
EXPECTED ANNUAL DAMAGES AND UNCERTAINTIES 
IN FLOOD FREQUENCY ESTIMATION 

By Nigel W. Arnell1 

ABSTRACT: The expected annual damge is the most frequently used index of the 
impact of flooding at a site. However, estimates of expected annual damages are 
very uncertain as a result of uncertainties in both the estimation of the flood fre
quency relationship from limited data and the relationships between magnitude and 
damage. Computer simulation experiments using synthetic flood peak data and 
fixed magnitude-damage functions have shown that the sampling distribution of 
estimates of expected annual damages is highly skewed to a degree depending on 
the form of the damage function, and most importantly, that bias in the estimates 
is most closely related to error in the estimated probability at which damage begins. 
The use of expected probability leads to a very significant increase in bias in the 
estimation of expected annual damages. 

INTRODUCTION 

When designing a scheme to alleviate flooding, planners and engineers 
need an estimate of the costs of flood damage. The most commonly used 
measure is the expected annual damage, which is best understood as the 
average of flood damages computed over many years. One way of calcu
lating this is simply to add up a long time series of annual damages and 
divide by the number of years. However, this is rarely possible in practice; 
a very long record would be necessary because damage would be zero in 
most years, and in any case exposure to damage would have changed con
siderably over time. 

Expected annual damages are therefore calculated by first fitting a fre
quency distribution to flood magnitudes. A function relating flood magnitude 
to damage is then used to derive a relationship between flood damage and 
the probability of incurring that damage in any one year. All of these stages 
include unknowns and uncertainties—the relationship between flood dis
charge and depth may be poorly defined, as might the function relating depth 
to damage—but it is the objective of this paper to examine the effects of 
the uncertainties associated with the estimation of the flood frequency re
lationship. In particular, there is uncertainty about both the appropriate form 
of the statistical model of flood frequencies, and the value of model param
eters. These uncertainties are primarily due to the problems caused by mak
ing inferences from small samples of flood peaks. In this paper, emphasis 
is placed on parameter uncertainty—the form of the model is assumed known— 
and three alternative procedures for estimating expected annual damages are 
compared. Practical implications of bias and variability are also considered. 

ESTIMATION OF EXPECTED ANNUAL DAMAGES 

At its s implest , the m e a n of a r a n d o m variable x such as annual flood 
damage is 
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Exceedance probability 

FIG. 1. Expected Annual Damages as Area under Damage-Probability Curve 

E(x) = Sxf(x)dx (1) 

where fix) = the probability density function of that variable. Flood fre
quency analysts are more used to working with exceedance or non-exceed-
ance probabilities, defined by the cumulative distribution 

E(x)= I xdf (2) 
Jo 

which shows that expected annual damages are equal to the area under the 
graph of damage against non-exceedance (or exceedance) probability (Fig. 
1). This is well known to analysts, who routinely calculate expected annual 
damages by computing damage associated with several return period floods, 
drawing up a graph similar to Fig. 1 and measuring the area under the curve. 

Several authors (Hardison and Jennings 1972; Beard 1978; Tai 1987) have 
maintained, however, that "conventional" flood frequency estimation pro
cedures such as the methods of moments or maximum likelihood underes
timate the true frequency of flooding and thus the value of expected annual 
damages (Arnell 1988). Beard (1960) illustrated the problem by considering 
a large number of independent but identical rivers, each with the same record 
length. If the flood with an exceedance probability of 0.01 was estimated 
from each sample and the true exceedance probabilities were determined for 
each estimate, it would be found that the average true exceedance probability 
would be greater than 0.01 even if the average magnitude was equal to the 
true magnitude (because the relationship between flood magnitude and fre
quency is not linear). Over all sites, events would therefore occur in the 
future with an average frequency greater than 0.01. Beard (1960) called the 
mean true exceedance probability of estimates of the magnitude of the p 
probability event the expected probability of that flood, and urged that the 
design flood be taken as the flood with an expected probability equal to p. 
If not, he argued, the risk of future flooding,and hence expected annual 
damages would be underestimated. Hardison and Jennings (1972) and Tai 
(1987) showed that use of expected probability resulted in an increase in 
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FIG. 2. Sampling Distribution of Flood Magnitudes and Damages 

expected annual damages (because converting to expected probability in
creases the probability assigned to a particular magnitude event), and in
ferred that bias in the estimation of expected annual damages was therefore 
reduced. However, a method which gives an unbiased estimate of flood risk 
does not necessarily give an unbiased estimate of expected annual damages, 
and Gould (1973a, 1973b) argued that rather than eliminating bias, the use 
of expected probability increased it. He showed that bias in the estimation 
of expected annual damages using "conventional" methods was small and 
of the opposite direction to that implied by Hardison and Jennings (1972). 
Doran and Irish (1980) subsequently supported Gould's (1973a) conclusions 
using computer simulation experiments. The present investigations were de
signed to further clarify this issue. 

A second refinement to the conventional procedure for estimating expected 
annual damages has been presented by James and Hall (1986), followed by 
Tung (1987) and Bao et al. (1987). The method is based on the recognition 
that uncertainty in the parameters of the flood frequency distribution can be 
expressed by sampling distributions for given flood quantile estimates, as 
shown in Fig. 2, from which confidence limits can be determined. The sam
pling distribution of the magnitudes of a given frequency flood can then be 
converted to a sampling distribution of flood damage using the magnitude-
damage function [Fig. 2(b)], and the expected value of this sampling dis
tribution can be taken as the appropriate estimate of damage for that fre
quency. This can be expressed as 

E(D) = [Dh(D)]dF . (3) 

where h(D) = the probability density function of the estimate of damage D 
for a given frequency event. James and Hall (1986), Tung (1987), and Bao 
et al. (1987) all found that the effect of this refinement was to increase the 
estimate of expected annual damages, although the magnitude of this effect 
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depends of course on the sampling distribution of estimates of flood quantiles 
(which is strongly influenced by record length) and the shape of the function 
relating flood magnitude to damage. This procedure, too, was examined in 
the current study. 

EXPERIMENTAL DESIGN 

The relative performances at the preceding conventional procedure for es
timating expected annual damages and the two refinements were assessed 
using computer simulation experiments. A general analytical approach is not 
feasible. Gould (1973b) developed a theoretical expression for bias in ex
pected annual damages, but was forced to assume a normal distribution of 
flood depths and a linear depth-damage function, and hence a normal dis
tribution of damages. In essence, the simulation experiments involved: (1) 
Generating a synthetic sample of flood depths from a pre-defined parent 
distribution; (2) estimating the form of the depth-probability relationship from 
the sample; (3) converting depth to damage using a depth-damage function; 
and (4) computing the area under the depth-probability curve. By generating 
synthetic flood depths it is assumed that the relationship between flood dis
charge and depth is known with complete certainty; this will not of course 
be true in practice. Similarly, step (4) of the procedure neglects uncertainties 
in the relationship between flood depth and flood damage. 

The two-parameter lognormal distribution was used as the parent distri
bution, with parameters selected such that the difference between the true 
10- and 100-year flood depths was equal to 1 "synthetic" meter. This dis
tribution was selected because it is possible to apply relatively easily the 
three alternative ways of estimating expected annual damages. The first, 
conventional, approach involves the estimation of the lognormal parameters 
from the sample data. Using both the method of moments and the method 
of maximum likelihood, the parameters can be estimated from 

N 

M- = x = — - (4) 
N 

and 

5> x? 

L N - \ 

1/2 

(5) 

where xt = the natural logarithm of flood magnitude; and N = sample size. 
The logged depth corresponding to a specified frequency can then be cal
culated from 

xp= x + szp (6) 

where zp = the standard normal deviate with exceedance probability p. An 
estimate of the logarithm pf the flood which will be exceeded with an ex
pected probability equal to p can be computed from (Beard 1960; Stedinger 
1983a): 
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FIG. 3. Depth-Damage Functions 

= X + S 1 + 
TV 

1/2 

'pJV-1 (7) 

tp, v = the quantile with exceedance probability p from a student's t distri
bution with v degrees of freedom. 

The third approach, involving sampling distributions of quantile estimates, 
is rather more complicated. Stedinger (1983b) showed that if floods (or their 
logarithms) were normally distributed, the sampling distribution of a quantile 
estimate could be derived using the non-central t distribution. The random 
variable y/N%(p), where 

&P) = (8) 

has a non-central t distribution with non-centrality parameter 8 = Zp\/N and 
v = N — 1 degrees of freedom, and it is therefore possible to determine the 
value of £,(p) exceeded with probability a. Eq. 8 can then be rearranged to 
give the estimate of the ^-probability flood xp(a), which would be exceeded 
in samples of size N with probability a: in other words, of all samples of 
size N from a lognormal distribution with parameters (JL and u, a proportion 
a would yield estimates of xp greater than xp{a). The expected damage as
sociated with exceedance probability p (Eq. 3) is computed by converting 
log depth xp(a) to damage Dp using the depth-damage function, and calcu-
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lating the area under the damage-os curve. This was done using Simpson's 
Rule, and the approximation to the non-central t distribution presented by 
Abramowitz and Stegun (1965) was used to compute xp{a) for a given prob
ability a. It is clear that this approach is much more consuming of computer 
simulation time than the other two. 

Four depth-damage functions were defined as shown in Fig. 3. The qua
dratic has the form: 

D = 100 
1 - (3 - depth)2 

(9) 

the Gompertz has the form (Ouellette et al. 1985): 

ioo{e
[I-e"dep,h]^ - 1} 

D = (10) 
K - i } 

with 7 = 2.0 and a = 0.5, and the logistic function is defined as 

D = 100 
—(depth — H) 

1 + exp I - 1 (ID 

where u = 1.5 and a = 0.3 All the damage functions give a damage of zero 
at zero depth and 100 at a depth of 3 "synthetic" meters. 

The three procedures yield an array of pairs of damage and associated 
exceedance probabilities, which are used to construct a damage-probability 
curve. The area under this curve was calculated for all three methods using 
the "mid-range probability" method 

^ [Di+l + Dt] 
EAD=^ (p,-Pl+i) (12) 

i=i *• 

(where M = the number of pairs; p = exceedance probability; and D = dam
age), rather than by the more accurate Simpson's Rule, for two reasons. 
First, it is more often used in practice, since there are rarely enough pairs 
of damage and probability available to justify the use of Simpson's Rule, 
and secondly, use of Simpson's Rule with the third method—which requires 
numerical integration for each exceedance probability—would be very costly 
in computer resources. Simulation experiments were undertaken with sam
ples of size 10, 20 and 40; 500 repetitions were used for each experiment. 
Expected annual damages were calculated for situations where damage be
gins at the levels of the true 5, 10, 25, 50 and 100 year floods. 

RESULTS 

Tables 1,2, and 3 show, for the quadratic and logistic damage functions, 
the mean, standard deviation, and skewness of estimates of expected annual 
damages. Similar results were found with the other damage functions. In 
general, it is clear that all the methods overestimate expected annual dam
ages, particularly when damage commences in infrequent events, but that 
the conventional method is least biased. This supports Gould's (1973a) and 
Doran and Irish's (1980) conclusions and conflicts with Hardison and Jen
nings' (1972) and Beard's (1978) inferences. Although the degree of dif-
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TABLE 1. Bias in Estimates of Expected Annual Damage, Expressed as Per
centage of True Value, for Different True Probabilities at which Damage Begins 

Probabilities 

d) 

Threshold probability = 0.2 
conventional method 
expected probability method 
expected damage method 

Threshold probability = 0.04 
conventional method 
expected probability method 
expected damage method 

Threshold probability = 0.01 
conventional method 
expected probability method 
expected damage method 

DAMAGE FUNCTION 

Quadratic 

10a 

(2) 

7.6 
38.5 
41.4 

53.3 
86.5 

200.9 

179.3 
644.0 
714.7 

20a 

(3) 

0.4 
16.0 
17.5 

20.9 
80.0 
84.6 

72.7 
246.7 
273.3 

40a 

(4) 

1.7 
9.6 

10.5 

14.1 
42.6 
44.5 

43.3 
118.0 
129.3 

Logistic 

10a 

(5) 

33.8 
120.9 
143.5 

169.3 
622.9 
846.4 

568.4 
2,647.3 
4,163.6 

20a 

(6) 

12.0 
52.6 
64.4 

68.6 
232.0 
340.0 

194.7 
742.1 

1,400.0 

40a 

(7) 

8.7 
28.5 
35.5 

41.8 
108.5 
168.0 

105.3 
278.9 
589.5 

"Sample size. 
Note: Simulation results from 500 repetitions. 

ference varies with damage function, the results clearly show that use of 
either expected probabilities or the "expected damage" method would pro
duce very biased estimates of expected annual damages. These two methods 
yield very similar results (when using a lognormal distribution), which re-

TABLE 2. Standard Deviation of Expected Annual Damage Estimates, Divided 
by True Value, for Different True Probabilities at which Damage Begins 

Probabilities 

(D 
Threshold probability = 0.2 

conventional method 
expected probability method 
expected damage method 

Threshold probability = 0.04 
conventional method 
expected probability method 
expected damage method 

Threshold probability = 0.01 
conventional method 
expected probability method 
expected damage method 

DAMAGE FUNCTION 

Quadratic 

10a 

(2) 

0.80 
0.86 
0.86 

2,03 
2.69 
2.71 

5.35 
440.11 

8.92 

20a 

(3) 

0.53 
0.56 
0.56 

1.17 
1.44 
1.44 

2.54 
3.79 
3.80 

40a 

(4) 

0.40 
0.41 
0.42 

0.86 
0.96 
0.96 

1.75 
2.22 
2.20 

Logistic 

10a 

(5) 

1.48 
1.86 
1.84 

5.07 
8.58 
8.71 

18.11 
40.11 
43.11 

20° 
(6) 

0.89 
1.05 
1.05 

2.35 
3.60 
3.69 

6.26 
12.68 
14.21 

40a 

(7) 

0.66 
0.72 
0.72 

1.57 
2.04 . 
2.10 

3.58 
5.63 
6.47 

"Sample size. 
Note: Simulation results from 500 repetitions. 
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TABLE 3. Skewness of Expected Annual Damage Estimates, for Different True 
Probabilities at which Damage Begins 

Probabilities 

(1) 

Threshold probability = 0.2 
conventional method 
expected probability method 
expected damage method 

Threshold probability = 0.04 
conventional method 
expected probability method 
expected damage method 

Threshold probability = 0.01 
conventional method 
expected probability method 
expected damage method 

DAMAGE FUNCTION 

Quadratic 
10" 
(2) 

1.08 
0.85 
0.85 

2.37 
1.66 
1.66 

3.48 
2.21 
2.12 

20a 

(3) 

0.77 
0.67 
0.68 

1.76 
1.39 
1.43 

2.75 
1.99 
1.99 

40a 

(4) 

0.70 
0.66 
0.68 

1.51 
1.36 
1.36 

2.36 
2.01 
2.01 

Logistic 

10a 

(5) 

2.07 
1.48 
1.47 

3.63 
2.25 
2.12 

5.15 
2.83 
2.34 

20a 

(6) 

1.50 
1.22 
1.22 

2.88 
2.08 
1.93 

4.36 
2.91 
2.34 

40a 

(7) 

1.31 
1.18 
1.20 

2.53 
2.16 
2.02 

3.84 
3.27 
2.58 

"Sample size. 
Note: Simulation results from 500 repetitions. 

fleets similarities in their derivation. Both are based on the f-distribution 
(Stedinger 1983a, 1983b), and the expected value of the estimate of the p 
probability flood fxpf(x)dxp is very close to the estimate computed from Eq. 
7. The actual difference between the two methods depends on the shape of 
the damage function (the expected damage is not equal to the damage as
sociated with the expected magnitude, except with a linear damage function) 
and, to a lesser extent, the numerical approximation. 

The contrasts in the degree of bias between the different damage functions 
depends on the rate of change of damage with magnitude, particularly at low 
magnitudes. With the logistic curve, damage is limited for floods just above 
the damage threshold (Fig. 3) but increases significantly at higher depths. 
The frequency with which floods reach this depth is estimated with greater 
bias and uncertainty than the frequency with which damage begins. For a 
given flood frequency relationship and threshold at which damage begins, 
therefore, the greater the proportion of damage which occurs in small floods, 
the less the bias and variability in estimate of expected annual damage. 

As sample sizes increase, all the methods become less biased (bias falls 
from over 50% to just over 15% for the conventional method, with damage 
occurring with a true probability of 0.04, for example). The expected prob
ability and expected damage methods improve the most and with very large 
samples all three methods would give the same results. Sample variability 
of estimates also falls as sample sites increase (Table 2) and, for high dam
age thresholds at least, there is less difference in variability than bias be
tween the three methods. The coefficient of skew, given in Table 3, shows 
the high asymmetry in the sampling distribution of expected annual dam
ages, due to the occasional very large estimates. 

The magnitude of estimated expected annual damages depends partly on 
the estimated slope of the depth-frequency curve but much more closely on 
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FIG. 4. Variation of Estimated Expected Annual Damages with Estimated Threshold 
Probability 

the estimated probability at which damage begins. Fig. 4 shows the strong 
relationship between estimated threshold probability and computed expected 
annual damages (for the Gompertz damage function and a sample size of 
20). The bias and variability in expected annual damages is clearly related 
to the bias and variability in the estimated threshold probability. The reason 
for the difference in bias between the conventional and expected probability 
methods can be seen in Table 4, which shows the mean estimated probability 
at which damage begins. The conventional estimator provides a good esti
mate of the threshold probability, but the expected probability method pro
duces a very biased estimate of the risk of damage. This arises because a 

TABLE 4. Mean Estimated Threshold Probability: Conventional and Expected 
Probability Estimators 

Estimators 
d) 

N = 10 
conventional method 
expected probability 
N = 20 
conventional method 
expected probability 
N = 40 
conventional method 
expected probability 

0.2 
(2) 

0.199 
0.219 

0.194 
0.205 

0.199 
0.205 

True Threshold Probability 

0.1 
(3) 

0.103 
0.126 

0.098 
0.111 

0.101 
0.107 

0.04 
(4) 

0.047 
0.068 

0.042 
0.053 

0.042 
0.047 

0.02 
(5) 

0.027 
0.045 

0.023 
0.031 

0.022 
0.026 

0.01 
(6) 

0.016 
0.031 

0.013 
0.019 

0.012 
0.015 

Note: Averaged over 500 repetitions. 
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method that gives an estimate of the flood exceeded on average with the 
desired risk/? (i.e., unbiased); it does not produce an unbiased estimate of 
the risk of a specified magnitude (such as a floor level) being exceeded. 

IMPLICATIONS OF UNCERTAINTY IN ESTIMATION 

OF EXPECTED ANNUAL DAMAGES 

The results of the previous section have emphasized the potentially very 
large sampling variability in the estimation of expected annual damages due 
solely to sampling variability in the observed flood data. In current practice 
only a single "best" estimate of expected annual damages is used, derived 
from the "best" estimate of the flood frequency curve, but it may be useful 
to have information on the precision of this estimate. Some workers, for 
example Grigg (1978), have attempted to derive confidence limits for an 
estimate of expected annual damages directly from confidence intervals on 
flood magnitude estimates, as shown in Fig. 5(a)-5(c). This, however, is 
incorrect due to a misinterpretation of the meaning of confidence intervals 
for flood quantiles. These confidence limits should be interpreted solely as 
intervals for the range of magnitudes for a specified exceedance probability; 
the locus of 90% confidence interval values (i.e., 90% of estimates of mag
nitude for that probability are greater) does not define the frequency curve 
which will be exceeded over all probabilities 90% of the time. One sample 
curve may yield an estimate of the 10-year flood outside the 90% interval 
for that return period, for example, while yielding a 100-year flood estimate 
close to the mean value [Fig. 5(d)]. An approach such as this would overesti
mate confidence intervals and give an unduly pessimistic impression of pre
cision. 

It is well known that the standard deviation of the sampling distribution 
of the mean of a random variable is equal to the standard error, or the stan
dard deviation of the variable divided by the square root of the sample size: 

s.d.(x) 
standard error (x) = — — (13) 

VN 
It is therefore possible to estimate the standard error of the sampling distri
bution of expected annual damages by computing the standard deviation of 
annual damages using 

s.d.(D) = [E(D2) - E2(D)]l/2 (14) 

where E(D) = expected annual damages and E(D2) = the area under the 
"damage-squared "-probability curve. Table 5 compares the average standard 
error of expected annual damages (computed using Eq. 14), with the ob
served standard deviation of estimates of expected annual damages. It can 
be seen that, for cases where damage occurs in frequent events at least, the 
standard error provides a good estimate of sample standard deviation. How
ever, the high skew of the sampling distribution (Table 3) means that con
fidence limits cannot be based on just expected annual damages and standard 
error, and, although it is possible to estimate the skew of annual damages 
using the area under the "damage-cubed"-probability curve, sample skew-
ness estimates are notoriously unreliable. 
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TABLE 5. Mean Standard Error of Expected Annua! Damages and Observed 
Standard Deviation of Expected Annual Damages Estimates (Logistic Damage 
Function) 

Expected annual damages (EAD) 

(1) 

N= 10 
average standard error of EAD" 
standard deviation of estimated EADb 

N = 20 
average standard error of EAD" 
standard deviation of estimated EADb 

N = 40 
average standard error of EAD" 
standard deviation of estimated EADb 

True Threshold Probability 

0.2 

(2) 

2.301 
2.332 

1.553 
1.398 

1.114 
1.036 

0.1 

(3) 

1.410 
1.410 

0.883 
0.765 

0.612 
0.548 

0.04 

(4) 

•0.778 
0.776 

0.423 
0.359 

0.271 
0.240 

0.02 

(5) 

0.510 
0.511 

0.244 
0.206 

0.143 
0.128 

0.01 

(6) 

0.343 
0.344 

0.144 
0.119 

0.077 
0.068 

'The "average standard error" is the average of 500 estimates of the standard error of 
EAD. 

'The "standard deviation of estimated EAD" is the standard deviation of the 500 esti
mates of EAD. 

To estimate the sampling distribution and confidence intervals for ex
pected annual damages in practice, it would therefore be necessary to resort 
to the use of computer simulation. Such an approach would follow the form 
of the experiments reported here, with the parent distribution defined by the 
parameters as estimated at the site of interest. The computer experiments 
would allow the construction of a sampling distribution of expected annual 
damages and the identification of desired confidence intervals, but the mean 
of this distribution (the statistical "best" estimate of expected annual dam
ages) would be different to—and greater than—the value of expected annual 
damages derived from the best estimate of the frequency curve. The analyst 
would have to insure that the parent used for the simulation experiments 
yielded "realistically variable" estimates of flood frequencies. This can be 
done by selecting a sample size which produces synthetic sampling distri
butions of flood quantiles consistent with previously defined confidence in
tervals calculated from the original site data. The synthetic sample size need 
not be the same as the observed sample size; additional (for example re
gional) information has an equivalent effect to providing extra years of data. 

CONCLUSIONS 

This paper has presented results of a series of computer simulation ex
periments into the effects of uncertainties in flood frequency estimation on 
the bias and variability of estimates of expected annual damages. It has been 
shown that the "conventional" approach (using a method such as moments 
or maximum likelihood to attempt to obtain unbiased estimates of flood mag
nitudes) slightly overestimates expected annual damages where damage be
gins in frequent events, with greater overestimation where damage begins in 
rare events. These results conflict with the assertion of Hardison and Jen
nings (1972) and Beard (1978) that conventional estimators underestimate 
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expected annual damages, and it has been shown that their proposed ap
proach—to use expected probabilities—gives even greater bias. This is be
cause while the expected probability method gives an estimated magnitude 
exceeded on average with the specified risk, it does not give an unbiased 
estimate of the risk of a specified magnitude (such as the level at which 
damage begins) being exceeded. The third method considered, which com
putes the expected damage for each probability flood by averaging across 
the sampling distribution of that flood estimate, also gives higher estimates 
of damage for a given flood probability and hence also leads to very sig
nificant overestimation of expected annual damages. For all three methods, 
bias reduced rapidly as sample sizes increased. 

The experiments have shown that estimates of expected annual damages 
are highly variable, particularly where damage begins in low-frequency events. 
The sampling distribution of expected annual damages is also very highly 
skewed. It has been shown that the bias and variability in the estimate of 
expected annual damages is closely linked to the bias and variability in the 
estimation of the probability at which damage begins, emphasizing again the 
importance of using as good an estimate of this threshold probability as pos
sible. 

The exact form of the flood magnitude-damage relationship determines the 
degree of bias in estimated expected annual damage. Bias is least if damages 
increase rapidly once the damage threshold is reached; conversely, it is higher 
the greater the magnitude that "significant" damage begins. 

A simulation based method has been briefly described for deriving con
fidence intervals for an estimate of expected annual damages in practice. 

Finally, it is important to note that the results show only the effect of 
uncertainties in flood magnitude-frequency estimatioin. In practice, the bias 
and variability that these produce are compounded by uncertainties in the 
relationships linking flood magnitude with damages. 
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