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Abstract This article uses a sequentialized experimental design to select simulation input
combinations for global optimization, based on Kriging (also called Gaussian process or
spatial correlation modeling); this Kriging is used to analyze the input/output data of the
simulation model (computer code). This design and analysis adapt the classic “expected
improvement” (EI) in “efficient global optimization” (EGO) through the introduction of
an improved estimator of the Kriging predictor variance; this estimator uses parametric
bootstrapping. Classic EI and bootstrapped EI are compared through various test functions,
including the six-hump camel-back and several Hartmann functions. These empirical results
demonstrate that in some applications bootstrapped EI finds the global optimum faster than
classic EI does; in general, however, the classic EI may be considered to be a robust global
optimizer.

Keywords Simulation · Optimization · Kriging · Bootstrap

1 Introduction

Simulation is often used to estimate the global optimum of the real system being simulated
(like many researchers in this area do, we use the terms “optimum” and “optimization” even
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if there are no constraints so the problem actually concerns minimization or maximization).
The simulation model implies an input/output (I/O) function that may have multiple local
optima (so this I/O function is not convex). Hence the major problem is that the search may
stall at such a local optimum. Solving this problem implies that the search needs to combine
exploration and exploitation; i.e., the search explores the total experimental area and zooms
in on the local area with the apparent global optimum—see the recent survey article [12] and
the recent textbook [9, pp. 77–107], summarized in [8].

A popular search heuristic that tries to realize this exploration and exploitation is
called EGO, originally published by Jones et al.[15], paying tribute to earlier publica-
tions; also see [9,11,13,22,27,31, pp. 133–141], and the references to related approaches in
[16, pp. 154–155].

More specifically, EGO selects points (locations, input combinations) based on maximiz-
ing the EI. For the computation of this EI, EGO uses a Kriging metamodel to approximate the
simulation’s I/O function. Kriging metamodels are very popular in deterministic simulation,
applied (for example) in engineering design; see [9] and the references in [16] (p. 3). This
classic Kriging model is an exact interpolator; i.e., the Kriging predictors equal the simulated
outputs observed for input combinations that have already been simulated. EGO estimates
the EI through the Kriging predictor and the estimated variance of this predictor. However,
Den Hertog, Kleijnen, and Siem [6] show that this classic estimator of the Kriging predictor
variance is biased, and they develop an improved bootstrap estimator of the Kriging predictor
variance. Abt [1] also points out that “considering the additional variability in the predictor
due to estimating the covariance structure is of great importance and should not be neglected
in practical applications”. Moreover, the classic and the bootstrapped predictor variance do
not reach their maximum at the same point (see [6]). In the present article, we demonstrate
that the effectiveness of EGO may indeed be improved through the use of this bootstrapped
estimator. We quantify this effectiveness through the number of simulation observations
needed to reach the global optimum. We find that this bootstrapped EI is faster in three of
the four test functions; the remaining test function gives a tie. Nevertheless, the analysts
may still wish to apply classic EI because they accept possible inefficiency—compared with
bootstrapped EI—and prefer the simpler computations of classic EI—compared with the
sampling required by bootstrapping.

We conjecture that our bootstrapped estimator of the variance of the biased (nonlinear)
Kriging predictor defined in (4) (which uses Maximum Likelihood Estimators or MLEs of
the Kriging parameters) is unbiased, but we have no mathematical proof. We base our con-
jecture on the general bootstrap theory in [7]. A simple example is the biased estimator s
of the standard deviation σ of a Gaussian (Normal) variable (s2 is an unbiased estimator of
σ 2); we conjecture that bootstrapping may give an unbiased estimator of the variance of this
biased estimator s.

Like many other authors, we assume expensive simulation; i.e., simulating a single point
requires relatively much computer time compared with the computer time needed for fitting
and analyzing a Kriging metamodel. For example, it took 36–160 h of computer time for a
single run of a car-crash simulation model at Ford; see [29]. In such an expensive simula-
tion, the initial sample size might be selected to be “small”, given the number of dimensions
(number of inputs to be optimized) and the shape of the I/O function implied by the specific
simulation model. Unfortunately, a too small sample may give a Kriging metamodel that is
inadequate to guide the search for the global optimum—using EGO or some other heuristic.
We shall briefly return to this problem later on in this article.

We organize the remainder of this article as follows. Section 2 summarizes the simplest
type of Kriging, but also considers the statistical complications caused by the nonlinear
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statistics in this Kriging predictor. Section 3 summarizes classic EI. Section 4 adapts EI,
using a bootstrapped estimator for the variance of the Kriging predictor. Section 5 gives
numerical results, first for the classic and the bootstrapped variance estimators in a simple
test function; next for the two EI variants in four popular test functions. Section 6 presents
conclusions and topics for future research. Thirty-two references conclude this article.

2 Kriging metamodels

Originally, Kriging was developed—by the South African mining engineer Daniel Krige—
for interpolation in geostatistical or spatial sampling; see the classic Kriging textbook [4].
Later on, Kriging was applied to the I/O data of deterministic simulation models; see the
classic article [25] and also the popular textbook [26].

Kriging may enable adequate approximation of the simulation’s I/O function, even when
the simulation experiment covers a “big” input area; i.e., the experiment is global, not local.
“Ordinary Kriging”—simply called “Kriging” in the remainder of this article—assumes that
the function being studied is a realization of a Gaussian stochastic process Y (x) = μ+ Z(x)
where x is a point in a d -dimensional search space, μ is its constant mean, and Z(x) is
a zero-mean, stationary, Gaussian stochastic process with variance σ 2 and some assumed
correlation function such as

corr [Y (xi ),Y (x j )] =
d∏

k=1

exp
(−θk

∣∣xik − x jk
∣∣pk

)
, (1)

which implies that the correlations between outputs in the d-dimensional input space are the
product of the d individual correlation functions. Such a correlation function implies that out-
puts Y (xi ) and Y (x j ) are more correlated as their input locations xi and x j are “closer”; i.e.,
their Euclidean distance in the kth dimension of the input combinations xi and x j is smaller.
The correlation parameter θk denotes the importance of input dimension k (the higher θk

is, the faster the correlation function decreases with the distance), and pk determines the
smoothness of the correlation function; e.g., pk = 1 yields the exponential correlation func-
tion, and pk = 2 gives the so-called Gaussian correlation function. Realizations of such a
Gaussian process are smooth, continuous functions; its specific behavior in terms of smooth-
ness and variability along the coordinate directions is determined by the parameters μ, σ 2,
and θ = (θ1, . . . θd)

′.
Given a set of (say) n “old” observations y = (y1, . . . , yn)

′,Kriging uses the Best Linear
Unbiased Predictor (BLUP) criterion—which minimizes the Mean Squared Error (MSE) of
the predictor—to derive the following linear predictor for a point xn+1, which may be either
a new or an old point:

ŷ(xn+1) = μ̂+ r′R−1(y − 1μ̂) (2)

where μ̂ = 1′Ry/1′R1 and 1 denotes the n -dimensional vector with ones, R the n×n correla-
tion matrix whose (i,j)th entry is given by (1), and r = {corr [Y (x), Y (x1)], . . . , corr [Y (x),
Y (xn)]}′ the vector of correlations between x and the n sampled points. It can be proven that
if xn+1 is an old point, then the predictor equals the observed value (ŷ(x) = y(x)); i.e., the
Kriging predictor is an exact interpolator.
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EGO uses the MSE of the BLUP, which can be derived to be

σ 2(x) = σ 2

(
1 − r′R−1r+

(
1 − 1′R−1r

)2

1′R−11

)
(3)

where σ 2(x) denotes the variance of ŷ(x) (the Kriging predictor at location x) and σ 2 denotes
the (constant) variance of Y , for which a covariance-stationary process is assumed; a recent
reference is [9] (p. 84). We call σ 2(x) defined in (3) the predictor variance.

A major problem in Kriging is that the correlation function is unknown, so both the type
and the parameter values must be estimated. Like most simulation studies (unlike geosta-
tistical studies) assume, we assume a Gaussian correlation function (so pk = 2 in Eq. 1).
To estimate the parameters of this correlation function, the standard Kriging literature and
software uses MLEs. The MLEs of the correlation parameters θk in (1) require constrained
maximization, which is a hard problem because matrix inversion is necessary, the likelihood
function may have multiple local maxima, etc.; see [20]. To estimate the resulting Kriging
predictor (2), and the predictor variance (3), we use the DACE software, which is a free-of-
charge Matlab toolbox well documented in [19]. (Alternative free software is mentioned in
[10] and [16, p. 146].)

The classic Kriging literature, software, and practice replace the unknown covariances
R and r in (2) and (3) by their estimators R̂ and r̂ that result from the MLEs (say) ψ̂ =
(μ̂, σ̂ 2, θ̂

′
)′. Unfortunately, this replacement changes the linear predictor ŷ(x) defined in (2)

into the nonlinear predictor

̂̂y(xn+1) = μ̂+ r̂′R̂−1(y − 1μ̂). (4)

The classic literature ignores this complication, and simply plugs the estimates σ̂ 2 and θ̂ j

into the right-hand side of (3) to obtain the estimated predictor variance of ̂̂y(x):

s2(x) = σ̂ 2(1 − r̂′R̂−1̂r+ (1 − 1′R̂−1̂r)2

1′R̂−11
). (5)

It is well known that s2(x) is zero at the n old input locations; s2(x) tends to increase as
the new location lies farther away from old locations. However, Den Hertog et al. [6] show
that not only does s2(x) underestimate the true predictor variance, but the classic estimator
and their bootstrapped estimator (to be detailed in Sect. 4) do not reach their maxima at the
same input combination!

In general, bootstrapping is a simple method for quantifying the behavior of nonlinear
statistics; see the classic textbook on bootstrapping [7]. An alternative method is used in
[21], to examine the consequences of estimating σ 2 and θ̂ (through MLE); i.e., that article
uses a first-order expansion of the MSE; earlier, Abt [1] also used first-order Taylor series
expansion. One more alternative method developed in [32] uses the Bayesian approach. Our
specific bootstrapped estimator is simpler.

3 Classic EI

A recent and in-depth discussion of classic EI is [9, pp. 91–106] (also discussing a number
of EI variations). Classic EI assumes deterministic simulation aimed at finding the uncon-
strained global minimum of the objective function, using the Kriging predictor ̂̂y and its
classic estimated predictor variance s2(x) defined in (4) and (5). This EI uses the following
steps.
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(1) Find among the n old simulation outputs yi (i = 1, . . . , n) the minimum, mini yi

(i = 1, . . . , n).
(2) Estimate the input combination x that maximizes ̂E I (x), the estimated expected

improvement over the minimum found in Step 1:

̂E I (x) =
mini yi∫
−∞

[
min

i
yi − y(x)

]
f [y(x)] dy(x) (6)

where f [y(x)] denotes the distribution of̂̂y(x) (the Kriging predictor with MLEs for the
input combination x). EI assumes that this distribution is a Gaussian distribution with
the estimated mean ̂̂y(x) and a variance equal to the estimated predictor variance s2(x).
To find the maximizer of (6), we may use either a space-filling design with candidate
points or a global optimizer such as the genetic algorithm in [9, p. 78].

(3) Simulate the maximizing combination found in Step 2 (which gave maxx ̂E I (x)), refit
the Kriging model to the old and new I/O data, and return to Step 1—unless the conclu-
sion is that the global minimum is reached close enough because maxx ̂E I (x) is “close”
to zero.

Note that a local optimizer in Step 2 is undesirable, because ̂E I (x) has many local optima;
i.e., for all old input combinations s2(x) = 0 so ̂E I (x) = 0.

4 Bootstrapped EI

Because s2(x) defined in (5) is a biased estimator of the predictor variance, we may use the
bootstrapped estimator that was developed in [6]. That article uses parametric bootstrapping
assuming the deterministic simulation outputs Y are realizations of a Gaussian process, as
explained in Sect. 2. That bootstrapping computes ψ̂ , the MLEs of the Kriging parameters(
μ̂, σ̂ 2, θ̂ ′

)′
, from the “original” old I/O data (x, y) defined in Section 2 (so x is the n × d

input matrix and y = (y1, . . . , yn)
′ is the corresponding output vector). We compute these

MLEs through DACE (different software may give different estimates because of the diffi-
cult constrained maximization required by MLE). These MLEs specify the distribution from
which we will sample so-called bootstrapped observations; actually, this so-called paramet-
ric bootstrapping is no more than Monte Carlo sampling from a given type of distribution with
parameter values estimated from the original data. (There is also nonparametric bootstrap-
ping, which is relevant in random simulation with replicates; [17] applies such bootstrapping
for constrained optimization in random simulation.)

Note that [6] gives several bootstrap algorithms; we use its second algorithm. Unfortu-
nately, [6] finds that this algorithm gives bumpy plots for the bootstrapped Kriging variance
as a function of a one-dimensional input (see Figure 3 in Den Hertog et al. 2006). This
bumpiness might make our EGO approach less efficient.

Using this second algorithm to estimate the MSE of the Kriging predictor at the new point
xn+1, we sample (or bootstrap) both n old I/O data (x, y∗)with y∗ = (y∗

1 , . . . , y∗
n )

′ and a new
point (xn+1, y∗

n+1) where all n + 1 outputs collected in y∗′
n+1 = (y∗′, y∗

n+1) are correlated:

y∗
n+1 ∼ Nn+1(μ̂n+1, �̂n+1) (7)
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where the mean vector μ̂n+1 has all its (n + 1) elements equal to μ̂ and the (symmetric
positive-definite) (n + 1)× (n + 1) covariance matrix �̂n+1 equals

�̂n+1=σ̂ 2

[
R̂ r̂
r̂′ 1

]
.

The bootstrapped Kriging predictor for the new point
(
̂̂y∗

n+1

)
depends on the boot-

strapped function values y∗at the old x data, which are used to compute the bootstrapped

MLEs ψ̂
∗ =

(
μ̂∗, σ̂ 2∗

, θ̂
∗′)′

. Note that we start our search for these θ̂
∗

with θ̂ (the MLEs

based on the original data (x, y)).
The Squared Errors (SEs) at these old points are zero, because Kriging is an exact inter-

polator. However, the squared error at the new point is

SEn+1 = (̂ŷ
∗
n+1 − y∗

n+1)
2. (8)

To reduce sampling error, we repeat this bootstrapping B times (e.g., B = 100), which
gives ̂̂y∗

n+1,b and y∗
n+1;b with b = 1, . . . , B. Finally, this bootstrap sample of size B gives

the bootstrap estimator of the Kriging predictor’s MSE at the new point xn+1:

s2 (̂ŷ
∗
n+1) =

B∑
b=1
(̂ŷ

∗
n+1,b − y∗

n+1;b)
2

B
. (9)

We use this s2 (̂ŷ
∗
n+1) to compute the EI in (6) where we replace the general distribution

f [̂̂y(x)] by

N
[
̂̂yn+1, s2 (̂ŷ

∗
n+1)

]
. (10)

We perform the same procedure for each candidate point xn+1.
To avoid repeated factorization of �̂n+1 in (7) for the many candidate points, we use the

property that the multivariate normal distribution (7) implies that its conditional output is also
normal. So, we still let y∗ denote the bootstrapped outputs at the n old input combinations,
and y∗

n+1 denote the bootstrapped output of a candidate combination. Then (7) implies that
the distribution of this y∗

n+1 at a specific candidate point xn+1—given (or “conditional on”)
the n bootstrapped outputs y∗—is (also see [14, p. 157] and equation 19 in [6])

N
(
μ̂+ r̂′R̂−1 (

y∗ − μ̂
)
, σ̂ 2

(
1 − r̂′R̂−1̂r

))
. (11)

We interpret this formula as follows. If (say) all n elements of y∗ − μ̂ (in the first term,
which represents the mean) happen to be positive, then we expect y∗

n+1 also to be “relatively”
high (̂r has positive elements only); i.e., higher than its unconditional mean μ̂. The second
term (including the variances) implies that y∗

n+1 has a lower variance than its unconditional

variance σ̂ 2 if y and yn+1 show high positive correlations (see r̂). (The variance of y∗
n+1 is

lower than the variance of its predictor ̂̂y∗
n+1; see [15], Eq. 9.)

We note that the bootstrapped predictions for all candidate points use the same boot-
strapped MLEs ψ̂

∗
computed from the n bootstrapped old I/O data (x, y∗).
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5 Empirical results

In this section, we first compare the coverage (or “success rate”) of 90% confidence inter-
vals (CIs) for the classic predictor variance versus our bootstrapped predictor variance, in
an example that guarantees that the Kriging metamodel is an adequate approximation (see
Sect. 5.1). Next we compare the effectiveness of classic and bootstrapped EI, for four test func-
tions with multiple optima; namely, Forrester et al.’s one-dimensional test function given in
[9], the two-dimensional six-hump camel-back function, the three-dimensional Hartmann-3
function, and the six-dimensional Hartmann-6 function (see Sect. 5.2).

5.1 Coverage rates in a Kriging model

In this subsection we estimate the coverage rates of 90% CIs; i.e., do these intervals indeed
have a 90% probability of covering the true value? Note that the classic method and our
method use the same point predictor but different estimated variances; see (4), (5), and (10).
We construct an example guaranteeing that the Kriging metamodel is an adequate (valid)
approximation, as follows.

We decide to select d = 2 dimensions, and generate (sample) observations from a Gaussian
process with parameters μ = 3.3749, σ 2 = 0.0176, θ1 = 0.1562, and θ1 = 2.5 (we select
these values after fitting a Kriging model to the camel-back function defined in Sect. 5.2.2
with n = 2, 601 I/O observations). Now we generate (say) T sample paths over a 51 × 51
grid with −0.5 ≤ x1 ≤ 0.5 and 0 ≤ x2 ≤ 1 (yielding 2,601 equally spaced points). From
this grid we sample n points to act as the initial sample and another point to act as the point
xn+1 to be predicted. For each sample path t = 1, . . . , T we apply both the classic predictor
variance and our bootstrapped variance to make a 90% CI for the prediction at xn+1. If the
CI covers the actual value from the sampled path, we call it a “success”. The goal of this
experiment is to estimate the effects of n (initial sample size) on the coverage, so we select
n equal to 5, 20, 50, and 80 respectively. Table 1 shows the results of the classic and the
bootstrap approaches with mean coverage rates estimated from 2,601-n test points. Though
some test points yield higher coverage rates for the classic approach (these individual results
are not displayed), this table suggests

• in both approaches, the mean coverage rates increase as the initial sample increases;
• our bootstrap gives higher mean coverage rates for any sample size;
• the difference between the mean coverage rates decreases as the sample size increases;
• our mean coverage rate is close to the nominal prespecified value if the sample size

agrees with the rule-of-thumb, n = 10d (so n = 20), proposed in [15] and [18].

In the appendix we also estimate the coverages for the function y = sin(x); we find similar
results.

So our conclusion is that our bootstrapped variance estimator of the Kriging predictor tends
to exceed the classic estimator, so the mean coverage rates are higher for our bootstrapped

Table 1 Gaussian Process test function: mean coverage rates of 90% confidence intervals with classic and
bootstrapped predictor variance

n 5 20 50 80
Classic 0.7198 0.8065 0.8637 0.8866

Bootstrap 0.7643 0.8459 0.8747 0.8903
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estimator; nevertheless, for “small” initial samples these higher coverage rates are still much
lower than the prespecified values, because the initial Kriging metamodel is an inadequate
approximation of the true I/O function.

5.2 Effectiveness in four test functions

In this section we compare classic and bootstrapped EI through four test functions; namely,
the function in [9], the so-called six-hump camel function, the Hartmann-3 function, and the
Hartmann-6 function.

For each of these four functions, we start with an initial design with n points to fit an
initial Kriging model. Next, we update this design sequentially, applying either classic EI or
bootstrapped EI. We estimate the maximum EI through a set of ntest candidate points; the
candidate point that maximizes the estimated EI is added next to the design (see step 3 in
Sect. 3).

Because bootstrapped EI implies sampling, we repeat the experiment ten times for each
test function to reduce the randomness in our results; by definition, these ten macroreplicates
are identical except for the pseudorandom number (PRN) seed used to draw the bootstrap
samples. Obviously, for classic EI a single macroreplicate suffices.

We stop our search when either the maximum EI is “small”—namely, E I < e−20—or
a maximum allowable number of points have been added to the initial design. For both
approaches, we report the estimated optimum location xopt with its objective value yopt , the
total number of points simulated before the heuristic stops ntot , and the iteration number that
gives the estimated optimum nopt (obviously, nopt ≤ ntot ; if the very last point simulated
gives the estimated optimum, then nopt = ntot ).

5.2.1 Forrester et al.’s function

In [9, pp. 83–92] classic EI is illustrated through the following one-dimensional function:

y(x) = (6x − 2)2 sin(12x − 4) with 0 ≤ x ≤ 1. (12)

It can be proven that in the continuous domain, this function has one local minimum (at
x = 0.01) and one global minimum at xo = 0.7572 with output y(xo) = −6.02074.

We use the same initial design as [9] does; namely, the n = 3 equi-spaced (or gridded)
input locations 0, 0.5, and 1. The set of candidate points consists of a grid with distance
0.01 between consecutive input locations; this yields ntest = 98 candidate points. Given
this (discrete) grid, it can be proven that the global optimum occurs at xo = 0.76 with
y(xo) = −6.0167. The genetic algorithm in [9] finds the optimum in the continuous domain
after 8 iterations, so we also set the maximum number of allowable iterations at 8. Table 2
shows the results of both EI approaches for this function. Both approaches turn out to find
the true optimum. Bootstrapped EI, however, finds this optimum faster (i.e., it requires fewer
iterations) in six of the ten macroreplicates; two macroreplicates yield a tie; in the remaining
two macroreplicates classic EI is faster.

Note that our results confirm the results in [6]; i.e., the classic and the bootstrapped vari-
ance of the Kriging predictor—defined in (5) and (9)—do not reach their maxima at the same
input point; moreover, this classic estimator underestimates the true variance (given n = 3
old points). To save space, we do not display the corresponding figures.
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Table 2 Forrester et al.’s function: classic versus bootstrapped EI

xopt yopt nopt ntot

Classic EI 0.76 −6.017 10 11

Bootstrap EI

Macroreplicate

1 0.76 −6.017 9 11

2 0.76 −6.017 10 11

3 0.76 −6.017 9 10

4 0.76 −6.017 10 10

5 0.76 −6.017 8 10

6 0.76 −6.017 11 11

7 0.76 −6.017 11 11

8 0.76 −6.017 9 10

9 0.76 −6.017 6 10

10 0.76 −6.017 9 11

5.2.2 Six-hump camel-back function

The six-hump camel-back function is defined by

y(x1, x2) = 4x2
1 − 2.1x4

1 + x6
1/3 + x1x2 − 4x2

2 + 4x4
2 (13)

with −2 ≤ x1 ≤ 2 and −1 ≤ x2 ≤ 1. In the continuous domain, this function has two global
minima; namely, xo

1 = (0.089842,−0.712656)′ and xo
2 = (−0.089842, 0.712656)′ with

y(xo
1) = y(xo

2) = −1.031628. It also has two additional local minima. For further details we
refer to [30, pp. 183–184].

We select an initial spacefilling design with n = 21 points, like Schonlau did in [28];
moreover, this selection approximates the popular rule-of-thumb n = 10d . More specifi-
cally, we use the maximin Latin Hypercube Sampling (LHS) design found on http://www.
spacefillingdesigns.nl/, which compares various designs and collects the best designs on this
website.

We select 200 candidate points through the maximin LHS design found on the same
website. In this discrete set, the global minima occur at xo

1 = (−0.0302, 0.7688)′ and xo
2 =

(0.0302,−0.7688)with yo = −0.9863. We set the maximum number of allowable iterations
at 40.

Table 3 shows the results of both EI approaches. Both approaches succeed in finding the
true optimum within the candidate set of points. However, our bootstrapped EI finds that
optimum a bit quicker, in all macroreplicates; see the column nopt .

5.2.3 Hartmann-3 function

The Hartmann-3 function is defined by

y(x1, x2, x3) = −
4∑

i=1

αi exp

⎡

⎣−
3∑

j=1

Ai j (x j − Pi j )
2

⎤

⎦ (14)
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Table 3 Six-hump camel-back function: classic versus bootstrapped EI

xopt yopt nopt ntot

Classic EI (−0.0302, 0.7688) −0.9863 31 41

Bootstrap EI

Macrorep.

1 (0.0302, −0.7688) −0.9863 29 43

2 (−0.0302 ,0.7688) −0.9863 29 41

3 (−0.0302 ,0.7688) −0.9863 29 42

4 (0.0302, −0.7688) −0.9863 29 42

5 (0.0302, −0.7688) −0.9863 29 43

6 (−0.0302, 0.7688) −0.9863 25 43

7 (0.0302, −0.7688) −0.9863 27 41

8 (0.0302, −0.7688) −0.9863 26 42

9 (−0.0302, 0.7688) −0.9863 30 41

10 (−0.0302, 0.7688) −0.9863 26 43

Table 4 Parameters Ai j and Pi j
of the Hartmann-3 function

Ai j Pi j

3 10 30 0.36890 0.1170 0.26730

0.1 10 35 0.46990 0.43870 0.74700

3 10 30 0.10910 0.87320 0.55470

0.1 10 35 0.03815 0.57430 0.88280

with 0 ≤ xi ≤ 1 for i = 1, 2, 3; parameters α = (1.0, 1.2, 3.0, 3.2)′, and Ai j and Pi j

given in Table 4. In the continuous domain, the function has a global minimum at xo =
(0.114614, 0.555649, 0.852547)′ with y(xo) = −3.86278; the function has three additional
local minima.

We select an initial maximin LHS design with 30 points found on http://www.
spacefillingdesigns.nl/, and a set of candidate points consisting of a maximin LHS design
with 300 points generated by Matlab. In this discrete domain, the global minimum is
xo = (0.2088, 0.5465, 0.8767)′ with y(xo) = −3.7956. We set the maximum allowable
number of iterations at 35. Table 5 shows that the bootstrapped EI finds the optimum faster,
in nine of the ten macroreplicates; macroreplicate 5 gives a tie.

5.2.4 Hartmann-6 function

The Hartmann-6 function is defined by

y(x1, . . . , x6) = −
4∑

i=1

ci exp

⎡

⎣−
6∑

j=1

αi j (x j − pi j )
2

⎤

⎦ (15)

with 0 ≤ xi ≤ 1(i = 1, . . . , 6); c = (1.0, 1.2, 3.0, 3.2)′, and αi j and pi j given in Table 6.
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Table 5 Hartmann-3 function: classic versus bootstrapped EI

xopt yopt nopt ntot

Classic EI (0.2088, 0.5465, 0.8767) −3.7956 44 65

Bootstrapped EI

Macrorep.

1 (0.2088, 0.5465, 0.8767) −3.7956 34 65

2 (0.2088, 0.5465, 0.8767) −3.7956 34 65

3 (0.2088, 0.5465, 0.8767) −3.7956 41 65

4 (0.2088, 0.5465, 0.8767) −3.7956 34 65

5 (0.2088, 0.5465, 0.8767) −3.7956 44 65

6 (0.2088, 0.5465, 0.8767) −3.7956 43 65

7 (0.2088, 0.5465, 0.8767) −3.7956 34 65

8 (0.2088, 0.5465, 0.8767) −3.7956 34 65

9 (0.2088, 0.5465, 0.8767) −3.7956 41 65

10 (0.2088, 0.5465, 0.8767) −3.7956 34 65

Table 6 Parameters αi j and pi j of the Hartmann-6 function

αi j 10.0 3.0 17.0 3.5 1.7 8.0

0.05 10.0 17.0 0.1 8.0 14.0

3.0 3.5 1.7 10.0 17.0 8.0

17.0 8.0 0.05 10.0 0.1 14.0

pi j 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

In the continuous domain, this function has a global minimum at xo =(0.20169, 0.150011,
0.476874, 0.275332, 0.311652, 0.6573)′ with y(xo) = −3.32237; the function also has five
additional local minima.

We select an initial maximin LHS design with 51 points, as in [28]. Our set of candidate
points consists of Matlab’s maximin LHS design with 500 points. Within this discrete domain,
the global minimum occurs at xo = (0.3535, 0.8232, 0.8324, 0.4282, 0.1270, 0.0013)′ with
y(xo) = −2.3643. For the maximum allowable number of iterations we select 50.

Table 7 shows that our bootstrapped EI is faster in only five of the ten macroreplicates.
An explanation may be that the initial design has 51 points; the noncollapsing property of
LHS means that projection onto any axis gives an approximately equally spread sample of
points on that axis. Hence, accurate estimation of the correlation function in that dimension
is possible for the k = 6 individual correlation functions in (1) so the bias of the classic
variance estimator vanishes. (An initial design size of roughly 10d seems necessary, because
otherwise the Kriging metamodel may be too bad an approximation—even if its correlation
function is estimated accurately. For the camel-back and Hartmann-3 functions we also use
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Table 7 Hartmann-6 function: classic versus bootstrapped EI

xopt yopt nopt ntot

Classic EI (0.3535,0.8232,0.8324,0.4282,0.127,0.0013) −2.3643 79 101

Bootstrap EI

Macrorep.

1 (0.3535, 0.8232, 0.8324, 0.4282, 0.127, 0.0013) −2.3643 92 101

2 (0.3535, 0.8232, 0.8324, 0.4282, 0.127, 0.0013) −2.3643 89 101

3 (0.3535, 0.8232, 0.8324, 0.4282, 0.127, 0.0013) −2.3643 78 101

4 (0.3535, 0.8232, 0.8324, 0.4282, 0.127, 0.0013) −2.3643 86 101

5 (0.3535, 0.8232, 0.8324, 0.4282, 0.127, 0.0013) −2.3643 92 101

6 (0.3535, 0.8232, 0.8324, 0.4282, 0.127, 0.0013) −2.3643 98 101

7 (0.3535, 0.8232, 0.8324, 0.4282, 0.127, 0.0013) −2.3643 76 101

8 (0.3535, 0.8232, 0.8324, 0.4282, 0.127, 0.0013) −2.3643 78 101

9 (0.3535, 0.8232, 0.8324, 0.4282, 0.127, 0.0013) −2.3643 73 101

10 (0.3535, 0.8232, 0.8324, 0.4282, 0.127, 0.0013) −2.3643 75 101

approximately n = 10d , but d is then only 2 and 3 respectively so the individual correlation
functions are estimated from smaller samples.)

6 Conclusions and future research

In this article, we study the EI criterion in the EGO approach to global optimization. We
compare the classic Kriging predictor variance estimator and our bootstrapped estima-
tor introduced by Den Hertog et al. in [6]. We estimate the effects of the initial sample
size on the difference between the classic and the bootstrapped estimates of the predic-
tor variance. These empirical results suggest that the smaller that sample size is, the more
the classic estimator underestimates the true predictor variance. Unfortunately, a “small”
sample size—given the number of dimensions and the (unknown) shape of the I/O func-
tion—increases the likelihood of an inadequate Kriging metamodel so the Kriging (point)
predictor may be misleading; i.e., this wrong predictor combined with a correct predic-
tor variance may give a wrong EI leading to the (expensive) simulation of the wrong next
point.

To compare EI combined with the classic and the bootstrapped variance estimators empir-
ically, we use four test functions, and find the following results:

(1) Forrester et al.’s one-dimensional function: Our bootstrapped EI finds the global
optimum faster in six of the ten macroreplicates; two macroreplicates yield a tie; in the
remaining two macroreplicates, classic EI is faster.

(2) Six-hump camel-back function in two-dimensions: Our bootstrapped EI finds the global
optimum quicker, in all ten macroreplicates.

(3) Hartmann-3 function: Our bootstrap EI finds the optimum faster in nine of the ten
macroreplicates; the one remaining macroreplicate gives a tie.

(4) Hartmann-6 function: Our bootstrapped EI is faster in five of the ten macroreplicates.

Altogether, our bootstrapped EI is better in three of the four test functions; the remaining
test function gives a tie. Nevertheless, the analysts might wish to apply classic EI because
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they accept some possible inefficiency—compared with bootstrapped EI—and prefer the
simpler computations of classic EI—compared with the sampling required by bootstrapping.
So we might conclude that the classic EI gives a quite robust heuristic. One explanation of
this robustness may be that the bias of the classic variance estimator decreases as the sample
size increases so this estimator approaches the bootstrapped estimator (both approaches use
the same point predictor).

We propose the following topics for future research:

• Testing the adequacy (validity) of the Kriging metamodel; see [17].
• Global convergence of EGO; see [3, p. 134] and [9].
• Constrained optimization; see [9, pp. 125–131].
• Random simulation: [9, pp. 141–153] discusses numerical noise, not noise caused by

pseudorandom numbers (which are used in discrete-event simulation). For the latter
noise we refer to [2], [23], and [32].

• Application to large-scale industrial problems, such as the so-called MOPTA08 problem
with 124 inputs and 68 inequality constraints for the outputs; see [24]

• Comparison of EGO with other approaches; see [5].
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Appendix: Test function y = sin(x)

Consider the following example: y = sin(x) with 0 ≤ x ≤ 30. First consider the uniform
design with n = 5 points that all happen to give y = max[sin(x)] = 1 so y1 = · · · = y5 = 1.
Hence Kriging gives μ̂ = 1 and σ̂ 2 = 0, so ̂̂y = 1 and s2(x) = 0. Obviously these Kriging
results are very misleading!

Next consider a design with the following n = 7 randomly selected x-values: 0.25, 3.00,
6.00, 10.15, 16. 80, 23.48, and 29.00. This design also gives a bad Kriging metamodel, which
underestimates the predictor variance. These two examples demonstrate that some form of
validation of the metamodel seems useful; see the “future research topics” in Sect. 6.

However, the bad results of these two examples might also be mitigated through the appli-
cation of the general randomization principle that is advocated in design of experiments
(DOE); i.e., randomization may avoid pathological phenomena. In our case we propose
random LHS design; i.e., we sample n values for x using Matlab’s maximin lhs macro. To
select the new point xn+1, we take a grid with step size 0.05 so we get 601 points. Because

Table 8 y = sin(x) test function: mean coverage rates of 90% confidence intervals with classic and boot-
strapped predictor variance

n 4 6 8 10 20 80

Classic 0.5451 0.6438 0.9291 0.9368 1.000 0.8866

Bootstrap 0.5825 0.6648 0.9470 0.9443 0.9999 0.8903
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random LHS implies sampling error, we repeat the whole experiment 30 times (so the number
of “macroreplicates” is 30). This gives Table 8. We find the same pattern as we do for the
Gaussian process in Sect. 5.1:

• in both approaches, the mean overage rates increase as the initial sample increases;
• our bootstrap gives higher mean coverage rates, until the sample becomes “very large”;
• the difference between the mean coverage rates decreases, as the sample size increases;
• if the initial sample size agrees with the rule-of-thumb n = 10d , then the mean coverage

rate is acceptable.
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