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EXPECTED ABSOLUTE VALUE ESTIMATORS FOR A SPATIALLY

ADAPTED REGULARIZATION PARAMETER CHOICE RULE IN

L1-TV-BASED IMAGE RESTORATION

MICHAEL HINTERMÜLLER AND M. MONSERRAT RINCON-CAMACHO

Abstract. A total variation (TV) model with a L1-fidelity term and a spatially adapted regu-
larization parameter is presented in order to reconstruct images contaminated by impulse noise.
This model intends to preserve small details while homogeneous features still remain smooth.
The regularization parameter is locally adapted according to a local expected absolute value es-
timator depending on the statistical characteristics of the noise. The numerical solution of the
L1-TV minimization problem with a spatially adapted parameter is obtained by a superlinearly
convergent algorithm based on Fenchel-duality and inexact semismooth Newton techniques,
which is stable with respect to noise in the data. Numerical results justifying the advantage of
such a regularization parameter choice rule are presented.

1. Introduction

Images are often blurred and corrupted by different kinds of noise, such as Gaussian noise,
random-valued impulse noise or salt-and-pepper noise; see Figure 1 (a) and (d) on page 16. The
deblurring and denoising of such images are necessary before further image processing operations,
such as edge detection, segmentation, or object recognition, are performed.

The image û is considered to be a real function defined on a bounded and piecewise smooth
open subset Ω of R

2 with range [0, 1]. The corrupted image z is then given by

(1.1) z = Kû + ρû.

Here, K ∈ L(L2(Ω)) is a blurring operator, which is assumed to be known, and by L(L2(Ω))
we denote the space of linear and continuous operators from L2(Ω) to L2(Ω). The quantity
ρû represents the noise, which may or may not depend on the original image. In their seminal
work [18], Rudin, Osher and Fatemi proposed total variation regularization for image restoration.
The corresponding minimization task is as follows:

(1.2)
minimize J(u) :=

∫

Ω
|Du| over u ∈ BV (Ω)

subject to (s.t.)
∫

Ω Ku dx =
∫

Ω z dx,
∫

Ω |Ku − z|2dx = σ2|Ω|,

where BV (Ω) denotes the space of functions of bounded variation, i.e. u ∈ BV (Ω) iff u ∈ L1(Ω)
and the BV -seminorm

∫

Ω

|Du| = sup

{∫

Ω

u div~v dx : ~v ∈ (C∞
0 (Ω))2, |~v|l2 ≤ 1

}
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is finite. In what follows we refer to (1.2) as the ROF-model. Usually, the ROF-model is solved
via the following unconstrained optimization problem:

(1.3) minimize

∫

Ω

|Du| + λ

2

∫

Ω

|Ku − z|2dx over u ∈ BV (Ω)

for a given λ > 0. For more details about the ROF-model; see, e.g., [4,5,7,10,16,17,21,22,24,25].
In [5], conditions are specified such that (1.3) is equivalent to (1.2) for an adequate λ ≥ 0. In
order to cope with different image scales, in [12] the spatial adaptation of λ is studied. For this
purpose, the following model with pointwise almost everywhere (a.e.) constraints, i.e.,

(1.4) minimize

∫

Ω

|Du| over u ∈ BV (Ω), subject to S(u)(x) ≤ σ2 for almost every x ∈ Ω

was proposed in order to find an adequate function λ ∈ L∞(Ω) for the model

(1.5) minimize

∫

Ω

|Du| + 1

2

∫

Ω

λ|Ku − z|2dx over u ∈ BV (Ω).

In (1.4), S(u) represents a local variance estimator which relies on some local filter such as the
mean filter, the Gaussian filter or the Wiener filter. In the present work, a similar approach is
proposed to improve the total variation model with an L1 data-fidelity term, i.e.

(1.6) minimize

∫

Ω

|Du| +
∫

Ω

λ|Ku − z| dx over u ∈ BV (Ω).

The standard formulation of (1.6) with a scalar λ (rather than an L∞(Ω)-function) was studied,
e.g., in [6], [19], [20] and [11] among other references.

Concerning the blurring by the known operator K we mention that in our tests we use a
Gaussian convolution with a 9 × 9 window and a standard deviation of 1. Its discrete version is
ill-conditioned, but invertible. We emphasize, however, that our subsequent theory and algorithms
work as long as KK∗ is invertible. Here, K∗ denotes the adjoint of K. Numerically, we do not
need to store the blurring operator, rather we store the convolution kernel. Consequently, for the
restoration we rely on an iterative solver (bi-conjugate gradient stabilized) which only needs the
application of the (discrete) blurring operator to a vector (discrete image).

The outline of the rest of the paper is as follows. In Section 2 descriptive statistics of Gaussian
white noise, random-valued impulse noise and salt-and-pepper noise are listed. In Section 3, a
relation between the constrained and unconstrained models with L1 data-fidelity term and the
existence of their solutions are studied. A primal-dual method for solving the problem (1.6) with
λ ∈ L∞(Ω) is the subject of Section 4. We call this model spatially adapted total variation,
denoted by SA-TV for short. Its numerical solution relies on the algorithm presented in [11].
Section 5 focuses on how to automatically adapt the parameter by considering a local expected
absolute value estimator, denoted by LEAV E. In Section 6 the proposed algorithm is briefly
summarized. Numerical results for the restoration of perturbed images are presented in Section
7. The paper ends by conclusions and further outlook.

2. Statistical characteristics of the noise

In this section, the characteristics of the noise corrupting the image are described. In order to
simplify the exposition, no blurring is considered. As it was stated before, the image is a function
û defined over a domain Ω ⊂ R

2 which is corrupted by noise. At a point x ∈ Ω, the resulting
contaminated image z(x) = û(x)+ ρû(x) is a stochastic observation, whose random element ρû(x)
depends on the underlying type of noise. For any two points of the domain x, y ∈ Ω, ρû(x) and
ρû(y) are independent.

Despite the abuse of notation, for the ease of exposition let ρ denote the random variable
representing the noise corrupting the image, and let f be its probability density function. There
are different measures that describe the behavior of the random variable (r.v.) ρ. An important
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measure of location is the mean, here denoted by ϑ, which is given by
(2.1)

ϑ = E(ρ) =

{
∫∞

−∞ ξρf(ξρ) dξρ, if ρ is a continuous random variable (c.r.v),
∑

ξρ∈V ξρf(ξρ), if ρ is a discrete random variable (d.r.v) in a universe V .

A dispersion measure of interest is the variance

(2.2) σ2 = Var(ρ) = E[(ρ − ϑ)2] = E(ρ2) − ϑ2 =

{
∫∞

−∞
ξ2
ρf(ξρ) dξρ − ϑ2, if ρ is a c.r.v.,

∑

ξρ∈V ξ2
ρf(ξρ) − ϑ2, if ρ is a d.r.v.

In what follows, we mainly utilize the expected absolute value given by

(2.3) ν = EAV(ρ) = E(|ρ|) =

{
∫∞

−∞
|ξρ|f(ξρ) dξρ, if ρ is a c.r.v.,

∑

ξρ∈V |ξρ|f(ξρ), if ρ is a d.r.v.

2.1. Gaussian noise. In this case, ρ is normally distributed, with expectation 0 and variance σ2.
The probability density function is given by

(2.4) f(ξρ) =
1

σ
√

2π
exp

(

−
ξ2
ρ

2σ2

)

and the mean, variance and expected absolute value are

(2.5) E(ρ) = 0, Var(ρ) = E(ρ2) = σ2 and EAV(ρ) = E(|ρ|) =

√

2

π
σ.

2.2. Salt-and-pepper noise. The salt-and-pepper characteristics are more difficult to describe.
Here the random variable ρ depends on the value of the function. Thus, the associated conditional
probability density function depends on the value u (once more abusing notation):

(2.6) f(ξρ | u) =







1 − r if ξρ = 0,
r
2 if ξρ = 1 − u,
r
2 if ξρ = −u,

here | stands for “given”. As it can be expected, the mean and the variance depend on u:

(2.7) E(ρ | u) =
r

2
(1 − 2u), Var(ρ) =

r

2
(1 − 2u + 2u2) − r2

4
+ r2u(1 − u).

Since the range of u belongs to the interval [0, 1], we have

1 − 2u + 2u2 ≤ 1 and r2u(1 − u) ≤ r2,

which yield the following estimates:

(2.8) E(ρ | u) ∈
[

− r

2
,
r

2

]

and Var(ρ | u) ≤ r

2
+

3r2

4
.

However, the expected absolute value does not depend on the value u. It is given by

(2.9) EAV(ρ | u) = E(|ρ| | u) =
r

2
.

2.3. Random-valued impulse noise. This kind of noise also depends on the value of the image,
as in the case of salt-and-pepper noise. Its conditional probability density function is described in
dependence on u by

(2.10) f(ξρ | u) =

{

1 − r if ξρ = 0,
r if ξρ = y − u,

where y is a uniformly distributed random variable in the range [0, 1]. The mean and the variance
depending on u are given by

(2.11) E(ρ | u) = r

(

1

2
− u

)

and Var(ρ) = r

(

1

3
− u + u2

)

− r2

(

1

4
− u + u2

)

.
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Similarly as above, the following estimates are obtained

(2.12) E(ρ | u) ∈
[

− r

2
,
r

2

]

and Var(ρ | u) ≤ r

3
+

r2

4
.

Here, the expected absolute value depends also on the value u:

(2.13) EAV(ρ | u) = E(|ρ| | u) = r

(

u2 − u +
1

2

)

.

Since the range of u is between 0 and 1, we have that EAV(ρ | u) ∈
[

r
4 , r

2

]

.

3. Constrained and unconstrained L1-TV models

As it was mentioned in the introduction, a model commonly used to restore images contaminated
by Gaussian white noise is the ROF-model

(3.1) minimize

∫

Ω

|Du| + λ

2

∫

Ω

|Ku − z|2dx over u ∈ BV (Ω),

with K ∈ L(L2(Ω)) and z ∈ L2(Ω). Recently, in [12] the locally constrained model
(3.2)

minimize

∫

Ω

|Du| over u ∈ BV (Ω) s.t.

∫

Ω

w(x, y)|Ku − z|2(y)dy ≤ σ2 for almost every x ∈ Ω

was considered, where w is the mean filter defined as

(3.3) w(x, y) =

{ 1
ω2

δ

if |y − x|l∞ ≤ ω
2 ,

δ else,

with x ∈ Ω fixed. The quantity ω > 0 is assumed sufficiently small and represents the essential
width of the filter window and 0 < δ ≪ 1. Moreover, we have ωδ such that

∫

Ω

∫

Ω
w(x, y)dydx = 1.

Thus, the Lagrange multiplier associated with the constraints in the model (3.2) is used to provide
an adequate function λ when solving the unconstrained problem

(3.4) minimize

∫

Ω

|Du| + 1

2

∫

Ω

λ|Ku − z|2dx over u ∈ BV (Ω).

The present text focusses on the L1-total-variation restoration model

(3.5) minimize

∫

Ω

|Du| +
∫

Ω

λ|Ku − z| dx over u ∈ BV (Ω),

where λ ∈ L∞(Ω) with ess inf λ ≥ λ > 0 and its locally constrained variant
(3.6)

minimize

∫

Ω

|Du| over u ∈ BV (Ω) s.t.

∫

Ω

w(x, y)|Ku − z|(y)dy ≤ ν for almost every x ∈ Ω.

Here, the value of ν ∈ R is the expected absolute value that depends on the type of noise, such as
Gaussian white noise, salt-and-pepper noise or random-valued impulse noise. Note that here we
assume that in the case of random-valued impulse noise, ν is a fixed number in the interval [ r

4 , r
2 ].

In our numerics, however, we report on results when ν is selected empirically in dependence on
some approximation of the true image.

For the existence proof for (3.5) and (3.6) a few prerequisits are needed. Assume that w is a
normalized filter, i.e. w ∈ L∞(Ω × Ω), and w ≥ 0 on Ω × Ω with

(3.7)

∫

Ω

∫

Ω

w(x, y) dy dx = 1 and

∫

Ω

∫

Ω

w(x, y)|φ(y)| dy dx ≥ ǫ‖φ‖L1(Ω) ∀φ ∈ L1(Ω)

for some ǫ > 0 independent of φ. An instance satisfying (3.7) is the mean filter defined in (3.3).
The w-smoothed version of |Ku − z| is denoted by S(u) and is given by

(3.8) S(u)(x) :=

∫

Ω

w(x, y)|Ku − z|(y) dy for x ∈ Ω.
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Since Ku − z ∈ L1(Ω) and w ∈ L∞(Ω × Ω), we have S(u) ∈ L∞(Ω). Moreover, note that
S : L2(Ω) → L∞(Ω) is continuous. The closed and convex feasible set of (3.6) is given by

(3.9) U = {u ∈ BV (Ω) : S(u) ≤ ν a.e. in Ω}.
In order to prove the existence of a solution to the problems (3.5) and (3.6), a technique similar

to the one of [1] is utilized in this section. We start by establishing a BV -coercivity result for the
functional

(3.10) Q(u) = J(u) +

∫

Ω

S(u)(x) dx,

where J(u) :=
∫

Ω
|Du|.

Proposition 1. Assume that K does not annihilate constant functions, i.e. KχΩ 6= 0 where

χΩ(x) = 1 for x ∈ Ω. Then ‖u‖BV (Ω) → ∞ implies Q(u) → ∞.

Proof. Any u ∈ BV (Ω) can be decomposed according to

u = t + v, with t =

(

∫

Ω
u dx

|Ω|

)

χΩ and

∫

Ω

v dx = 0.

This yields

‖u‖BV ≤ ‖v‖BV + ‖t‖BV =

∫

Ω

|v| dx + J(v) +

∫

Ω

|t| dx + J(t)

= J(v) + ‖v‖L1(Ω) + ‖t‖L1(Ω)

≤ (1 + C1)J(v) + ‖t‖L1(Ω).

here the inequality ‖v‖L1(Ω) ≤ C1J(v) results from the Sobolev inequality ‖v‖L2(Ω) ≤ C4J(v) with
C4 > 0; see [15, page 24]. Thus, we infer

Q(u) ≥ J(u) + ǫ‖Kv − z + Kt‖L1(Ω)

≥ J(u) + ǫ‖Kt‖L1(Ω) − ǫ‖Kv − z‖L1(Ω)

≥ J(u) + ǫ‖Kt‖L1(Ω) − ǫ(C3 ‖v‖L2(Ω) + ‖z‖L1(Ω))

≥ J(v) + ǫ‖Kt‖L1(Ω) − ǫC3C4J(v) − ǫ‖z‖L1(Ω)

≥ J(v) + ǫC2‖t‖L1(Ω) − ǫC3C4J(v) − ǫ‖z‖L1(Ω)

≥ (1 − ǫC3C4)J(v) + ǫC2‖t‖L1(Ω) − ǫ‖z‖L1(Ω),

where C2, C3 and C4 are positive constants. Here we used the fact that K does not annihilate
constant functions, i.e. C2 is such that ‖Kt‖L1(Ω) ≥ C2‖t‖L1(Ω). The above estimate yields

‖t‖L1(Ω) ≤
1

ǫC2
[Q(u) + ǫ‖z‖L1(Ω) + (ǫC3C4 − 1)J(v)]

≤ 1

ǫC2
[Q(u) + ǫC3C4Q(u) + ǫ‖z‖L1(Ω)]

≤ C(ǫ)Q(u) +
1

C2
‖z‖L1(Ω)

where C(ǫ) = max
(

1
ǫC2

, C3C4

C2

)

. From this we obtain that

‖u‖BV ≤ ‖t‖L1(Ω) + (1 + C1)J(v)

≤ C(ǫ)Q(u) +
1

C2
‖z‖L1(Ω) + (1 + C1)J(v)

≤ [C(ǫ) + 1 + C1]Q(u) +
1

C2
‖z‖L1(Ω),

which yields the assertion. �

The existence of a solution of the problem (3.6) is argued as follows.
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Theorem 2. Assume that K ∈ L(L2(Ω)) does not annihilate constant functions. Then problem

(3.6) admits a solution.

Proof. Let {un} ⊂ U be a minimizing sequence. Since {un} must satisfy the constraints in (3.6),
we have that Q(un) ≤ J(un)+ |Ω|ν where Q is given in (3.10) and |Ω| is the volume of the domain
Ω. Hence, Proposition 1 implies that {un} is bounded in BV (Ω). According to Theorem 2.6
in [1] there exists a subsequence {unk

} which converges weakly in L2(Ω) to some ũ ∈ L2(Ω). The
functional J is weakly lower semicontinuous with respect to the L2(Ω) topology; see Theorem 2.3
in [1]. Thus, ũ ∈ BV (Ω). The sequence {Dunk

} converges weakly as a measure to Dũ, by Lemma
2.5 in [1]. Hence, we have

(3.11) J(ũ) ≤ lim inf
k→∞

J(unk
) = inf

u∈U
J(u).

Since K is a continuous linear operator, {Kunk
} converges weakly to Kũ in L2(Ω). Moreover,

since U is convex and closed (and, thus, weakly closed), we have S(ũ) ≤ ν a.e. in Ω. Therefore, ũ
is a solution to the problem. �

Due to the convexity (only) of the problem, there is no uniqueness result. Next, we study
the relation between the problems (3.5) and (3.6). As it is done in [12], the following penalized
problem is considered:

(3.12) minimize Qγ(u) := J(u) +
γ

2

∫

Ω

max(S(u) − ν, 0)2dx over u ∈ BV (Ω),

where γ > 0 denotes a penalty parameter. The proof of the following proposition is similar to the
one of Proposition 5 in [12].

Proposition 3. Let the assumptions of Theorem 2 be satisfied. Then problem (3.12) admits a

solution uγ ∈ BV (Ω) for every γ > 0. Moreover, for γ → +∞, {uγ} converges weakly along a

subsequence in L2(Ω) to a solution of (3.6).

Proof. Since S : L2(Ω) → L∞(Ω) and max(·, 0) : L2(Ω) → L2(Ω) are continuous and convex,
respectively, and since J(u) is weakly lower semicontinuous, then Qγ : BV (Ω) → R is weakly
lower semicontinuous. Let {un} ⊂ BV (Ω) be a minimizing sequence, and let ũ be a solution of
(3.6). For sufficiently large n, Qγ(un) ≤ Qγ(ũ) + 1 = J(ũ) + 1. Further, since S(u) ≥ 0 a.e. in Ω
for any u ∈ BV (Ω) there exists a constant C (independent of n and γ) such that ‖S(un)‖L2(Ω) ≤ C
for all n ∈ N. By Proposition 1, {un} is bounded in BV (Ω). Observing the lower-semicontinuity
of the penalty term, the existence of a solution of (3.12) for fixed γ can be argued similarly as
in the proof of Theorem 2. Moreover, it is clear that {uγ} is bounded in BV (Ω). By weak lower
semicontinuity

J(ũγ) ≤ lim inf
γ→+∞

Qγ(uγ) ≤ J(ũ) = inf
u∈U

J(u),

where ũγ is a weak limit in L2(Ω) of a subsequence of {uγ} in L2(Ω) (still denoted by {uγ}). It
is necessary to show that ũγ ∈ U . For all γ > 0 we have

γ

2

∫

Ω

max(S(uγ) − ν, 0)2 dx ≤ J(ũ).

Thus, as γ → ∞ we infer
∫

Ω

max(S(uγ) − ν, 0)2dx → 0

and by the continuity of K, weak lower semicontinuity and Fatou’s lemma we have S(ũγ) ≤ ν a.e.
in Ω. �

In the same way, it can be obtained that

(3.13) ‖max(S(uγn
) − ν, 0)‖L2(Ω) = O(1/

√
γn),

where O(an)/an → 0 for a sequence {an} with an → 0.
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For subsequent results, let us define

λ◦
γ := γ max(S(uγ) − ν, 0),(3.14)

λγ :=

∫

Ω

w(x, y)λ◦
γ(y) dy.(3.15)

Utilizing the proof technique of Theorem 6 of [12], we obtain the following result.

Theorem 4. Let the assumptions of Theorem 2 hold true. Moreover, we assume that there exists

C > 0 such that γn‖max(S(uγn
) − ν, 0)‖L1(Ω) ≤ C for all n ∈ N. Then there exist λ̃ ∈ L∞(Ω), a

bounded Borel measure λ̃◦ and a subsequence {γnk
} such that the following properties hold true:

(i)
∫

Ω λγnk
g dx →

∫

Ω λ̃g dx for all g ∈ L1(Ω) and λ̃ ≥ 0 a.e. in Ω.

(ii)
∫

Ω ϕλ◦
γnk

dx →
∫

Ω ϕdλ̃◦ for all ϕ ∈ C(Ω̄), λ̃◦ ≥ 0 and
∫

Ω λ◦
γn

(S(uγn
) − ν) dx → 0.

Proof. The assumption of the existence of a constant C > 0 such that γn‖max(S(uγn
)−ν, 0)‖L1(Ω) ≤

C implies that there exists a constant C′ > 0 independent of γn such that

‖λγn
‖L∞(Ω) ≤ γn‖w‖L∞(Ω×Ω)‖max(S(uγn

) − ν, 0)‖L1(Ω) ≤ C′.

Thus, the weak∗ sequential compactness of the closed unit ball in L∞(Ω) yields the first part of

(i). The non-negativity of λ̃ is implied of the definition of λγ . This proves (i).
Concerning (ii) we observe that

∣

∣

∣

∣

∫

Ω

λ◦
γn

max(S(uγn
) − ν, 0)dx

∣

∣

∣

∣

= γn‖max(S(uγn
) − ν, 0)‖2

L2(Ω).

Thus, (3.13) implies the last relation of (ii). The first limit in (ii) follows immediately from the

boundedness of γn‖max(S(uγn
)− ν, 0)‖L1(Ω) and, hence, of |λ◦

γn
|. The non-negativity of λ̃◦ is an

immediate consequence of the definition of λ◦
γ

�

We note that if (3.13) holds true with O (1/
√

γ) replaced by O(1/γ), i.e. there exists a constant
C such that

(3.16) ‖max(S(uγn
) − ν, 0)‖L2(Ω) ≤ C̃

γn
,

then λ̃◦ ∈ L2(Ω). In this case, the system of Theorem 4(ii) becomes

λ̃◦ ≥ 0 a.e. in Ω, S(ũ) ≤ ν a.e. in Ω, lim
n→∞

∫

Ω

λ◦
γn

(S(uγn
) − ν) dx = 0.

If the last relation above holds as
∫

Ω
λ̃◦ (S(ũ) − ν) dx = 0, then we may equivalently write

(3.17) λ̃◦ ≥ 0 a.e. in Ω, λ̃◦ = λ̃◦ + τ max(S(ũ) − ν, 0),

with τ > 0 arbitrary, but fixed.

4. Primal-Dual Method for L1 TV Image Restoration

In this section we propose a primal-dual method for solving (3.5). We start by recalling the
Fenchel duality theorem in infinite-dimensional spaces; see [14].

Theorem 5. Let V and Y be Banach spaces with topological duals denoted by V ∗ and Y ∗, re-

spectively. Let Λ ∈ L(V, Y ), with Λ∗ its adjoint, and let Ψ : V → R ∪ {∞}, Φ : Y → R ∪ {∞} be

convex lower semicontinuous functionals not identically equal to ∞, and assume that there exists

v0 ∈ V such that Ψ(v0) < ∞, Φ(Λv0) < ∞, and Φ is continuous at Λv0. Then

(4.1) inf
v∈V

{Ψ(v) + Φ(Λv)} = sup
q∈Y ∗

{−Ψ∗(Λ∗q) − Φ∗(−q)} ,

where Ψ∗ : V ∗ → R ∪ {∞} denotes the conjugate of Ψ defined by

(4.2) Ψ∗(v∗) = sup
v∈V

{

〈v, v∗〉V,V ∗ − Ψ(v)
}

.
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Moreover, (v̄, q̄) is a solution pair for (4.1) if and only if

Λ∗q̄ ∈ ∂Ψ(v̄),(4.3)

−q̄ ∈ ∂Φ(Λv̄).(4.4)

4.1. Fenchel calculus. We begin with the formal computation of the Fenchel-Legendre dual of
(3.5). For this purpose, set Λ := ∇,

Ψ(u) :=

∫

Ω

λ |Ku − z| dx and Φ(~q) :=

∫

Ω

|~q|l2 dx.

Thus, the conjugate of Ψ(u) is defined by

(4.5) Ψ∗(u∗) = sup
u

{

〈u, u∗〉 −
∫

Ω

λ|Ku − z|dx

}

,

where 〈u, v〉 =
∫

Ω uv dx. From this we obtain that

u∗ − K∗λσ(Ku − z) = 0,

where σ(v) ∈ ∂|v|. Here and below ∂(·) denotes the subdifferential of convex analysis. Hence Ψ∗

has a maximum if u∗ = K∗λσ(Ku − z). This implies Ku∗ = KK∗λσ(Ku − z) and, if KK∗ is
invertible, λσ(Ku − z) = (KK∗)−1Ku∗. Therefore, we find

Ψ∗(u∗) = 〈u, K∗λσ(Ku − z)〉 −
∫

Ω

λ|Ku − z|dx

=

∫

{Ku≥z}

(λKu − λKu + λz) dx +

∫

{Ku<z}

(−λKu + λKu − λz) dx

=

∫

Ω

zλσ(Ku − z) dx

=
〈

z, (KK∗)−1Ku∗
〉

together with the condition |(KK∗)−1Ku∗| ≤ λ due to (KK∗)−1Ku∗ = λσ(Ku − z) and
σ(Ku − z) ∈ ∂|Ku − z|. Thus, the conjugates of Ψ(u) and Φ(~q) are

Ψ∗(u∗) :=
〈

z, (KK∗)−1Ku∗
〉

+ I{|(KK∗)−1Ku∗|≤ λ}(u
∗),

Φ∗(~q∗) :=I{|~w(x)|l2≤ 1}(~q
∗),

where IS denotes the indicator function of S. For the latter we refer to [16].
According to the Fenchel duality theorem, for u∗ = ∇∗~p∗ = −div~p, the dual problem of (3.5) is

(4.6)

minimize −
〈

z, (KK∗)−1K div~p∗
〉

over ~p∗

s.t. |(KK∗)−1K div~p∗| ≤ λ,
|~p∗|l2 ≤ 1.

4.2. Fenchel predual. The computations so far have been just formal. In this section we fix an
appropriate function space setting so that we are able to apply Theorem 5 and rigorously establish
(4.6) as the Fenchel pre-dual of (3.5). From now on we assume that

(4.7) (KK∗) is continuously invertible.

We note that this assumption imposes a condition on the possible blurring operators. In our
numerics we utilize a Gaussian convolution with a small window size (9-by-9) which satisfies (4.7).

Define Λ := (KK∗)−1Kdiv, Y := L2(Ω), V := H0(div), where

L
2(Ω) = L2(Ω) × L2(Ω), H0(div) = {~v ∈ L

2(Ω) : div ~v ∈ L2(Ω), ~v · ~n = 0 on ∂Ω}, and

(4.8)
Φ : Y → R, Φ(v) = −〈z, v〉 + I{v∈L2(Ω) : |v|≤λ a.e. in Ω}(v),

Ψ : V → R, Ψ(~p) = I{~w∈H0(div) : |~w|l2≤1 a.e. in Ω}(~p),

where ~n denotes the outward unit normal to ∂Ω. Consider the problem

(4.9) minimize Φ(Λ~p) + Ψ(~p) over ~p ∈ H0(div).
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Note that Theorem 5 requires the continuity of Φ at a point Λ~p0 where ~p0 ∈ H0(div). This,
however, can not be guaranteed with such a setting due to the presence of the indicator func-
tion. Therefore, the following Moreau-Yosida type regularization of the indicator function in Φ is
introduced:

(4.10)
minimize − 〈z, Λ~p〉 + µ

2 ‖ (|Λ~p| − λ)
+ ‖2

L2(Ω) over ~p ∈ H0(div)

s.t. |~p|l2 ≤ 1 a.e. in Ω.

where (v)+ = max(v, 0) in the pointwise a.e. sense and µ > 0. Rather than the choices in (4.8),
the following functions are considered for dualization:

(4.11)
Φµ : Y → R, Φµ(v) = −〈z, v〉 + µ

2 ‖ (|v| − λ)
+ ‖2

L2(Ω),

Ψ : V → R, Ψ(~p) = I{~w∈H0(div) : |~w|l2≤1 a.e. in Ω}(~p).

The convex conjugates of Φµ and Ψ are given by

(4.12)
Φ∗

µ : Y ∗ → R, Φ∗
µ(v∗) = supv∈Y

{

〈v, v∗〉 + 〈z, v〉 − µ
2 ‖ (|v| − λ)

+ ‖2
L2(Ω)

}

,

Ψ∗ : V ∗ → R, Ψ∗(~p∗) = sup~p∈V

{

〈~p, ~p∗〉V,V ∗ − I{~w∈H0(div) : |~w|l2≤1 a.e. in Ω}(~p)
}

.

For Φ∗
µ we obtain

(4.13) v∗ + z − µ sign(v)(|v| − λ)+ = 0.

For our further computations, we consider the following sets:

Ω0 = {x ∈ Ω : |v(x)| ≤ λ(x)}, implying v∗ + z = 0,

Ω+ = {x ∈ Ω : v(x) > λ(x)}, implying v =
v∗ + z

µ
+ λ,

Ω− = {x ∈ Ω : v(x) < −λ(x)}, implying v =
v∗ + z

µ
− λ.

By splitting the domain Ω into the previous subsets, i.e. Ω = Ω0∪̇Ω+∪̇Ω−, it can be shown that

(4.14) Φ∗
µ(v∗) =

1

2µ
‖v∗ + z‖2

L2(Ω) + ‖λ(v∗ + z)‖L1(Ω).

According to the results in [16], the conjugate Ψ∗ is given by

(4.15) Ψ∗(~p∗) = sup
~p∈S1

〈~p, ~p∗〉 ,

where S1 = {~p ∈ H0(div) : |~p|l2 ≤ 1 a.e. in Ω}. Let us define the set

(4.16) S2 = {~p ∈ C1
0 (Ω) × C1

0 (Ω) : |~p|l2 ≤ 1 a.e. in Ω},
which is dense in the topology of H0(div) in S1. Further, (D(Ω))2 is dense in H0(div), where
D(Ω) is the space of test functions [2]. Let ~p be an arbitrary element of S1 and let the sequence
{~pn} ∈ (D(Ω))2 converge in H0(div) to ~p. By P we denote the canonical projection in H0(div)
onto the closed convex subset S1. Since ~p ∈ S1, we have that

‖~p− P~pn‖H0(div) ≤ ‖~p − ~pn‖H0(div) + ‖~pn − P~pn‖H0(div)

≤ 2‖~p − ~pn‖H0(div) → 0 as n → ∞,

where ‖~w‖2
H0(div) = ‖~w‖2

L2(Ω) + ‖div ~w‖2
L2(Ω). According to (4.15), for v∗ ∈ L2(Ω) and Λ∗ ∈

L(L2(Ω), H0(div)∗) we have

(4.17) Ψ∗(Λ∗v∗) = sup
~p∈S2

〈

v∗,−(KK∗)−1Kdiv~p
〉

.

We define u = K∗(KK∗)−1v∗, such that Λ∗v∗ = (−div)∗K∗(KK∗)−1v∗ = (−div)∗u. Hence,

(4.18) Ψ∗((−div)∗u) = sup
~p∈S2

〈u,−div~p〉 .
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This function is finite if and only if u ∈ BV (Ω), i.e.

(4.19) Ψ∗((−div)∗u) =

∫

Ω

|Du| < ∞ for u ∈ BV (Ω).

Since u = K∗(KK∗)−1v∗, we infer v∗ = Ku and the function Φ∗
µ(−v∗) becomes

(4.20) Φ∗
µ(−v∗) =

1

2µ
‖Ku − z‖2

L2(Ω) + ‖λ(Ku − z)‖L1(Ω).

By (4.1), the dual problem of (4.10) is given by

(4.21) minimize

∫

Ω

|Du| + 1

2µ
‖Ku − z‖2

L2(Ω) + ‖λ(Ku − z)‖L1(Ω) over u ∈ BV (Ω).

Moreover, according to (4.3), a primal-dual solution pair (ū, ~̄p) of the problems (4.10) and (4.21)
satisfies

(4.22)
−div~̄p = 1

µ
K∗(Ku − z) + K∗λ σ(Kū − z),

〈

(−div)∗ū, ~p − ~̄p
〉

H0(div)∗,H0(div)
≤ 0, for all ~p ∈ S1.

Notice the relation between (4.21) and the original problem (1.6). In fact, the penalization of the
dual constraint |Λ~p| ≤ λ a.e. in Ω in (4.10) yields, after yet another dualization, a least-squares
data fidelity term in L2(Ω) weighted by 1

2µ
as it is the case in (4.21). Thus, the resulting problem

has a combined L1-L2-fidelity term. Since we are interested in µ → ∞, the L1-fidelity term
increasingly dominates. It can even be shown that (4.21) converges to (1.6) as µ → ∞. In our
numerics, we choose µ = 106.

4.3. Reconstructabiliy, a first regularization. It turns out that for a given dual solution ~̄p,
the image intensity u, i.e. the primal solution, cannot be recovered in general from (4.22). As
a remedy we introduce an appropriate regularization of the dual problem (4.10), which is more
amenable to computations than the primal problem (4.21). In fact, we consider the following dual
regularization:

(4.23)
minimize − 〈z, Λ~p∗〉 + µ

2 ‖ (|Λ~p∗| − λ)
+ ‖2

L2(Ω) + β
2 ‖Λ~p∗‖2

L2(Ω) over ~p∗ ∈ H0(div),

s.t. |~p∗|l2 ≤ 1 a.e. in Ω,

where β > 0 is a regularization parameter. As we shall see from dualization, the β-term results in
a local smoothing of the L1 fidelity term in (4.21). In order to see this, define

(4.24)
Φµ,β(v) := −〈z, v〉 + µ

2 ‖(|v| − λ)+‖2
L2(Ω) + β

2 ‖v‖2
L2(Ω),

Ψ(~p) := I{~w∈H0(div):|~w|l2≤1 a.e. in Ω}(~p
∗).

The dual of Φµ,β(v) is given by Φ∗
µ,β(v∗) = supv {〈v, v∗〉 − Φµ,β(v)}. Hence, we obtain

(4.25) v∗ + z − µ σ(v)(|v| − λ)+ − βv = 0.

Splitting the domain Ω according to Ω = Ω0∪̇Ω+∪̇Ω− yields

Ω0 = {x ∈ Ω : |v(x)| ≤ λ(x)}, which implies v =
v∗ + z

β
;

Ω+ = {x ∈ Ω : v(x) > λ(x)}, which implies v =
v∗ + z + µλ

β + µ
;

Ω− = {x ∈ Ω : v(x) < −λ(x)}, which implies v =
v∗ + z − µλ

β + µ
.

From this we obtain that

Φ∗
µ,β(v∗)(x) =

{

1
2β

|v∗ + z|2(x), if |v∗ + z|(x) ≤ λ(x)β,
1

2(β+µ) |v∗ + z|2(x) + µ
µ+β

|λ(v∗ + z)|(x) − µβ
2(µ+β)λ

2(x) if |v∗ + z|(x) > λ(x)β.

(4.26)
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As u = K∗(KK∗)−1v∗, we have v∗ = Ku and the function Φ∗
µ,β(−v∗) becomes

Φ∗
µ,β(−Ku)(x) =

{

1
2β

|Ku − z|2(x), if |Ku − z|(x) ≤ λ(x)β,
1

2(β+µ) |Ku − z|2(x) + µ
µ+β

|λ(Ku − z)|(x) − µβ
2(µ+β)λ

2(x) if |Ku − z|(x) > λ(x)β.

(4.27)

As before, we obtain

(4.28) Ψ∗((−div)∗u) =

∫

Ω

|Du| < ∞ for u ∈ BV (Ω).

Thus, the dual problem of (4.23) is given by

(4.29) minimize

∫

Ω

|Du| +
∫

Ω

Φ∗
µ,β(−Ku) dx over u ∈ BV (Ω).

4.4. Uniqueness of ~p, a second regularization. To ensure the uniqueness of the solution of
the problem (4.23), a Tikhonov type regularization may be used. It is given by
(4.30)

minimize − 〈z, Λ~p〉 + µ
2 ‖ (|Λ~p| − λ)

+ ‖2
L2(Ω) + β

2 ‖Λ~p‖2
L2(Ω) + γ

2‖Pdiv~p‖2
L2(Ω) over ~p ∈ H0(div),

s.t. |~p|l2 ≤ 1 a.e. in Ω,

where, as before, Λ = (KK∗)−1Kdiv. Here, Pdiv denotes the orthogonal projection in L
2(Ω) onto

H0(div 0) with H0(div 0) = {~v ∈ H0(div) : div ~v = 0 a.e. in Ω}. We have

(4.31)
H0(div 0)⊥ = {~v ∈ grad H1(Ω) : div ~v ∈ L2(Ω), ~v · n = 0 on ∂Ω},
H0(div) = H0(div 0)⊥ ⊕ H0(div 0);

see [9] for details. We obtain the following result.

Theorem 6. Let ~̄p ∈ H0(div) be the solution to (4.30) and assume that Kerdiv(K) := {s ∈
div(H0(div)) : Ks = 0} = {0}. Then there exists ~̄v ∈ H0(div)∗ such that

(4.32)
−Λ∗z + µ Λ∗σ(Λ~̄p)(|Λ~̄p| − λ)+ + βΛ∗Λ~̄p + γPdiv~̄p + ~̄v = 0,
〈

~̄v, ~p − ~̄p
〉

H0(div)∗,H0(div)
≤ 0 for all ~p ∈ H0(div)

with |~p|l2 ≤ 1 a.e. in Ω, and the solution ~̄p is unique.

Proof. Due to (4.31), every ~w ∈ H0(div) can be decomposed according to ~w = ~w1 + ~w2 ∈
H0(div 0)⊥ ⊕ H0(div 0). Thus, the problem (4.30) can be expressed in the following way:

(4.33) minimize Ψ(~p) + Φ1(Λ1~p1) + Φ2(Λ2~p2) over ~p ∈ H0(div),

where

(4.34)
Ψ(~p) := I{~w∈H0(div):|~w|l2≤1 a.e. in Ω}(~p),

Φ1(v) := −〈z, v〉 + µ
2 ‖(|v| − λ)+‖2

L2(Ω) + β
2 ‖v‖2

L2(Ω).

and Λ1 = Λ. As it was done in [16], we set

(4.35) Φ2 : L
2(Ω) → R, Φ2(~p) :=

γ

2
‖~p‖2

L2(Ω)

and Λ2 ∈ L(H0(div0), L2(Ω)) with Λ2 the canonical injection. According to Remark 4.3 of Chapter
III in [14], there exists ~̄u1 ∈ L

2(Ω) and ~̄u2 ∈ L
2(Ω) such that

(4.36)

−~̄u1 = −z + µσ(Λ1~̄p1)(|Λ1~̄p1| − λ)+ + βΛ1~̄p1 = −z + µσ(Λ~̄p)(|Λ~̄p| − λ)+ + βΛ~̄p

−~̄u2 = γ~̄p2 = γPdiv~̄p
〈

Λ∗~̄u1 + ~̄u2, ~p − ~̄p
〉

H0(div)∗,H0(div)
≤ 0

which yields (4.32) with ~̄v = Λ∗~̄u1 + ~̄u2.
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In order to prove uniqueness of the solution, we consider the variational form of the first equation
in (4.32) given by
(4.37)
−〈z, Λ~w〉+µ

〈

σ(Λ~̄p)(|Λ~̄p| − λ)+, Λ~w
〉

+β
〈

Λ~̄p, Λ~w
〉

+ γ
〈

Pdiv~̄p, Pdiv ~w
〉

+
〈

~̄v, ~w
〉

H0(div)∗,H0(div)
= 0

for all ~w ∈ H0(div). Let us suppose that (~pi, ~vi) ∈ H0(div) × H0(div)∗, i = 1, 2, are two solutions
with associated multipliers satisfying (4.32), for δ~p = ~p2 − ~p1, δ~v = ~v2 − ~v1 we have

(4.38)
F (~p1, ~p2, ~w) + β 〈Λδ~p, Λ~w〉 + γ 〈Pdivδ~p, Pdiv ~w〉 + 〈δ~v, ~w〉H0(div)∗,H0(div) = 0,

〈δ~v, δ~p〉H0(div)∗,H0(div) ≥ 0,

where

(4.39) F (~p1, ~p2, ~w) = µ
〈

σ(Λ~p2)(|Λ~p2| − λ)+ − σ(Λ~p1)(|Λ~p1| − λ)+, Λ~w
〉

.

Replacing ~w by δ~p, we have that

(4.40) F (~p1, ~p2, δ~p) = µ
〈

σ(Λ~p2)(|Λ~p2| − λ)+ − σ(Λ~p1)(|Λ~p1| − λ)+, Λ~p2 − Λ~p1

〉

.

We define the following functions

(4.41)
A(x) := A(x, ~p1, ~p2) = σ(Λ~p2(x))(|Λ~p2(x)| − λ(x))+ − σ(Λ~p1(x))(|Λ~p1(x)| − λ(x))+,

B(x) := B(x, ~p1, ~p2) = Λ~p2(x) − Λ~p1(x)

and the following splitting of the domain Ω = ∪̇8
i=0Ωi and its implications on A(x) and B(x):

(4.42)

i Ωi A(x) B(x)
0 {x ∈ Ω : |Λ~p2(x)| ≤ λ(x), |Λ~p1(x)| ≤ λ(x)} = 0
1 {x ∈ Ω : |Λ~p2(x)| ≤ λ(x), Λ~p1(x) < −λ(x)} −Λ~p1(x) − λ(x) ≥ 0 ≥ 0
2 {x ∈ Ω : |Λ~p2(x)| ≤ λ(x), Λ~p1(x) > λ(x)} −Λ~p1(x) + λ(x) ≤ 0 ≤ 0
3 {x ∈ Ω : Λ~p2(x) < −λ(x), |Λ~p1(x)| ≤ λ(x)} Λ~p2(x) + λ(x) ≤ 0 ≤ 0
4 {x ∈ Ω : Λ~p2(x) < −λ(x), Λ~p1(x) < −λ(x)} Λ~p2(x) − Λ~p1(x) = A(x)
5 {x ∈ Ω : Λ~p2(x) < −λ(x), Λ~p1(x) > λ(x)} Λ~p2(x) − Λ~p1 + 2λ ≤ 0 ≤ 0
6 {x ∈ Ω : Λ~p2(x) > λ(x), |Λ~p1(x)| ≤ λ(x)} Λ~p2(x) − λ ≥ 0 ≥ 0
7 {x ∈ Ω : Λ~p2(x) > λ(x), Λ~p1(x) < −λ(x)} Λ~p2(x) − Λ~p1 − 2λ ≥ 0 ≥ 0
8 {x ∈ Ω : Λ~p2(x) > λ(x), Λ~p1(x) > λ(x)} Λ~p2(x) − Λ~p1 = A(x)

Thus we infer that F (~p1, ~p2, δ~p) ≥ 0. Replacing ~w by δ~p in equation (4.38), we obtain

(4.43) F (~p1, ~p2, δ~p) + β‖Λδ~p‖2
L2(Ω) + γ‖Pdivδ~p‖2

L2(Ω) = −〈δ~v, δ~p〉H0(div)∗,H0(div) .

From (4.38) and (4.43) we obtain that

(4.44) ‖Λδ~p‖L2(Ω) = 0 and ‖Pdivδ~p‖L2(Ω) = 0.

Note that the invertibility of (KK∗) and our assumption that Kerdiv(K) = {0} yield ‖Λδ~p‖L2(Ω) ≥
c‖divδ~p‖L2(Ω) for some constant c > 0. This and (4.44) imply

(4.45) ‖div δ~p‖L2(Ω) = 0.

Hence, δ~p ∈ H0(div0) and therefore Pdivδ~p = δ~p. This result together with the second part of
(4.44) implies that ‖δ~p‖L2(Ω) = 0, thus ~p1 = ~p2. �

4.5. Alternative setting of the problem. Here, we mention an alternative way of approaching
the solution of (1.6) which is convenient for numerical purposes.

Instead of considering the problem (4.21) the following setting is proposed:
(4.46)

minimize

∫

Ω

|∇u|l2dx +
α

2

∫

Ω

|∇u|2l2dx +
1

2µ

∫

Ω

|Ku− z|2dx +

∫

Ω

λ|Ku− z| dx over u ∈ H1
0 (Ω).

where 0 < α ≪ 1/‖λ‖L∞(Ω). The model (4.46) is a close approximation of the problem (4.21).
Via dual regularization, similar as in Section 4.3, the following problem is obtained

(4.47) minimize

∫

Ω

|∇u|l2 dx +
α

2

∫

Ω

|∇u|2l2dx +

∫

Ω

Φ∗
µ,β(−Ku) dx over u ∈ H1

0 (Ω).
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where Φ∗
µ,β(−Ku) is given by (4.27). In the same way, if the (pre)dual of (4.47) is regularized by

γ
2‖~p‖2

L2(Ω) rather than by γ
2‖Pdiv~p‖2

L2(Ω) like in Section 4.4, and the resulting problem is dualized,

we obtain

(4.48) minimize
α

2

∫

Ω

|∇u|2l2dx +

∫

Ω

Φ∗
µ,β(−Ku) dx +

∫

Ω

Ψ∗
γ(∇u) dx over u ∈ H1

0 (Ω)

where Ψ∗
γ is given by

(4.49) Ψ∗
γ(~w) =

{ 1
2γ
|~w(x)|2l2 , if |~w(x)|l2 < γ,

|~w(x)|l2 − γ
2 , if |~w(x)|l2 ≥ γ;

see [17] for details. According to the Fenchel theorem, the optimality conditions for the coupled
solutions (ū, ~̄p) are

−div~̄p = −α∆ū +
1

µ + β
K∗(Kū − z) +

µ

µ + β
K∗ λ(Kū − z)

max{λβ, |Kū − z|} ,

−~̄p =
∇ū

max{γ, |∇ū|l2}
.

Let ~̄q = −~̄p and v̄ = λ(Kū−z)
max{λβ,|Kū−z|} , then the following system of equations is obtained

−max{βλ, |Kū − z|}v̄ + λ(Kū − z) = 0,(4.50)

div~̄q + α∆u − 1

µ + β
K∗(Ku − z) − µ

µ + β
K∗v̄ = 0,(4.51)

max{γ, |∇ū|l2}~̄q −∇ū = 0.(4.52)

In what follows, we use (4.50)-(4.52) rather than the system associated with (4.30) and its dual.
Notice that by adding the term α

∫

Ω |∇u|2l2dx with α > 0 we lift the solution of (4.21) into

H1
0 (Ω). This has the mathematical advantage of yielding a problem in a reflexive function space

and makes the dualization process convenient, and it has the numerical advantage of allowing us
to reduce the first order system to a system in u (as compared to a system in the vector field ~p).
It can be shown that (4.46) converges to (4.21) as α → 0 and to (1.6) for α → 0 and µ → ∞.

4.6. Primal-dual algorithm. Note that the system (4.50)-(4.52) is non-smooth, i.e. not neces-
sarily Fréchet-differentiable. However, relying on generalized differentiation, it turns out that the
discrete version of this system can be solved efficiently by a semismooth Newton method.

For this purpose let uh ∈ R
M , ph ∈ R

2M , λh ∈ R
M denote the discrete image intensity, dual

variable and spatially dependent λ, respectively, for some M ∈ N which depends on the image
size m × m. Further, let zh ∈ R

M denote the discrete data vector, ∇h ∈ R
2M×M the discrete

gradient operator, ∆h ∈ R
M×M the discrete Laplace operator, and Kh ∈ R

M×M the discrete
blurring operator. Here the mappings | · |, max{·, ·} and sign(·) are understood for vectors in a
componentwise sense. We use the mapping [| · |] : R

2M → R
2M with [|vh|]i = |(vh

i , vh
i+M )T |l2 for

i ∈ {1, . . . , M}, and eh ∈ R
2M is the vector of all ones. The discrete version of (4.50)-(4.52) is

given by

−max{βλh, |Khuh − zh|}vh + λh(Khuh − zh) = 0,(4.53)

−(∇h)T qh + α∆huh − 1

µ + β
(Kh)T (Khuh − zh) − µ

µ + β
(Kh)T vh = 0,(4.54)

max{γeh, [|∇huh|]}qh −∇huh = 0.(4.55)

For the generalized linearization of (4.53)-(4.55), which is required for the semismooth Newton
solver, we use the following element of the generalized Jacobian of max : R

M → R
M , the diagonal

matrix Gmax ∈ R
M×M with

(4.56) (Gmax(w))ii :=

{

1 if wi ≥ 0,
0 if wi < 0

for 1 ≤ i ≤ 1;

compare [8].
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Hence, in every step of our Newton method for solving (4.53)-(4.55) the following system needs
to be solved:

(4.57)





Ah
k −D(mβk

) 0
− 1

µ+β
KT K + α∆h − µ

µ+β
(Kh)T −(∇h)T

Bh
k 0 D(mγk

)









δu

δv

δq



 =





−F k
1

−F k
2

−F k
3





where

Ah
k = [D(λh

k) − D(vh
k )χAβk

D(sign(Khuh
k − zh))]Kh := ΓkKh,

Bh
k = [−I2M + D(qh

k )χAγk
D(mγk

)−1Nh(∇huh
k)]∇h := −Ck∇h,

F k
1 := D(λh

k)(Khuh
k − zh) − D(mβk

)vh
k ,

F k
2 := −(∇h)T qh

k + α∆huh
k − 1

µ + β
(Kh)T (Khuh

k − zh) − µ

µ + β
(Kh)T vh

k ,

F k
3 := −∇huh

k + D(mγk
)qh

k ,

I2M ∈ R
2M×2M is the identity matrix, D(v) is a diagonal matrix with the vector v in the main

diagonal, mβk
= max{βλh

k , |Khuh
k − zh|}, mγk

= max{γeh, [|∇huh
k |]},

χAβk
= D(tβk

) with (tβk
)i =

{

0, if (mβk
)i = β(λh

k)i,
1, else;

χAγk
= D(tγk

) with (tγk
)i =

{

0, if (mγk
)i = γ,

1, else;

Nh(v) =

(

D(vx) D(vy)
D(vx) D(vy)

)

with v = (vx, vy)T ∈ R
2M .

The diagonal matrices D(mβk
) and D(mγk

) are invertible. Therefore, δv and δq are obtained from
the first and third equation in (4.57), respectively, and substituted into the second equation. The
resulting equation for δu is written as

(4.58) Hkδu = fk,

where the matrix Hk and the right-hand side fk are defined by

Hk :=
1

µ + β
(Kh)T Kh − α∆h +

µ

µ + β
(Kh)T D(mβk

)−1ΓkKh + (∇h)T D(mγk
)−1Ck∇h,

fk := F k
2 − µ

µ + β
(Kh)T D(mβk

)−1F k
1 + (∇h)T D(mγk

)−1F k
3 .

First note that the matrix Hk is in general not symmetric, because Ck is not. In [17] it was shown
that the matrix Ck at the solution (uh

k , vh
k , qh

k ) = (ū, v̄, q̄) is positive definite whenever

(C1) [|qh
k |]i ≤ 1, for i = 1, . . . , 2M.

Another important condition is

(C2) (|vh
k |)j ≤ (λh

k)j , for j = 1, . . . , M,

which yields feasibility of the dual variable. In fact, when both (C1) and (C2) are satisfied, the
following result holds true.

Lemma 7. Suppose the conditions (C1) and (C2) hold true and α > 0, then for all k ∈ N, the

matrix Hk is positive definite.

For the proof of the Lemma 7 we refer to [17].
In case the conditions (C1) and (C2) are not satisfied, qh

k and vh
k are projected onto their respec-

tive feasible set. In fact, if (C1) is not satisfied, ((qh
k )i, (q

h
k )i+m) is replaced by max{1, [|qh

k |]i}−1

((qh
k )i, (q

h
k )i+m). Analogously, if (C2) is violated at some index j, (vh

k )j is replaced by (λh
k)j

max{(λh
k)j , (|vh

k |)j}−1(vh
k )j . Thus, the modified system matrix, denoted by H+

k , is positive def-
inite; see [11]. Summarizing the above discussion, our semismooth Newton solver is as follows.
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Semismooth Newton for step 2 of the SA-TV-algorithm.

1: Initialize (uh
0 , ph

0 ) ∈ R
M × R

2M and set k := 0.
2: Estimate the active sets, i.e., determine χAβk+1

∈ R
M×M , χAγk+1

∈ R
2M×2M .

3: If (C1) and (C2) are not satisfied, then compute H+
k ; otherwise H+

k := Hk.

4: Solve H+
k δu = fh

k for δu, and let δuk
denote the solution.

5: Use δuk
to compute δpk

.
6: Update uh

k+1 := uh
k + δuk

, ph
k+1 := ph

k + δpk
.

7: Stop; or set k := k + 1 and return to step 2.

We point out that instead of α > 0, one may use H+
k + εkIM with α = 0, εk > 0 and εk ↓ 0 as

k → ∞ to obtain a positive definite system matrix. For ǫk = ǫ > 0 for all k, this regularization
corresponds to replacing α

∫

Ω
|∇u|2l2dx by ǫ

∫

Ω
|u|2l2dx in (4.46).

The locally superlinear convergence of the above algorithm follows from standard theory; see
[16, 17].

5. Spatial adaptation by local expected absolute value estimators

In the case were the local expected absolute value ν of the noise is at our disposal, as it was
the case in Section 3, the parameter λ may be chosen depending on the local constraint

(5.1) S(u) ≤ ν a.e. in Ω.

We are interested in a reconstructed image such that its expected absolute value of the residual is
close to the expected absolute value of the noise in both the detail regions and the homogeneous
parts. Hence, we introduce a local expected absolute value estimator (LEAV E) for an automated
adaptive choice of λ. The adjustment rule makes use of the constraint (5.1).

5.1. Local expected absolute value estimator. In the following, only discrete terms are used.
The discrete image domain Ωh contains M = m×m pixels. The discrete image residual is denoted
by rh = Khuh − zh with rh, zh, uh ∈ R

M and Kh ∈ R
M×M . For convenience, for the remainder

of this section, rh, zh and Khuh are reshaped as m × m matrices. In the discrete version of the
mean filter defined in (3.3), we use ǫ = 0. Let Ωω denote the set of pixel-coordinates in a ω-by-ω
window centered at (i, j) (with a symmetric extension at the boundary), i.e.

Ωω
i,j =

{

(s + i, t + j) | −
⌊ω

2

⌋

≤ s, t ≤
⌊ω

2

⌋}

,

where ⌊·⌋ denotes rounding to the nearest integer towards zero. The mean filter is applied to the
absolute value of the residual image to obtain

(5.2) LEAV Eω
i,j =

1

ω2

∑

(s,t)∈Ωω
i,j

∣

∣(Khuh)s,t − zh
s,t

∣

∣ =
1

ω2

∑

(s,t)∈Ωω
i,j

∣

∣rh
s,t

∣

∣ .

Based on the current estimate λh and the pertinent reconstruction uh, the LEAV E is a statistical
measure which allows us to decide on the amount of details contained in the window around (i, j).
In Figure 1 the LEAV E11 is shown for images corrupted by salt-and-pepper noise and random-
valued impulse noise, respectively. The LEAV E11 is large (indicated in light gray) in image
regions which contain fine scale details. One also observes that for fixed contrast, LEAV E11 is
the larger the finer (smaller) the scale is.

5.2. Selection of λ in case of salt-and-pepper noise. For this type of noise, the expected
absolute value is ν = r

2 , where r is the noise ratio. As we observe in Figure 1 (b), the use of

a small regularization parameter in the L1-TV model results in an over-smoothing of the image
and larger values of the LEAV E11 in details regions, as we see in Figure 1 (c). This shows that
the constraint (5.1) may have been violated. Thus, if the LEAV Eω

i,j at a pixel (i, j) is larger

than ν, the current value of λh at this pixel needs to be increased; otherwise it must not to be
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(a) (b) (c)

(d) (e) (f)

Figure 1. Local expected absolute estimator; Salt and pepper noise, (a) Noisy

image, (b) Reconstructed image for too small regularization parameter λ, (c) LEAV E
11.

Random-valued impulse noise, (d) Noisy image, (e) Reconstructed image for too

small regularization parameter λ, (f) LEAV E
11.

increased in comparison to other pixels. Hence, for a given λ̃◦,h
k (which yields λh

k), associated with
a reconstructed image uh

k, the following update of the regularization parameter λh is proposed:

(λ̃◦,h
k+1)i,j = η min

(

(λ̃◦,h
k )i,j + τ ((LEAV Eω

k )i,j − ν)
+

, L
)

,(5.3)

(λh
k+1)i,j =

1

ω2

∑

(s,t)∈Ωω
i,j

(λ̃◦,h
k+1)s,t.(5.4)

Note that (5.3)-(5.4) (for η = 1) are inspired by (3.14) and (3.15) together with the result (3.17).

Here, LEAV Eω
k is obtained from uk, and L is a large positive value to ensure that λ̃◦,h

k stays

bounded. The parameter τ is set as τ = τk = ‖λ̃◦,h
k ‖l∞/ν in order to keep the new λ̃◦,h

k+1 at

the same scale as λ̃◦,h
k . The choice of η > 1 homogeneously increases λ̃◦,h

k for improving the
reconstruction and is motivated and explained in more detail in Section 6.

5.3. Empirical selection of λ in case of random-valued impulse noise. Similarly to the
salt-and-pepper case, we observe in Figure 1 (e) that a small regularization parameter in the L1-
TV model results in an over-smoothing of the image and comparatively large values of LEAV E11

in detail regions. Hence, in these regions an increase of λ is supposed to improve the restoration
result. In our numerical test we found that an update rule for λ like (5.3) with a scalar ν ∈

[

r
4 , r

2

]

is improved by remembering that according to (2.13) ν actually depends on u. Rather than
considering S(u) ≤ ν(u) a.e. in Ω, which results in a quite nonlinear problem, we choose a
reference value for u and compute an approximated expected absolute value which then is a
function rather than a scalar. In our discrete setting, the approach works as follows. For a given

λ̃◦,h
k (which yields λh

k) associated with a reconstructed image uh
k, a current expected absolute value
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is computed, i.e.

(νω
k )i,j =

1

ω2

∑

(s,t)∈Ωω
i,j

r((Khuh
k)2s,t − (Khuh

k)s,t +
1

2
).

Then the update of the regularization parameter λh is as follows:

(λ̃◦,h
k+1)i,j = η min

(

(λ̃◦,h
k )i,j + τ ((LEAV Eω

k )i,j − (νω
k )i,j)

+ , L
)

,(5.5)

(λh
k+1)i,j =

1

ω2

∑

(s,t)∈Ωω
i,j

(λ̃◦,h
k+1)s,t.(5.6)

The parameters η, L have the same motivation as before. We note that we experimented with
using different window sizes for λh

k , LEAV Ek on one hand and νk on the other hand. We found

that using equal window sizes produces the best robust results. In order to keep the new λ̃◦,h
k+1 at

the same scale as λ̃◦,h
k , here τ is set as τ = τk = 2‖λ̃◦,h

k ‖l∞/r. This setting is inspired by the fact

that ν ∈
[

r
4 , r

2

]

.

6. Spatially adapted TV-Algorithm

Based on the local expected absolute value estimator of Section 5, the reconstruction of the
image by the primal-dual method presented in Section 4 is improved by modifying iteratively the
regularization parameter. Hence, the following algorithm is proposed:
SA-TV-Algorithm (A).

1: Initialize uh
0 ∈ R

M , ph
0 ∈ R

2M , λh
0 ∈ R

M
++ and set k = 0.

2: Solve the discrete version of the problem

uk ∈ arg min
u∈BV (Ω)

∫

Ω

|Du| +
∫

Ω

λk|Ku − z|dx

by means of the primal-dual method proposed in Section 4. The discrete version of the
solution is denoted by uh

k .
3: Based on uh

k, update

λ̃◦,h
k+1 = min

(

λ̃◦,h
k + τ (LEAV Eω

k − νω
k )

+
, L
)

,

(λh
k+1)i,j =

1

ω2

∑

(s,t)∈Ωω
i,j

(λ̃◦,h
k+1)s,t,

where

(νω
k )i,j =

{

r
2 for salt-and-pepper noise,
1

ω2

∑

(s,t)∈Ωω
i,j

r((Khuh
k)2s,t − (Khuh

k)s,t + 1
2 ) for random-valued impulse noise.

4: Stop, or set k := k + 1 and return to step 2.

As it will be shown in the numerical results, see Figure 3, this algorithm exhibits a slow
convergence. For this reason, we propose to accompany the update by an image decomposition
method inspired by [13] in order to accelerate the restoration of the image. In [13], an image is
represented as the sum of “atoms” wk, where every wk reveals finer scales than the previous wk−1.
In [13], each wk comes from an L2-TV image restoration. The resulting algorithm for dyadic scales
(i.e. λj = 2jλ0) is as follows:

i) Choose λ0 > 0 and compute

(6.1) u0 = arg min
u∈BV (Ω)

∫

Ω

|Du| + λ0

2

∫

Ω

(Ku − z)2dx

ii) For j = 0, 1, 2, . . . set λj = 2jλ0 and vj = z − Kuj. Then compute

(6.2) wj = arg min
u∈BV (Ω)

∫

Ω

|Du| + λj+1

2

∫

Ω

(Ku − vj)
2dx, uj+1 = uj + wj .
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The dual of the semi-norm
∫

Ω |Du| is

(6.3) ‖u‖⋆ = sup
φ∈BV (Ω),

R

Ω
|Dφ|6=0

∫

Ω
uφ dx

∫

Ω |Dφ| .

For û0 := u0, one has
∑k

j=0 Kwj → z as k → ∞ in the following weak sense:

(6.4) ‖K∗(z −
k
∑

j=0

Kwj)‖⋆ =
1

2kλ0
.

We transfer this idea to the L1-TV case and incorporate it into our algorithm in order to accelerate
the adjustment of the regularization parameter. This is done in steps 2 and 3 of the following
algorithm. In step 4 we observe that the parameter η > 1 is used instead of the factor 2 in step
(ii).
SA-TV-Algorithm (B).

1: Initialize uh
0 ∈ R

M , ph
0 ∈ R

2M , λh
0 ∈ R

M
++, vh

0 = zh and set k = 0.
2: Solve the discrete version of the problem

wk ∈ arg min
v∈BV (Ω)

∫

Ω

|Dv| +
∫

Ω

λk|Kv − vk|dx

by means of the primal-dual method proposed in Section 4. The discrete version of the
solution is denoted by wh

k .
3: Update uh

k+1 = uh
k + wh

k , vh
k+1 = zh − Khuh

k+1.

4: Based on uh
k+1, update

λ̃◦,h
k+1 = η min

(

λ̃◦,h
k + τ (LEAV Eω

k − νω
k )

+
, L
)

,

(λh
k+1)i,j =

1

ω2

∑

(s,t)∈Ωω
i,j

(λ̃◦,h
k+1)s,t,

where

(νω
k )i,j =

{

r
2 for salt-and-pepper noise,
1

ω2

∑

(s,t)∈Ωω
i,j

r((Khuh
k)2s,t − (Khuh

k)s,t + 1
2 ) for random-valued impulse noise.

5: Stop, or set k := k + 1 and return to step 2.

The parameter λh is initialized by a relatively small constant, i.e. λh
0 = (λ̄0, λ̄0, · · · , λ̄0)⊤ with

λ̄0 > 0 small.
We note that a full theoretical justification of the transfer of the image decomposition method

of [13] to the L1-TV context is out of the scope of the present paper. Some first steps in this
direction can be found, e.g., in [23, 26, 27] and further studies are the subject of our outgoing
investigations.

7. Numerical results

In this section different experiments assessing the quality of algorithm (B) are presented. The
images called “cameraman” and “man” shown in the first row of Figure 2 and their blurred version
in the second row of Figure 2 are corrupted by random-valued impulse noise and salt-and-pepper
noise. The corrupted images are then restored by means of the L1-TV model. More precisely,
the algorithm presented in [11] is used where the regularization parameter is a scalar. This scalar
is close to be optimal, in the sense that after many trials, this scalar gives the best restoration.
Then, the images are also restored by using the model presented in this paper and both results
are compared.

The results for denoising are discussed in detail in section 7.2 and the ones for the simultaneous
deblurring and denoising in section 7.3. The next section addresses a performance comparison of
algorithms (A) and (B).
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(a) (b)

(c) (d)

Figure 2. (a) Cameraman, (b) Man, (c) Cameraman with Gaussian convolution
with a 9-by-9 window, (d) Man with Gaussian convolution with a 9-by-9 window.

7.1. General remarks. The performance of the method is compared quantitatively by means of
the mean absolute error (MAE) and the peak signal-to-noise ratio (PSNR) [3]. Note that since the
PSNR is an L2-based measure, it has to be taken with care. Therefore we also propose to consider
the MAE which is an L1-based measure. The smaller MAE becomes, the better the reconstruction
results are.

In order to compare the performance of algorithms (A) and (B), we use them to denoise “cam-
eraman” corrupted by salt-and-pepper noise with noise ratio r = 0.5 (see Figure 5 (a)) and
“cameraman” corrupted by random-valued impulse noise with noise ratio r = 0.4 (see Figure 6
(a)). These results are shown in Figure 3. The images (a) and (e) are obtained after 20 iterations
of the algorithm (A). The images in (c) and (g) are obtained after 5 iterations of algorithm (B).
Note that the cost per iteration for each of the algorithms is approximately the same. We observe
that the convergence of algorithm (A) is significantly slower than the one of algorithm (B), and
that smaller details are better preserved by using algorithm (B) rather than algorithm (A). Thus,
in all other examples, algorithm (B) is used to restore the images.

In Figure 4, one can observe that the restoration results are stable with respect to the window
size, i.e. there is no considerable difference between the results, although a larger window is more
suitable in order to reduce the influence of noise clusters, as one can find upon comparing (a) and
(b) or (c) and (d) and (e) or (f) in Figure 4. In the results and unless otherwise specified, the
window size used to compute the LEAV Eω explained in Section 5 is set to ω = 21.

The parameter η for updating the regularization parameter in step 4 of the algorithm (B) in
Section 6 is set to 1.1. As the L1-TV model is rather sensitive to the regularization parameter

(this coincides with the observations in [6]), a moderate acceleration of the λ̂-update due to η is
appropriate. This is the reason why we choose η rather close to 1. The parameters µ, β, γ are set
to 106, 10−4 and 10−5, respectively.
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The quality of images corrupted by blurring and noise is worse than the quality of those cor-
rupted by noise only. The reconstructed images, however, are usually better in the case of deblur-
ring and denoising rather than denoising only. This is due to the characteristics of the impulse
noise (random-valued or salt-and-pepper). Since the restoration method is concerned with de-
tecting the noisy pixels, this task becomes easier when the original image is first “smoothed” i.e.,
a contrast reduction due to blurring, and then corrupted by noise. As a result, noisy pixels are
better distinguished from other ones. This helps the restoration method to produce better results.

The blurring used to corrupt the images in Figures 7 and 8 (a) and (e) comes from a Gaussian
convolution with a 9×9 window and a standard deviation of 1. The resulting matrix Kh ∈ R

M×M

is ill-conditioned, but invertible. It therefore satisfies the discrete versions of our assumptions on
K; see (4.7), Theorem 6, and Proposition 1.

Step 2 of algorithm (B) presented in Section 6 applies the primal-dual algorithm presented
at the end of Section 4. At most it needs 21 iterations until successful termination, i.e. until
the residual resi = (|F i

1 |2l2 + |F i
2|2l2 + |F i

3|2l2)/(|F 0
1 |2l2 + |F 0

2 |2l2 + |F 0
3 |2l2) in (4.57) drops below a

given tolerance. The linear system in step 4 of the primal-dual algorithm in the denoising case
is solved by a direct solver, but in the deblurring and denoising case, it is solved by an iterative
solver (biconjugate gradient stabilized - BICGSTAB) which requires at most 20 iterations at each
call. In the spirit of an inexact Newton approach, we stop the BICGSTAB iteration as soon as
|fh

k − H+
k δuℓ

k|l2/|fh
k |l2 ≤ 0.5. Here, δuℓ

k denotes the direction in iteration ℓ of the BICGSTAB
algorithm in the kth step of our semismooth Newton method. With this setting our Newton solver
always converged to the desired accuracy.

The iterations of algorithm (B) of Section 6 are stopped when the expected absolute value
estimator for the whole domain Ωh, defined as

(7.1) EAV EΩ
k := 1

|Ωh|

∑

(s,t)∈Ωh

∣

∣(Khuh)s,t − zh
s,t

∣

∣

is less or equal to the corresponding expected absolute value νΩ
k , given by

(7.2)

νΩ
k :=

{ r
2 for salt-and-pepper noise,

1
|Ωh|

∑

(s,t)∈Ωh r((Khuh
k)2s,t − (Khuh

k)s,t + 1
2 ) for random-valued impulse noise,

where |Ωh| = M = m × m pixels, i.e. size of the image.
In Table 1 we illustrate these stopping conditions. In fact, we consider the reconstruction of

“cameraman” corrupted by salt-and-pepper noise with ratio r = 0.5 as shown in Figure 5 (c) and
the reconstruction of “man” corrupted by random-valued impulse noise with r = 0.4 shown in
Figure 6 (g). In this table, we show the number of necessary inner iterations (i) of the semismooth
Newton solver and the residual (resi) upon termination of the inner iteration. The stopping
condition EAV EΩ

k ≤ νΩ
k is also contained in Table 1 when comparing the columns for EAV EΩ

k

and νΩ
k for the respective image. Further, the number of the necessary outer iterations (k) of

algorithm (B) is shown.

Cameraman: Salt-and-pepper, Fig. 5 (c) Man: Random-valued impulse noise, Fig. 6 (g)

k i resi EAV EΩ
k νΩ

k k i resi EAV EΩ
k νΩ

k

1 14 9.63e-007 0.2647 0.25 1 16 3.13e-007 0.1580 0.1305
2 17 9.64e-007 0.2600 0.25 2 13 3.57e-007 0.1526 0.1315
3 15 2.98e-007 0.2575 0.25 3 17 2.76e-007 0.1461 0.1321
4 18 8.18e-007 0.2539 0.25 4 21 4.66e-007 0.1374 0.1323
5 15 6.10e-007 0.2504 0.25 5 21 2.45e-005 0.1288 0.1324
6 20 7.77e-007 0.2447 0.25

Table 1. Outer iterations (k), inner iterations (i), residual (resi), expected
absolute value estimator (EAV EΩ

k ), expected absolute value (νΩ
k ).
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7.2. Image denoising. In Figure 5, our results in the case where the image is corrupted by
salt-and-pepper noise are shown. The noise corrupting “cameraman” has a noise ratio of r = 0.5,
whereas the one corrupting the “man” has r = 0.4. The results obtained by a scalar regularization
parameter only can be found in (b) and (f) and the results obtained with a spatially adapted
regularization parameter in (c) and (g) for “cameraman” and “man”, respectively. Note that in
(c) and (g) small features are better recovered as compared to (b) and (f). Also, homogeneous
regions appear smoother in (c) and (g) rather than in (b) and (f). For instance, in “cameraman”
we observe that the center of the tripod is “sharper” in (c) than in (b). Also noise spots in the sky
appear in (b) and not in (c). Moreover, the edges are better defined in (c). In (b) the edges seem to
be more irregular. In the case of “man”, the feathers in the hat exhibit more details in (g) rather
than in (f). The background is also more homogeneous in (g) than in (f). The improvement of
the images is due to the different values of the regularization parameter λ over the image domain
which can be observed in (d) and (h). In (d) and (h) the values of the function λ are presented
in a gray scale. Light gray regions refer to large values of λ, whereas dark gray belongs to zones
where λ is rather small. Note that in (d) λ is large in the tripod area and in (h) λ is large in the
regions of the feathers. Both image details are of rather small scale. The measure MAE shows
that the restoration of “cameraman” in (c) is better than in (b) and that the restoration of “man”
is better in (g) than in (f). However the PSNR is a little bit smaller in (c) than in (b) and it is also
smaller in (g) than in (f). The algorithm (B) in Section 6 requires 6 iterations for “cameraman”
and 5 for “man”.

In Figure 6, images are corrupted by random-valued impulse noise with a noise ratio of r = 0.4.
The results obtained by a scalar regularization parameter only can be found in (b) and (f) and the
results obtained with a spatially adapted regularization parameter in (c) and (g) for “cameraman”
and “man”, respectively. The middle of the tripod and the details in the buildings in “cameraman”
are better defined in (c) than in (b). In (d) we observe that the value of λ is bigger in these regions.
A similar effect is found in “man” in the region of the feathers in the hat. Thus, the details are
better recovered in (g) than in (f) due to the spatial adaptation of λ yielding the result in (g). The
algorithm (B) in Section 6 requires 5 iterations for “cameraman” and 4 for “man”. The measure
MAE is better in (c) and (g) than in (b) and (f). The PSNR is better in (c) than in (b) although
it is smaller in (g) than in (f). The algorithm (B) of Section 6 requires 5 iterations in both cases.

7.3. Image deblurring. In Figure 7 we observe the reconstruction of blurred images corrupted
by salt-and-pepper noise. We find that the reconstructions for spatially adapted regularization
are slightly better; compare (c) vs. (b) and (g) vs. (f). In this case we note that the difference in
λ between details and homogeneous regions appears smaller in the deblurring rather than in the
denoising case. The algorithm (B) of Section 6 required 5 iterations for “cameraman” and 6 for
“man”.

Further, in Figure 8 we observe a slightly better recovery of the details in (c) than in (b) and
in (g) than (f). In (d) we observe that the values of λ are larger in regions with small details
and edges. This behavior is less pronounced for “man” as can be seen in (h). The restoration of
“cameraman” needs 5 iterations and of “man” 6 iterations.

We observe that the images restored by the algorithm requiring a scalar regularization parameter
yield slightly better results of the MAE and the PSNR than the restoration given by the proposed
algorithm (B) although these measures are close. As we mentioned before, the original image is
first “smoothed” due to blurring, and then corrupted by noise. As a consequence, small details
may get lost due to this process. Subsequently, the update of the spatially adapted parameter has
not the same impact as it has in the case of images corrupted by noise only.

8. Conclusions

The L1-TV method is modified by replacing the scalar regularization parameter λ by a function.
A suitable choice of such a function is related to an equivalent problem with pointwise constraints.
Moreover, statistical characteristics of the noise help to locally adjust λ. For this purpose, a
local expected absolute value estimator is introduced for the parameter update. The resulting
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Figure 3. Salt-and-pepper noise: (a) Restored image using algorithm
(A), (b) Resulting λ, (c) Restored image using algorithm (B), (d) Resulting λ.
Random-valued impulse noise: (e) Restored image using algorithm (A), (f)
Resulting λ, (g) Restored image using algorithm (B), (h) Resulting λ.

spatially adapted regularization parameter λ is better suited in a L1-TV model where small de-
tails are desired to be preserved. The two non-differentiable terms in the L1-TV model (i.e., the
TV-seminorm and the L1 fidelity term) are appropriately treated by adequate regularization and
Fenchel duality. The overall method combines an automated λ-adjustment scheme with an inexact
semismooth Newton solver for the L1-TV subproblems. The resulting method outperforms the
restoration due to a scalar regularization parameter in the case of images contaminated by noise
only. In the case of blurred and noisy images the reconstruction performed by a model using a
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(a) (b) (c)

(d) (e) (f)

Figure 4. Restoration of Cameraman with different windows size. Salt-

and-pepper (a) ω = 11, (b) ω = 21, (c) ω = 31. Random-valued impulse noise:

(d) ω = 11, (e) ω = 21, (f) ω = 31.

scalar parameter is already very accurate for a large range of scalars, i.e. a precise tuning of the
regularization is not necessary to find an appropriate reconstruction. This is due to the fact that
details are lost in the blurring process. Thus, blurred details tend to remain in the residual image
and do not contribute to a significant update of the spatially adapted regularization parameter.
We also point out that the spatially adapted regularization parameter choice is fully automatic.
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Figure 6. Cameraman: (a) Image with random-valued impulse noise r = 0.4.
(b) Denosing with L1-TV model, λ = 1.3. (c) Denoising with the present method.
(d) Resulting λ. Man: (e) Image with random-valued impulse noise r = 0.4. (f)
Denosing with L1-TV model, λ = 1.3. (g) Denoising with the present method.
(h) Resulting λ.
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Figure 7. Cameraman: (a) Image with blur and salt-and-pepper noise r =
0.5. (b) Denosing and deblurring with L1-TV model, λ = 3. (c) Denoising and
deblurring with the present method. (d) Resulting λ. Man: (e) Image with
blur and salt and pepper noise r = 0.5. (f) Denosing and deblurring with L1-
TV model, λ = 3. (g) Denoising and deblurring with the present method. (h)
Resulting λ.
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Figure 8. Cameraman: (a) Image with blur and random-valued impulse noise
r = 0.4. (b) Denosing and Deblurring with L1-TV model, λ = 3. (c) Denoising
and deblurring with the present method. (d) Resulting λ. Man: (e) Image with
blur and random-valued impulse noise r = 0.5. (f) Denosing and deblurring with
L1-TV model, λ = 3. (g) Denoising and deblurring with the present method. (h)
Resulting λ.




