions of Models 2 and 3 of sec-

tion 3.1. In particular, in Model 3a, we mirror the singlet/doublet fermion mixing of

Model 3 by adding 2 additional Yukawa couplings, which have the effect of broadly open-

ing up the parameter space, and making it more difficult to constrain.

We conclude this subsection by pointing out that we do not treat in this work models

with charged scalar singlet fields and neutral fermions only, as in their simplest implemen-

tation they provide a negative contribution to δ (g − 2)µ, see eq. (2.6). We shall see in

subsequent sections, however, that in the presence of neutral fermion mixing the second

term of eq. (2.6) can provide a positive contribution to (g − 2)µ.

3.3 Models with a scalar doublet

Finally, we consider models with an inert scalar doublet in place of the inert scalar singlet

of section 3.1 and section 3.2. We introduce

Φ : (1,2, 1/2), (3.19)

where Φ = (S+, S0/
√
2)T in terms of a charged scalar field S± and a neutral complex

S0 = s+ ia.

At the tree level the scalar potential reads,

V = −µ2 φ†φ+ λ/2 (φ†φ)2 + µ2Φ/2Φ
†Φ+ λΦ/2 (Φ†Φ)2

+ λ3Φ
†Φφ†φ+ λ4 (Φ

†φ)(φ†Φ) + (λ5 (Φ
†φ)2 + h.c.) . (3.20)

Vacuum stability requires λ > 0, λΦ > 0, λ3 > −
√
λλΦ, and λ3 + λ4 ± 2λ5 > −

√
λλΦ, as

well as µ2Φ > 0.

At the tree level the masses of dark sector scalars are given by

m2
s =

1

2
µ2Φ +

1

2
v2(λ3 + λ4 + 2λ5)

m2
a =

1

2
µ2Φ +

1

2
v2(λ3 + λ4 − 2λ5)

m2
S± =

1

2
(µ2Φ + v2λ3) . (3.21)
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As a consequence, the dark matter can be either a scalar or pseudoscalar, but additional

constraints on the parameter space arise from the condition that the charged scalar is not

the lightest one, and it evades the LEP limit, mS± > 100GeV. The portal interactions

and dark matter of this class of models have been investigated extensively (early studies

include [55–59]) but, once more, in most of the cases described here the relevant mechanism

for the relic density will be provided by the bulk.

The fermion fields can in this case be grouped in 4 categories according to their SU(2)

representation: singlet, doublet, triplet, and adjoint triplet. As before, we also consider the

possibility of doublet/singlet mixing and doublet/triplet mixing through the Higgs vev.

Model 4. Fermion singlets. In terms of the singlets defined in eq. (3.6) the Lagrangian

reads

L ⊃ −YS Φ†l E′ −MEEE
′ + h.c., (3.22)

where we have introduced, with some redundancy in the notation, a new Yukawa coupling,

YS , and VL mass, ME . Writing explicitly the components of the SM doublet, one gets

L ⊃ −YS
(
νLS

−E′ + eL
S0∗E′
√
2

)
, (3.23)

which gives c
(s)
L = YS/

√
2, c

(a)
L = −iYS/

√
2, and c

(s,a)
R = 0. Note that even though the

chiral structure of eq. (3.23) resembles the scalar singlet case of Model 1a, the presence of

a non-zero coupling of VL fermions to muon neutrinos will have an important impact on

the LHC phenomenology.

Model 5. Fermion doublets. For the VL doublets introduced in eq. (3.9), the La-

grangian reads

L ⊃ −YD Φ†Le∗R −MLL
′L+ h.c. , (3.24)

in terms of a new Yukawa coupling, YD, and VL mass, ML.

Beside a positive contribution to (g − 2)µ, similar to eq. (3.23) and eq. (3.11), there is

a negative contribution due to the charged scalar field,

L ⊃ −YD
(
N1S

−e∗R +
E1S

0∗
√
2
e∗R

)
+ h.c. (3.25)

This feature suggests that boosting (g− 2)µ to the experimentally measured value may be

more challenging in this case, see eq. (2.6).

Model 6. Fermion singlets and fermion doublets. The fermion doublets of Model 5

can mix with the singlets of Model 4 through the Higgs boson vev. The Lagrangian includes

the terms

L ⊃ −YS Φ† l E′ − YD Φ†Le∗R − Ỹ1 φ
†LE′ − Ỹ2 L

′φE + h.c. , (3.26)

with two additional Yukawa couplings, in a fashion similar to Model 3 in section 3.1.

Note, however, that even if the mixing provides a source of chiral symmetry breaking

similar to the one giving a boost to (g−2)µ in Model 3, we do not expect an enhancement in
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this model. The reason is that there are two neutral real scalar fields, s and a, whose cou-

plings to the muon have opposite parity but the same size. One can read off from eqs. (3.23)

and (3.25) that c
(a)
L = −ic(s)L and c

(a)∗
R = −ic(s)∗R , so that ℜ(c(a)L c

(a)∗
R ) = −ℜ(c(s)L c

(s)∗
R ) and

the last term in eq. (2.5) is identically zero. As a consequence, Model 6 does not result

much more interesting from a phenomenological point of view than the individual models

comprising it, and we do not consider it further.

Model 7. Fermion triplets. In this case one extends the SM by adding fermion SU(2)

triplets with the following quantum numbers,

ΨT : (1,3,−1) , Ψ′
T : (1, 3̄, 1) , (3.27)

which can be parameterized in terms of a neutral, charged, and doubly charged

component as

Ψ′
T =

(
Ψ+√
2
Ψ++

Ψ0 −Ψ+√
2

)
,

and equivalent decomposition applies to ΨT .

The Lagrangian reads

L ⊃ −YT Φ†Ψ′
T l −MT Tr(Ψ′

T ΨT ) + h.c. (3.28)

which is expanded into

L ⊃ −YT
(
−Ψ+S0∗

2
+ Ψ++S−

)
eL − YT

(
Ψ0S0∗
√
2

+
Ψ+S−
√
2

)
νL + h.c. (3.29)

Equation (3.29) includes the well-known doubly-charged fermion/charged scalar coupling,

which will generate the large positive contribution to (g − 2)µ given in eq. (2.9).

Note that in this case too, the quantum numbers allow for doublet/triplet fermion

mixing through the Higgs vev. As in the case just discussed above, however, the couplings

of s and a to the muon have opposite parity and equal size, providing, again, an identical

cancellation of the chirality-flip term.

Model 8. Fermion adjoint triplet. If the hypercharge of the VL fermion is zero, one

obtains an adjoint SU(2) triplet:

ΨA : (1,3, 0) (3.30)

where the triplet’s matrix form is

ΨA =

(
Ψ0√
2

Ψ+

Ψ− −Ψ0√
2

)
,

in terms of a charged fermion and a neutral Majorana field.

The Lagrangian in this scenario reads

L ⊃ −YA (iσ2Φ)
TΨAl −MATr(ΨAΨA) + h.c. (3.31)

– 12 –
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This gives

L ⊃ −YA
(
Ψ0S+

√
2

+
Ψ+S0

√
2

)
eL − YA

(
Ψ0S0

2
−Ψ−S+

)
νL + h.c. (3.32)

Like in Model 5, there is here a negative contribution to (g− 2)µ arising from the coupling

of the muon with the charged scalar.

Model 9. Fermion adjoint triplet and fermion doublets. Positive contributions

to (g − 2)µ arise when the adjoint fermion triplet mixes with the doublet through the SM

Higgs vev. As before, we add to the Lagrangian

L ⊃ −Ỹ1 (iσ2φ)TΨAL− Ỹ2 (iσ2φ
∗)TΨAL

′ + h.c. (3.33)

Note that, besides the mixing between two heavy charged fermions, eq. (3.33) leads

to the additional presence of two heavy neutral fermions mixing with each other. The

chirality-flip contribution to (g − 2)µ is not suppressed in this case as, on the one hand,

c
(a)
L = ic

(s)
L and c

(a)∗
R = −ic(s)∗R , and on the other there is an additional positive-value loop

involving the heavy mixing “neutrinos”, see the last term in eq. (2.6).

We conclude this section by pointing out that we do not treat cases with scalar SU(2)

triplets in this work. The reason is twofold. On the one hand, it was pointed out in ref. [27]

that in some cases (scalar triplet/fermion doublets, scalar adjoint triplet/fermion doublets,

and scalar triplet/fermions adjoint-triplet and singlet) the 1-loop contribution to (g−2)µ is

negative. On the other hand, even for the cases where a positive contribution exists (scalar

adjoint triplet/fermions triplet and singlet), the correct dark matter relic density can only

be obtained with the scalar mass in the range of 5.5TeV [60], which is obviously too high

to accommodate the (g − 2)µ anomaly.

4 Experimental constraints

We review in this section the experimental constraints that can affect the allowed parameter

space of the BSM models introduced in section 3.

4.1 Electroweak precision observables

We subject all our models to electroweak precision constraints. Since VL fermions do not

have tree-level axial-vector couplings, their contribution to EWPOs is expected to be small.

However, in the models with mixing between fermions of different representations, and in

models with scalar multiplets whose components are not mass-degenerate, loop-induced

effects can be significant.

In this work we compare to the experimental data two observables. We calculate the

Zµµ̄ effective coupling and confront the result with precision fits for gA and gV from the

Z lineshape and asymmetry data at LEP and SLC [61], as reported by the PDG [51]. We

also confront the corrections to the W mass with its measured value.

To calculate loop corrections to the Zµµ̄ couplings and W mass we follow the for-

malism of [62], which was adopted in, e.g., [63] for a precision analysis of supersymmetry.
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Figure 3. One-loop BSM contributions to the Zµµ̄ vertex in extensions of the SM with a generic

new fermion F and a scalar S.

The conventions for Passarino-Veltman functions are also taken from [62, 63] and we use

LoopTools [64] for their calculation. The impact of precision observables in models with

VL fermions for the (g − 2)µ anomaly has been also recently investigated in [34].

1. Oblique parameters. Oblique parameters S, T and U [65] capture the BSM contri-

butions to the gauge bosons’ vacuum polarization. S is related to the difference between

the number of the left- and right-handed weak fermion doublets, thus providing a measure

of the breaking of the axial part of SU(2). This means that in the models with degenerate

VL fermions the contribution to S vanishes.

The oblique parameter T is related to the difference between the Z and W bosons’

self-energies, thus providing a measure of the breaking of the vector part of SU(2). As

a result, it is sensitive to the mass splitting between the components of an electroweak

doublet [51],

∆T =
1

32π2v2α

∑
∆m2, (4.1)

where α is the fine-structure constant, the sum runs over all non-degenerate doublets, and

∆m2 = m2
1 +m2

2 −
2m2

1m
2
2

m2
1 −m2

2

ln
m2

1

m2
2

. (4.2)

In cases where VL fermions mix, as in Model 3, 3a, and 9, their contribution to the

parameters S and T can be parameterized in terms of the mixing matrices and of the

physical masses. When calculating these effects, we use formulas derived in ref. [66]. A

contribution to the oblique parameter U is generally much smaller and can be neglected.

2. Zµµ̄ vertex corrections. One-loop corrections to the coupling of the Z boson

with the left-handed and right-handed muon arise from diagrams like the ones depicted in

figure 3. They are given by

∆gµL,R =
1√

4
√
2GFM2

Z

[
gSML,R Σ′

L,R(0)− ΓL,R(M
2
Z)
]
, (4.3)

where the Σ′ terms are the derivatives of the self-energy functions of the external

fermion legs at zero momentum, ΓL,R(M
2
Z) arise from triangular vertex corrections, and

gSML,R = (−ŝ2WY + ĉ2WT3) g/cW.
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Figure 4. An estimate of the 95% C.L. region in gµA, g
µ
V from a fit of Z lineshape and asymmetry

data at LEP and SLC [61]. The ellipse is obtained by rescaling the 39% C.L. region given in [51].

In terms of Passarino-Veltman functions the Σ′ terms read

Σ′
L,R(0) =

1

16π2



∑

Fi,Sj

|cijL,R|2 (B0 +B1)( 0;mSj
,mFi

)


 , (4.4)

where cijL,R, the couplings of the generic new fermion Fi and scalar Sj to the muon, are

given for our models in section 3.

The contributions from triangle diagrams are

ΓL,R(M
2
Z) = − 1

16π2

∑

Fi,Sj ,Fk,Sl

{
cij∗L,Rc

kj
L,R

[
gZik
L,RmFi

mFk
C0(p1, p2 : mFi

,mSj
,mFk

)

+gZik
R,L

(
−M2

ZC12 −M2
ZC23 − 2C24 +

1

2

)
(p1, p2 : mFi

,mSj
,mFk

)

]

−cij∗L,Rc
il
L,R g

Zjl 2C24(p1, p2 : mSj
,mFi

,mSl
)

}
, (4.5)

where the gZik
R,L and gZjl give the SM-like couplings of the Z to the new fermions and scalars.

After evaluating the observable couplings gµV = gµL + gµR and gµA = gµL − gµR from

gµL ≡ −0.2682 + ∆gµL and gµR ≡ 0.2313 + ∆gµL, we compare them to the 95% C.L. contour

presented in figure 4, which we have approximately determined by rescaling up the 39% C.L.

contour given in [51].

We also confront all our models with rough estimates of the reach in the possible

future high-precision experiments GigaZ [67], with an estimated improvement of a factor

20 [68] in the systematic uncertainty, and TLEP [69], with an improvement of a factor 100.

The discovery potential of those experiments through precision measurements of Z-boson

observables was also analyzed, e.g., in the context of leptoquarks in ref. [70].
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In principle, our models introduce loop contributions to the h → µ+µ− decay rate as

well. However, these are supposed to be well within the present and foreseeable future un-

certainties at the LHC, and for this reason we do not discuss them in this paper any longer.

3. Constraints from the W mass. Additionally, we calculate the corrections to the

W mass in our models. We follow, again, refs. [62, 63], which parameterize

MW =MSM
W +∆MW (4.6)

∆MW = −0.288∆S + 0.418∆T + 0.337∆U − 0.126
∆δG
ᾱ

, (4.7)

in terms of the usual oblique parameters S, T, U . We use MSM
W = 80.361GeV and

ᾱ−1 = 127.95. We neglect ∆U , which is small, and we calculate the corrections to the

S and T parameters using analytic formulas of ref. [66] for the fermions, and of ref. [55]

for the scalars.

We calculate ∆δG = 2δv, the correction to the muon lifetime, as

δv =

√
2

ĝ
ΓWµνµ(0)− 1

2

[
Σ′
µL

(0) + Σ′
νµ(0)

]
, (4.8)

where ĝ is the MS value of the weak coupling constant and, once more, Σ′ and

ΓWµνµ parameterize corrections to the external legs and triangle diagrams modifying the

Wµνµ vertex.

When expressed in terms of the Passarino-Veltman functions they are given by

Σ′
µL,νµ

(0) =
1

16π2

∑

Fi,Sj

|cijL |2(B0 +B1)(0;mSj
,mFi

) (4.9)

and

ΓWµνµ(0) =
1

16π2

∑

Fi,Sj ,Fk,Sl

{
−cij∗L ckjL

[
gWik
L mFi

mFk
C0

(
0;mFi

,mSj
,mFk

)
(4.10)

+ gWik
R

(
−2C24+

1

2

)](
0;mFi

,mSj
,mFk

)
+cij∗L cilLg

Wjl 2C24

(
0;mSj

,mFi
,mSl

)}
,

where the symbols have equivalent meaning as in eq. (4.5).

4.2 Collider constraints

In all our models, we apply a default hard cut on the mass of new charged particles,

mE±,S± > 100GeV to roughly take into account LEP II limits.

Moreover, since the VL fermions are charged under the SM electroweak gauge

symmetry group, they can be pair-produced at the LHC in Drell-Yan processes,

pp→ Z, γ,W± → F F̄ , and subsequently undergo Yukawa-driven decays into a DM scalar

and a muon, F → S µ, thus leading to a characteristic 2 leptons plus missing energy (MET)

signature. Such a topology has been investigated by both ATLAS and CMS in the context

of supersymmetry in the searches dedicated to sleptons, charginos and neutralinos.
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In this work, we employ two different 2-lepton searches based on 13TeV data: the

ATLAS search [48], based on hard leptons in the finals state, with an integrated luminosity

of 13.3 fb−1; and the CMS search [49], based on soft leptons, with an integrated luminosity

of 35.9 fb−1. We numerically recast these two experimental analyses for the models intro-

duced in section 3, following the procedure described in detail in [71, 72] and references

therein. The main kinematical variable used in the ATLAS search to discriminate between

the signal and the SM background is the stransverse mass mT2 [73], with the end point

correlated to the mass splitting between fermion and dark matter scalar, δm. As a result,

the sensitivity of the search weakens when the mass splitting decreases, dropping to zero

when δm ≈ 70GeV. Conversely, the CMS analysis targets low-momentum leptonic final

states and therefore can test the compressed spectra region, where the mass difference

between fermion and dark matter is smaller than ∼ 40GeV.

Singlet scalar dark matter can be pair-produced at the LHC through the off-shell

Higgs boson, pp → h∗ → S S. The cross-section is in this case directly proportional to

the size of the portal couplings and is not expected to be significant, given the discussed

stringent bounds from direct detection experiments. For doublet scalar dark matter, Drell-

Yan production with electroweak-size cross section is also possible, pp→ Z, γ,W± → Φ†Φ.
Such a signature can be probed by monojet searches, which tag an energetic jet from initial-

state radiation recoiling against the produced dark matter. To capture this possibility, we

recast the ATLAS 13TeV analysis [50] with 3.2 fb−1 of data. Besides the present exclusion

bounds, we also calculate the sensitivity of ATLAS searches [48, 50] with the assumed

luminosity of 300 fb−1 at the LHC 14TeV run.

If mDM < mh/2, the Higgs boson can invisibly decay into dark matter with branching

ratio proportional to the portal coupling(s). For completeness, we apply the CMS up-

per bound on the corresponding branching ratio, BR(h → invisible) < 0.24 at the 95%

confidence level [74].

In the models characterized by the mixing of fermions with different SU(2) quantum

numbers through the Higgs boson vev (Models 3, 3a, 9) we also apply 2σ constraints from

the branching ratio BR(h→ γγ) at the LHC, which has been measured, e.g, by ATLAS [75]:

Rγγ ≡ BR(h→ γγ)/BR(h→ γγ)SM = 0.99± 0.14. We calculate the Rγγ ratio at one loop

following, e.g., [76]:

Rγγ ≈

∣∣∣∣∣∣
1− 0.109

∑

i=1,2

2Chii v

mEp
i

A1/2

(
4m2

Ep
i

m2
h

)∣∣∣∣∣∣

2

, (4.11)

in terms of the physical masses defined in eq. (3.14), and the tree-level couplings of the

Higgs boson h to the heavy fermions, Chii = (Ỹ1Vi1Ui2 + Ỹ2Vi2Ui1)/
√
2. The loop function

A1/2(x) can be found in [76].

Finally, we recall that we apply to all our models the relic density constraint from

Planck [77], Ωh2 = 0.1188 ± 0.0010, to which we add in quadrature a ∼ 10% theoretical

uncertainty, and the XENON1T 90% C.L. upper bound on the spin-independent cross

section σSIp [43] as a hard cut.
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5 Numerical analysis

We present now the results of the numerical analysis of the models introduced in section 3.

We will start with a brief description of the numerical tools utilized in the study.

Each of the considered models has been generated with SARAH v.4.9.3 [78] and the

corresponding SPheno [79, 80] modules have been produced to calculate mass spectra and

decay branching ratios. Flavor observables, including δ (g − 2)µ, have been calculated

with the FlavorKit package [81] of SARAH-SPheno. Model files for CalcHEP [82] were

also generated and passed to MicrOMEGAs v.4.3.1 [83] to calculate dark matter related

observables.

In order to efficiently scan the multidimensional parameter space, all the packages

were interfaced to MultiNest v.3.10 [84] for sampling. We emploied a Gaussian likelihood

function to find the regions favored by the dark matter relic density and δ (g − 2)µ.

The parameters of the models were scanned in the following ranges:

0.001 ≤ Yukawa couplings ≤
√
4π,

−1 ≤ portal couplings ≤ 1,

100 GeV ≤ ML,E,T,A ≤ 10000 GeV,

(10GeV)2 ≤ µ2s, µ
2
S , µ

2
Φ ≤ (5000GeV)2,

−0.5µ2S ≤ µ′2S ≤ 0.5µ2S . (5.1)

The LHC limits from the ATLAS 2-lepton and monojet searches have been imple-

mented using the recast procedure described in detail in [71, 72] and adapted to handle

non-SUSY scenarios. To this end, UFO files have been generated with SARAH and passed to

MadGraph5 aMC@NLO [85], where a set of new BSM processes with a corresponding output

for PYTHIA [86] were created. Finally, the hadronization products were passed to the fast

detector simulator DELPHES 3 [87].

We perform our numerical analysis at the tree level. In doing so, we are relying on

some underlying assumptions that may not be always warranted, especially in theories

including several scalar fields like the ones investigated here.

Scalar masses are affected by significant loop corrections, in particular those that

depend on the BSM Yukawa couplings which, as we shall see, in general have to be sizable

to accommodate the experimentally measured value of δ (g − 2)µ. SARAH v.4.9.3 allows one

to calculate 1-loop corrections to all scalar masses, and define the input parameter at a high

renormalization scale of choice. However, it has been pointed out [88] that the results so

implemented maintain a significant residual dependence on the renormalization scale. One

should therefore make use of the full 2-loop calculation, which has only become available

very recently [88].

Thus, in this work we limit ourselves to the assumption generally adopted in the

literature when dealing with non-supersymmetric BSM scalar fields, i.e., that it is possible

to absorb corrections to the scalar masses into the counterterms of the free parameters.

Note that effects of 1-loop corrections to the scalar mass in relation to the relic density in

inert scalar models have been analyzed, e.g., in [89, 90]. In ref. [90], in particular, it was
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shown that as long as the input parameters are defined not far above the EWSB scale, say

up to 10TeV or so, the parameter space regions in agreement with the relic density are not

altered drastically with respect to the tree level.

5.1 Real scalar with a singlet or doublet VL fermion

We begin our discussion with Model 1, characterized by the addition of a real scalar

particle and VL fermion singlet fields to the spectrum of the SM. The Z2-odd scalar plays

the role of the dark matter particle in this case, and we will refer to it with mDM ≡ ms

interchangeably.

In figure 5(a) we present a plot of the model’s parameter space in the plane of the

new coupling to the muon, cR = YS , versus the dark matter mass. The parameter space

allowed at 2σ (including a ∼ 10% theory error) by the relic density is shown in cyan,

and we highlight with a darker shade the region in which Ωh2 ≈ 0.12 is due with good

approximation exclusively to the bulk. The (g − 2)µ constraint is shown in dark blue and

we do not impose at this stage any LHC or precision constraints.

Higgs-portal dark matter plays a small role, almost exclusively limited to the region

above 0.8–1TeV, in which the recent bounds from XENON1T can be evaded. Note

that the relic abundance imposes a lower bound on the mass of the scalar particle,

ms = mDM ∼> 40–50GeV, as the bulk mechanism loses its efficiency when the spread be-

tween ms and m
Ẽ

is significant (recall that m
Ẽ ∼> 100GeV by LEP bounds). As we shall

see below, this lower bound on the dark matter mass is model-dependent and can be evaded

in other scenarios.

The parameter space allowed at 2σ by the combination of relic density and (g − 2)µ
is shown in green. The 2σ region from the BNL measurement places an upper bound on

the mass of the dark matter scalar, ms . 170–180GeV, beyond which one is forced to

resort to non-perturbative values for the new Yukawa coupling YS , independently of the

size of m
Ẽ
> ms.

In figure 5(b) we show the points of the allowed parameter space — the green region

of figure 5(a) — in the (m
Ẽ
, mDM) plane, best suited for interpreting the LHC constraints.

We also apply here the constraints from precision observables, which have no visible effect

in this case due to the VL nature of the new fermion. Both 2-lepton + missing ET bounds

are applied and the excluded points are shown with gray triangles and dim gray diamonds.

The ATLAS bound is quite aggressive, and excludes most of the parameter space in the

picture, with the exception of a limited region in which m
Ẽ

and ms become increasingly

close to each other, as the mT2 variable loses its discriminating power for compressed

and semi-compressed spectra. We have also calculated the reach of the ATLAS search

with 300 fb−1, but the latter shows little if any impact on the surviving region, due to

the intrinsic ineffectiveness of mT2 for these spectra. On the other hand, the remaining

parameter space is extensively tested by the CMS low-momentum search, which allows

one to exclude BSM fermions with masses lower than 140GeV for a dark matter scalar

heavier than ∼ 60GeV. Note, incidentally, that neither the monojet search nor Higgs

invisible decays can provide a complementary way of testing the surviving region due to

the smallness of the portal Higgs coupling.
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Figure 5. (a) The (mDM, YS) plane for Model 1 (real scalar field and VL fermion singlet). In

cyan, the parameter space favored at 2σ by the relic density is shown, while the one favored by the

(g − 2)µ measurement is shown in dark blue. Green region corresponds to those values of model

parameters where both constraints are satisfied simultaneously. (b) The parameter space common

to the relic density and (g−2)µ in the (mẼ , mDM) plane. Gray triangles show the parameter space

excluded by the ATLAS 2 hard leptons search [48], whereas dim gray diamonds show that excluded

by the CMS 2 soft leptons search [49]. (c) Same as (b) but in the (mẼ , YS) plane. The projected

reach of precision measurements at GigaZ [67] and TLEP [69] is also shown.

The same points are shown in figure 5(c), in the plane of the new Yukawa coupling, YS ,

versus the VL fermion mass. The CMS soft-lepton search excludes in this case essentially

the whole parameter space with YS . 1.5. Because of the overall large Yukawa values,

future precision experiments like GigaZ or TLEP, with a projected improvement by a

factor 20 or more over LEP, have the potential to probe the surviving region. We show

with dashed lines the projected reach of these experiments in precision measurements

of Z-physics observables. Note also that, quite possibly, e+e− colliders like the ILC or

TLEP may be able to cover the surviving region directly by pair production of the charged
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Figure 6. The measurement of δ (g − 2)µ as a function of the VL fermion mass and the new

Yukawa coupling in Model 1. The scalar dark matter mass is fixed here at ms = mDM = 80GeV,

but the plot is not very sensitive to its value. The horizontal red solid lines show the 2σ region of

the BNL experiment.

particles Ẽ±. A precise estimate of the direct reach of electron/positron colliders in this

case requires a numerical simulation of the event generation and detector response, which

is beyond the scope of this paper.

One might wonder at this point if a large BSM Yukawa coupling, which is required

to fit δ (g − 2)µ , can remain perturbative up to the Planck scale. We have checked that

this is often not the case. For example, in Model 1, YS ≈ 1.5 induces a breakdown of

perturbativity at about 105GeV. This, however, does not necessarily pose a problem here,

as we are dealing with simplified models that, by constuction, are not meant to be UV

complete. It is not hard to imagine that in a more general framework the asymptotic

behavior of YS could be modified in a way that makes the Landau Pole below the Planck

scale disappear.

We summarize the case of Model 1 in figure 6, where we present predictions for this

model based on an eventual measurement of (g − 2)µ at Fermilab. The different bounds

discussed above are applied. The surviving parameter space in Model 1 is thus confined to

a very narrow strip.

Model 2, characterized by the coupling of the muon to a real scalar singlet and a

fermion doublet, does not show significant differences from Model 1 at the tree level. This

could have been anticipated by a simple inspection of the two Lagrangians, eq. (3.7) and

eq. (3.10). The dark matter particle is the same in both cases and the contributions to the

(g − 2)µ calculation are also the same, as one can simply switch the role of cL and cR in

eq. (2.5) (and one of them is always zero). The bounds from EWPOs are easily satisfied

in both models, as both lack an explicit source of chiral-symmetry violation beyond the

VL mass.
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Figure 7. (a) The [mDM, ℜ(c1Lc1∗R )1/2] plane for Model 3 (real scalar field and mixing singlet and

doublet VL fermions). The color code is the same as in figure 5(a). (b) The parameter space of

Model 3 in agreement with the relic density and the (g − 2)µ anomaly at 2σ in the (mEp

1

, mDM)

plane. Gray dots are excluded by a combination of electroweak precision data, the ATLAS and

CMS 2-lepton + MET searches at 13TeV, and the constraints from BR(h → γγ) at ATLAS [75].

The projected reach of ATLAS 2-lepton searches with 300 fb−1 probes the points shown as green

dots; new data from XENON-IT will test the points shown as royal-blue crosses; and improved

electroweak precision at TLEP will test the points marked by black triangles. The points shown as

red squares are possibly outside of foreseeable reach.

The LHC multi-lepton bound is in principle stronger for the fermion doublet case in the

region of large mE and small mDM, due to the possibility of producing the doublet through

the W boson, which enhances the cross section. However, we do not expect any difference

from what is shown in figure 5(b), as the limit is strong enough to exclude this region in

Model 1 as well. Thus, no difference can be observed between Model 1 and Model 2, and

the reader can refer to figures 5 and 6 for Model 2 as well.

5.2 Real scalar with mixing singlet and doublet VL fermions

As was discussed in section 3.1, when the singlet and doublet fermion are both included in

the theory, they can mix through the Higgs boson field vev. This introduces an additional

explicit source of chiral-symmetry violation in the (g− 2)µ loop, which can boost its value

as now both cL and cR differ from zero in eq. (2.5). For the same reason, however, this

model, which we dubbed Model 3, is also subject to strong constraints from EWPOs.

We present in figure 7(a) the parameter space of Model 3 in the [mDM, ℜ(c1Lc1∗R )1/2]

plane, without for the moment applying the limits from EWPOs and the LHC. The color

code is the same as in figure 5(a). The (g − 2)µ anomaly can be accommodated for very

large dark matter mass, well into the TeV range, thanks to the above-mentioned boost

provided by the chirality-flip term involving cLc
∗
R. For the same reason, the new Yukawa

couplings are also allowed to span a broader range, with the sum of them that can be as

small as ∼ 0.2.
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We show the points of the parameter space favored by Ωh2 and (g − 2)µ in the

(mEp
1
, mDM) plane in figure 7(b). After applying the remaining constraints, we mark

with gray dots the points excluded by a combination of the ATLAS and CMS 2-lepton

+ MET searches (mostly points on the bottom left of the picture), ATLAS Rγγ con-

straint (a handful of points that are also excluded by the 2-lepton searches), and EWPOs

(mostly points on the top right). Electroweak precision bounds are able to exclude so-

lutions with large fermion mass since large singlet/doublet mixing is required to fit the

(g − 2)µ constraint at 2σ.

More specifically, the BSM contributions to the Zµµ̄ vertex imply ℜ(c1Lc1∗R )1/2 . 0.01,

unless the ratio YS/YD ∼ O(1). In that case the limit weakens to ℜ(c1Lc1∗R )1/2 . 0.1. On

the other hand, the corrections to the W mass, which arise from BSM contributions to the

muon lifetime and the oblique parameters, test two distinctive regions of the parameter

space: the small mass regime, with ms < 100GeV and small fermion mixing, where the

corrections to muon decay are dominant; and the large mass regime, in which the large

mixing induces large splitting of the doublet fermion masses, which subsequently increases

the parameter T .

The points that are not excluded by LEP or the recent LHC constraints are in reach of

the high-luminosity LHC or future experiments sensitive to corrections to the Zµµ̄ effective

coupling. The points in reach of the LHC with 300 fb−1 are shown as green diamonds,

whereas black triangles mark the points in reach of future precision experiments. Note

that points characterized by a non-negligible portal coupling, λ12 ∼> 0.1, will be tested in

complementarity with the next release from XENON-1T data, and we show these points

in figure 7(b) as royal-blue crosses. Finally, we highlight with red squares the points that

appear to be beyond the reach of all of the projected measurements considered in this work.

We point out that these points are almost all characterized by the scalar and lightest

fermion mass being very close to each other. This is not enforced by any of the symmetries

of the Lagrangian considered in section 3.1, so that we can conclude that Model 3 requires

a certain amount of fine tuning to evade all future bounds.

5.3 Complex singlet scalar with VL fermions

In figure 8(a) we present the parameter space of Model 1a in the (mDM, c
(s)
R ) plane (recall

that c
(s)
R = (YS +YS∗)/

√
2). At this stage the LHC and precision constraints have not been

yet applied, and the color code is the same as in figure 5(a), with the only difference being

that we do not explicitly highlight here the parameter space region belonging to the bulk.

The most striking difference with Model 1 is that in Model 1a one can fit the (g− 2)µ
anomaly with lighter dark matter, as light as our prior range allows, ms,ma ≈ 10GeV.

This is due to the presence of two possible dark matter particles in this mass range, the

scalar s and the pseudoscalar a. When their masses are not far apart from one another,

the relic density can be effectively diluted in the early Universe thanks to additional bulk

processes like a s→ µ+µ−, or a a→ µ+µ−.
When one applies the constraints from the LHC (precision bounds do not alter the

picture much in this model) the available parameter space is much reduced. We project

the region favored by a combination of the relic density and (g − 2)µ constraints to the
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Figure 8. (a) The (mDM, c
(s)
R ) plane for Model 1a (complex scalar field and singlet VL fermions).

The color code is the same as in figure 5(a). (b) Region of Model 1a favored by a combination of

the relic density and (g− 2)µ constraints in the plane (mẼ , c
(s)
R ). The gray area is excluded by the

LHC 2-lepton + MET searches. Projected reach at the LHC with 300 fb−1, and future precision

experiments at GigaZ and TLEP, are shown as dashed lines.

plane (m
Ẽ
, c

(s)
R ). The result is presented in figure 8(b). The region in gray is excluded

by the LHC 2-lepton searches. Note that, while both LHC 2-lepton searches are quite

effecfive in excluding large swaths of parameter space in Model 1b, there is a larger region

of the parameter space that survives the contraints than in Model 1, as the number of free

parameters is here larger, and there are more ways to evade the bounds. We also show with

dashed lines of different colors the projected reach of the ATLAS search with 300 fb−1, and

of future precision experiments at GigaZ and TLEP.

As dark matter particles, the scalars s and a behave symmetrically, with the

only difference being that, by construction, the available range for the coupling of s

to the muon, c
(s)
R = (YS + YS∗)/

√
2, is slightly larger than the allowed coupling for a,

|c(a)R | = |YS − YS∗ |/
√
2. In fact, the region with good dark matter in figure 8(a) features

solutions of various types, ms ≈ ma, ms ≪ ma, ma ≪ ms, and cases in between.

Because of a quite large number of free parameters, however, a measurement of (g−2)µ
is not sufficient in Model 1a to pinpoint specific features and correlations of some parameters

with respect to others. Thus, we identify two limiting cases that we summarize in figure 9.

In figure 9(a) we show the value of δ (g − 2)µ versus the dark matter mass in the case

where the scalar and pseudoscalar are close to being degenerate, |ms −ma| . a few GeV.

The parameter of greatest impact on the (g − 2)µ calculation is in this case the sum of

the new Yukawa couplings, or c
(s)
R . We show in the figure the dependence of δ (g − 2)µ on

selected values of c
(s)
R , whenm

Ẽ
≈ 100GeV to avoid LHC bounds, and |c(a)R | is set to 1. One

can see that, as ms ≈ ma approaches m
Ẽ
, the bulk becomes more and more efficient [46]

until Ωh2 drops below the lower bound when mDM ≈ 80GeV. At that point, in order to

maintain the constraint from Ωh2 ≈ 0.12 in place, the scalar masses must become more
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Figure 9. The computed δ (g − 2)µ versus the dark matter mass for the parameter space allowed

by dark matter in Model 1a (complex singlet scalar and singlet VL fermions). (a) The case of

scalar masses being close to degenerate, mDM ≡ ma ≈ ms, as a function of the coupling to the

muon, c
(s)
R = (YS +YS∗)/

√
2. The new fermion mass is fixed slightly above 100GeV, and we set the

pseudoscalar coupling to |c(a)R | = |YS − YS∗ |/
√
2 = 1. The dark matter becomes under-abundant

for mDM ∼> 80GeV. (b) The case ms ≫ ma, for different values of the coupling of a to the muon,

|c(a)R |. This case resembles the behavior of Model 1.

separated. Note also that for m
Ẽ

≈ 100GeV, a dark matter mass below ∼ 40GeV is

excluded by the ATLAS 2-lepton search, independently of the value of c
(s)
R .

In figure 9(b) we show the case mDM = ma ≪ ms. We impose in the plot

m
Ẽ
≈ ma + 50GeV, as under this condition one can evade the LHC constraints. Here

the scalar particle s effectively decouples from the (g − 2)µ calculation, thus reproducing

the limit of Model 1, with the difference that the coupling of the scalar a to the muon is

expressed in terms of |c(a)R | = |YS − YS∗ |/
√
2.

Similarly to the equivalent cases in section 5.1, if we consider Model 2a, in which

the complex scalar couples to a doublet VL fermion, the differences with Model 1a are

not substantial. However, because of the enlarged production cross section for doublet

fermions, the LHC excludes in this case the region shown on the top right in figure 8(b),

characterized by charged leptons between 400 and 500GeV.

Model 3a, finally, presents a pattern that in the [mDM, ℜ(c(s,a)1L c
(s,a)1∗
R )1/2] plane

would look similar to the one depicted in figure 7(a), with large regions of the parameter

space allowed by the constraints before the bounds from precision and the LHC are applied.

However, because there are now several Yukawa couplings and two scalar masses that can

interplay, it appears that the large mDM region requires slightly lower values for the mixing

angles than in Model 3 and, as a consequence, in Model 3a the parameter space cannot be

easily constrained. In fact, the (mEp
1
, mDM)-plane plot equivalent to figure 7(b) is not very

informative in Model 3a, with no clear correlation emerging in the masses of the surviving

points. For this reason we do not show this figure here, and we are forced to conclude

that a complex scalar singlet with mixing doublet/singlet VL fermion can accommodate

Ωh2 and the (g− 2)µ anomaly for large ranges of parameters that will possibly avoid most

future constraints, as long as the singlet-doublet mixing is not very large.
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5.4 Doublet scalar with singlet, doublet, or triplet VL fermions

In order to analyze the doublet scalar case, let us first briefly recall its dark matter proper-

ties. Inert doublet scalar dark matter has been analyzed in the literature in several papers

(we refer to, e.g., [90, 91] for recent studies). When the relic density is driven by the Higgs

portal couplings the characteristics are well known. There are two viable regions for dark

matter in the parameter space: one for mDM . 100GeV and the other in the range from

∼ 700GeV to several TeV. For the parameter space in between, the dark matter is under-

abundant, as at about 85GeV the annihilation channel ss(a) → W+W− opens up (in a

fashion similar to the higgsino case in supersymmetry). For the models with no fermion

mixing, the TeV-range region does not admit solutions for the (g − 2)µ anomaly, so that

we will limit our analysis to scalar masses below ∼ 100GeV.

In figure 10(a) we present the now familiar plane of the Yukawa coupling to muons

versus the dark matter mass in Model 4, which features a doublet scalar and singlet VL

fermions in the spectrum. As before, at this stage of the analysis we have not applied the

bounds from EWPOs and the LHC. The dark matter in the low-mass region is obtained

mostly through the bulk, as values of the portal couplings that might produce Ωh2 ≈ 0.12

through interactions with the Higgs have long been excluded in direct detection experiments

(with the exception of the Higgs resonance).

As in the previous cases the (g − 2)µ anomaly can be fitted in the bulk. Unlike in the

complex singlet case, however, solutions with dark matter much lighter than 40GeV cannot

be found here, as LEP has excluded weakly-coupled charged particles below ∼ 100GeV

and all scalars belong to the same doublet. Close inspection of eq. (3.21) reveals that, once

the charged scalar satisfies that constraint, also the pseudoscalar becomes heavier than

100GeV (recall that λ3 + λ4 + 2λ5 ≪ 1) and the dark matter sector approaches the limit

of Model 1.

A similar plot for Model 5, which features a doublet scalar and doublet VL fermions,

is shown in figure 10(b). After a quick look at eq. (3.25) one can see that in this case there

is a coupling of the muon to the charged scalar/neutral fermion loop. Thus, we expect

(g − 2)µ to be generally smaller than in Model 4 in the equivalent parameter range, as

there is a negative contribution damping its value. Note, in this regard, that the Higgs-

resonance region does not present solutions to the (g − 2)µ anomaly in Model 5 since, in

order to avoid excessively diluting Ωh2, either the Yukawa couplings should be there quite

small, or the VL fermion mass larger than in other regions of the parameter space.

On the other hand, in Model 7, characterized by a doublet scalar and triplet VL

fermions, simultaneous solutions to the (g−2)µ anomaly and dark matter exist only in the

Higgs-resonance region. In fact, in general, due to the impact of the large doubly-charged

contribution, one obtains δ (g − 2)µ within 2σ for fermion masses that must be quite large,

mΨ± ,mΨ±± ≫ 100GeV. As a consequence, the bulk annihilation cross section is not large

enough to yield Ωh2 ≈ 0.12. However, in the Higgs-resonance region, the relic abundance

is obtained via portal couplings, so that a solution that can accommodate the (g − 2)µ
anomaly can be easily found for a wide range of Yukawa coupling and fermion mass values.
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Figure 10. Planes of the Yukawa coupling to muons versus the dark matter mass in models with

a scalar doublet. The region where the (g − 2)µ anomaly can be accommodated at 2σ is shown in

blue, the region where the relic abundance is correct within 2σ is shown in cyan, and the combined

parameter space is highlighted in green. (a) Model 4 (doublet scalar and singlet VL fermions),

(b) Model 5 (doublet scalar and doublet VL fermions), (c) Model 7 (doublet scalar and triplet VL

fermions), (d) Model 8 (doublet scalar and adjoint triplet VL fermions).

Finally, we illustrate the case of Model 8, characterized by a doublet scalar and

adjoint triplet VL fermions, in figure 10(d). As one can see from the plot, there is no

parameter space here that can accommodate the measured value of (g − 2)µ and the relic

density at the same time. As a matter of fact, in Model 8 the bulk annihilation channel

ss(a) → νµνµ is so efficient that it effectively places an upper bound on the new Yukawa

coupling, YA . 0.8–1, if one wants to satisfy Ωh2 ≈ 0.12. As a consequence, δ (g − 2)µ is

never large enough in the region with Ωh2 ≈ 0.12.

We briefly come back here to the issue of a breakdown of perturbativity of the Yukawa

couplings at some high scale, which is less severe in the models with a scalar doublet. For
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are shown in three different shades of green, while those excluded in three different shades of gray.

instance, values of YT as large as 1.3 do not generate a Landau Pole below the Planck

scale in the fermion triplet case, indicating that such a scenario can be considered as UV-

complete. Conversely, for fermion singlets and doublets the lowest YS/D consistent with

the (g− 2)µ anomaly requires some extension of the corresponding simplified model at the

scale of ∼ 109GeV.

The impact of LHC 13TeV and electroweak precision constraints on the parameter

space in agreement with dark matter and the (g − 2)µ anomaly for Models 4-8 is shown

in figure 11. In all scenarios, as long as the charged fermion is situated around 100GeV

a compressed region can be observed, which survives all of the constraints. It can only

be minimally tested by the CMS soft-lepton analysis, as the mass difference between the

charged fermion and dark matter is in general too large for the search to be effective.

Outside of the compressed region, across the Higgs resonance, the mass of the charged

VL fermions becomes larger to suppress bulk annihilation. In Model 4 the LHC 2-lepton

search places a lower bound on the fermions mass of about 160GeV. It is much weaker

than the corresponding bound for Model 1, as in Model 4 the decay E′ → S+ν̄µ is possible,

which cuts drastically the efficiency of the search due to a reduced branching ratio to the

2-lepton final state.

As before, we have also calculated the effect of the future LHC reach with 300 fb−1 on

the models. Most of the currently allowed regions with fermion mass larger than ∼ 100GeV

will be strongly reduced at the end of the current LHC run, although it does not appear

that any of them can be probed in its absolute entirety even with large luminosity.

We summarize the findings of this subsection in figure 12, where we present the value

of δ (g − 2)µ versus the scalar dark matter mass in every model for a fixed value of the new

Yukawa coupling, Y = 2. The only exception is Model 8 for which, as we saw in figure 10(d),

there exist an upper bound on the Yukawa coupling due to the relic abundance. To avoid
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Figure 12. The computed δ (g − 2)µ as a function of the dark matter mass mDM = ms and

Yukawa coupling to the muon in the models with a doublet scalar, discussed in section 5.4. The

charged fermion mass is fixed at about 100GeV outside of the Higgs resonance to evade the LHC

bounds, but it is progressively pushed to larger values on the resonance region. The pseudoscalar

and charged scalar mass are fixed case by case to the typical values observed in the scans. Gray

solid line: singlet VL fermions; magenta dashed line: doublet VL fermions; blue dot-dashed line:

triplet VL fermions; orange dotted line: adjoint triplet VL fermions.

the bounds from the LHC, in figure 12 we have set the charged fermion mass just above

100GeV, while the pseudoscalar and charged scalar masses are fixed case by case to the

typical values observed in the scans. As the mass of the scalar s approaches the Higgs

resonance, however, we move the fermion mass up to larger values, to mimic the behavior

of the scans. As a consequence, δ (g − 2)µ drops.

Note that in Model 5 (magenta dashed) YD ≈ 2 barely allows the model to sit inside

the 2σ region for (g − 2)µ. As we discussed above, since in the Higgs-resonance either

the allowed Yukawa coupling for Ωh2 ≈ 0.12 is much smaller than 2, or the fermion mass

must be larger than 100GeV, it follows that in the Higgs-resonance there is no common

parameter space for (g − 2)µ and dark matter. Conversely in Model 7 (blue dot-dashed),

for YT ≈ 2 the model sits generally above the 2σ region for (g − 2)µ. Only the significant

drop in the Yukawa coupling necessary to get Ωh2 ≈ 0.12 in the Higgs resonance can bring

its value back into the allowed region.

We finally comment on the numerical results we get for Model 9, characterized by the

mixing of the adjoint triplet fermions and the doublet fermions. As we mentioned when we

introduced eq. (3.33), several substantial contributions to (g − 2)µ arise in this model, as

the neutral scalar/charged fermion and pseudoscalar/charged fermion contributions sum

up, and one also has the positive contribution from the mixing heavy neutrinos and charged

scalar. As a consequence, solutions to the (g − 2)µ anomaly can be potentially found in

the large dark-matter mass region, mDM ∼> 800GeV. However, since the Yukawa coupling

is always quite limited in size, the solutions we found in our scans are all characterized

by large mixing angles, and inevitably fail to pass the constraints from EWPOs. Thus,

up to the possibility of having missed some fine-tuned corners of the parameter space, we

conclude that there is no simultaneous solution for (g − 2)µ and dark matter in Model 9.
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6 Summary and conclusions

In this paper we have drawn some predictions for future measurements of (g − 2)µ under

the hypothesis that the anomaly measured at BNL will be confirmed and that the same un-

derlying BSM physics is responsible for the relic abundance of dark matter in the Universe.

To investigate these scenarios, we have constructed a set of renormalizable, SU(2)×U(1)

invariant extensions of the SM, each comprising inert Z2-odd scalar fields and one or more

VL pair of colorless fermions that communicate to the SM muons through Yukawa-type

interactions. Our new sectors are classified according to their transformation properties

under the SM gauge group: real singlet, complex singlet, and doublet scalars, with all

possible types of VL fermions allowed by the gauge symmetry. All models have been

systematically confronted with a variety of experimental constraints: LEP mass bounds,

direct LHC searches, electroweak precision observables, and direct searches for dark matter.

In general, the presence of a muon portal introduces a well known t-channel bulk

mechanism for the dark matter relic density that extends the widely studied Higgs portal

and allows one to evade strong bounds from direct detection experiments. In the case of

a real singlet scalar dark matter particle, we find that before applying the LHC bounds

both relic density and δ (g − 2)µ can be accommodated for mDM ≈ 40–160GeV, provided

VL fermions are lighter than 350GeV and the Yukawa coupling exceeds ∼ 1.2. The same

pattern is observed for singlet and doublet fermions, since in both cases only the charged

component contributes to the anomalous magnetic moment of the muon. When LHC

bounds are applied, the parameter space is in large part excluded by the ATLAS 2-lepton

+ missing ET search, except for the region where the mass difference between the dark

matter scalar and fermion drops below ∼ 70GeV. This latter region is extensively tested

by the CMS 2 soft leptons + missing ET search, which excludes all the points with Yukawa

coupling smaller than ∼ 1.5. Interestingly, future high-precision experiments like GigaZ

and TLEP have the potential to probe the remaining untested region entirely, as the new

sector generates small but non-zero corrections to the Zµµ̄ vertex.

If the singlet scalar is complex, the region where (g−2)µ and relic density are satisfied

extends down to around 10GeV before the LHC bounds are applied, as additional anni-

hilation channels are open due to the presence of a pseudoscalar particle in the spectrum.

The lower bound on the allowed Yukawa coupling is reduced to ∼ 0.5, since there are two

Yukawa couplings summing up. For the same reason, fermions up to ∼ 500GeV are allowed

since there are two contributions to (g − 2)µ.

For both the real and complex singlet scalar, we have additionally allowed the singlet

and doublet VL fermions to mix through interactions with the SM Higgs, thus introducing

a source of chiral-symmetry violation that, by being proportional to the mass of the heavy

leptons, can boost δ (g − 2)µ. The anomaly can thus be accommodated for masses up to

∼ 3TeV. The same effect, however, generates large contributions to the EWPOs that, for

the large fermion mixing, exclude part of the parameter space. In particular, we find that

in the real scalar case with mixing VL fermions the viable part of the parameter space can

be probed almost entirely by a combination of the LHC, dark matter direct detection, and

future electroweak precision experiments.
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The parameter space is more constrained by the relic density in cases with an SU(2)

scalar doublet. Typical masses range from mDM ≈ 40GeV to the Higgs-resonance, mDM ≈
mh/2. Most of the parameter space is almost entirely tested by LHC 2-lepton searches,

except for the region of compressed spectra, when the new fermions and scalars are almost

degenerate. Specific properties arise in the case with SU(2) triplet fermions where, thanks

to the well known presence of a doubly charged lepton in the spectrum, which can enhance

the calculation of δ (g − 2)µ, the parameter space is confined to Higgs resonance.

Overall, our study shows that scenarios with one type of BSM scalar and fermions,

which in general can accommodate (g − 2)µ for a relatively large range of masses and

Yukawa couplings, become strongly constrained when the relic density is added to the set of

assumptions. That makes them very predictive in case a positive measurement is confirmed

at Fermilab or J-PARC. That is in general not true, however, for scenarios with singlet-

doublet mixing, since the number of free parameters is large enough to accommodate both

(g− 2)µ and Ωh2 and evade other experimental constraints. For these scenarios, increased

precision measurements of Z-physics observables in future electron-positron colliders will

be able to disentangle some of the degeneracies.
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