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Finding the shortest path of the traveling salesman problem (TSP) is a typical NP-hard problem and one of the basic optimization
problems. TSP in three-dimensional space (3D-TSP) is an extension of TSP. It plays an important role in the fields of 3D path
planning and UAV inspection, such as forest fire patrol path planning. Many existing studies have focused on the expected length of
the shortest path of TSP in 2D space.+e expected length of the shortest path in 3D space has not yet been studied. To fill this gap, this
research focuses on developing models to estimate the expected length of the shortest path of 3D-TSP. First, different experimental
scenarios are designed by combining different service areas and the number of demand points. Under each scenario, the specified
number of demand points is randomly generated, and an improved genetic algorithm andGurobi are used to find the shortest path. A
total of 500 experiments are performed for each scenario, and the average length of the shortest path is calculated. +e models to
estimate the expected length of the shortest path are proposed. Model parameters are estimated and k-fold cross-validation is used to
evaluate the goodness of fit. Results show that all the models fit the data well and the best model is selected.+e developedmodels can
be used to estimate the expected length of the shortest path of 3D-TSP and provide important references for many applications.

1. Introduction

+e traveling salesman problem (TSP) is a typical combi-
natorial optimization problem and is also NP-hard [1, 2]. It
is explained as a salesman trying to find the shortest path (or
minimum travel cost) through a given set of cities, where the
travel distances (or travel costs) between cities are also given,
under the requirement of visiting each city only once and
returning to the starting city [3]. TSP has a wide range of
applications in transportation, logistics, computer science,
genetics, and other fields [4–9]. +e traveling salesman
problem in three-dimensional space (3D-TSP) is a gener-
alization of the classic TSP. 3D-TSP refers to an executor,
such as a drone that tries to find the shortest path in the
three-dimensional space and returns to the starting point
after visiting each of the given demand points.+e difference
between 3D-TSP and the classic TSP is that the coordinates

of the cities or demand points are no longer represented by
two-dimensional coordinates but by three-dimensional
coordinates. Many problems, such as the unmanned aerial
vehicle (UAV) patrolling for inspection, could be regarded
as a TSP in 3D space [10]. In these applications, it is im-
portant to know the expected length of the shortest path of
the 3D-TSP under a given area and the number of demand
points in order to determine the zoning strategy of the
service area and the number of executors needed.

So far, many scholars have studied the expected length of
the shortest path and proposed estimationmodels that adopt
the number of cities and service area parameters as inde-
pendent variables [11–15]. However, models of the expected
length of the shortest path of 3D-TSP have not yet been
studied. As a result, this study contributes to determining the
influence of the number of demand points and the relevant
parameters of the service area on the expected length of the
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shortest path of 3D-TSP and establishing the estimation
models of the expected length.

+e remainder of this paper is structured as follows.
Section 2 provides a review of the related literature on the
algorithms to solve TSP and the estimation models of the
expected length of the shortest path of TSP. Section 3 gives
the formal definition of 3D-TSP, its objective function, and
the improved genetic algorithm (GA) used in this paper.
Section 4 describes the simulation experiment scenarios
used in this paper, proposes the variables that can be used to
construct the models, builds the models based on the results
of the simulation experiment, and evaluates the goodness of
fit of the models. Section 5 provides a summary of the entire
study.

2. Literature Review

No research has yet been conducted on the expected length
of the shortest path of the 3D TSP. +us, the studies related
to the expected length of the shortest path of the 2D TSP are
reviewed.

Beardwood et al. [11] proposed that the expected length
of the shortest path through N points in abounded plane
region is always proportional to

����
NA

√
when N is relatively

large. In two-dimensional space, this result can be used to
estimate the expected length of the shortest path of the 2D
TSP. +e specific function is provided as Model (1) in Ta-
ble 1. In the model, L is the expected length of the shortest
path of the 2D TSP, A is the area of the service area, N is the
number of points in the area, and α is the constant of
proportionality, which is not related to the shape of the area.
After that, many scholars have estimated the value of α
[16–23].

Based on the study of Beardwood et al., Daganzo [12]
considered the influence of shape on the expected length of
the shortest route and proposed Model (2), as shown in
Table 1. In the model, Φ is an unknown constant, δ is the
density of points (δ � N/A), l is the width of the rectangle, N
is the number of points, and A is the area of the service area.
In the same year, Daganzo [13] proposed Model (3) to
estimate the expected length when there is a fleet of vehicles
operating in an area with heterogeneous demand, as shown
in Table 1. In the model, α1 is an unknown constant, A is the
area of the subregion, N is the number of points in the
subregion, D is the average straight-line distance from each
point in the subregion to the depot, and C is the maximum
number of times that a car can stop.

Chien [14] presented seven functions for the length of
the shortest path of TSP on the basis of the actual locations of
customers and the depot and conducted a large number of
Monte Carlo experiments to determine the values of related
parameters. +e results show that when the service area and
randomly distributed points in the area are provided, Model
(4) in Table 1 performs the best and can obtain a highly
accurate approximation of the expected length. In this
function, α1 and α2 are unknown constants, RBAR is the
average straight-line distance between the depot (origin) and
customers, RECTAN2 is the smallest rectangular area that

covers all the customers, andN is the size of TSP (number of
customers plus 1).

Kwon [15] constructed the regression model and neural
networkmodel of the expected length of the shortest path for
2D TSP and compared the results with the model proposed
by Beardwood et al., Daganzo, and Robuste et al. [24]. +e
results show that the model built by Kwon performed best.
Different from the previous model, Kwon’s model also
considers the effect of the aspect ratio S and S/N of the
rectangular service area on the expected length of the
shortest path.+e specific functions of the regressionmodels
established by Kwon are shown in Models (5) and (6) in
Table 1. In Models (5) and (6), α1, α2, α3, and α4 are un-
known constants; N is the number of points in TSP (the sum
of the number of depot and all the customers); S is the ratio
of the length to the width of the service area; A is the smallest
rectangular area that covers all the points; D is the average
straight-line distance from all the customers to the depot.
+is study primarily refers to Model (5) in Table 1 (proposed
by Kwon) to construct our models.

When studying the expected length of the shortest path
of the 3D TSP, we need to first solve the given 3D TSP in
order to obtain the shortest path. +e solution algorithm of
3D-TSP is similar to that of the classical TSP. +e only
difference is the calculation of the distance matrix. +ere-
fore, this paper adopts the solution algorithm of TSP to find
the optimal solution for 3D-TSP. Many scholars have
studied various algorithms to solve TSP. Solution algorithms
for TSP can be divided into two types: exact algorithm and
heuristic algorithm [19]. For small-scale problems, exact
algorithms can be used to solve them. For large-scale or
medium-scale problems, exact algorithms cannot generate
the optimal solution in a reasonably short time, and thus
heuristic algorithms are needed to find the approximate
optimal solution. Some commonly used algorithms [25–28]
are shown in Table 2.

For the exact algorithm, the solver Cplex or Gurobiis is
usually used when the number of demand points is less than
or equal to 100. For heuristics algorithm, GA is a random
parallel search algorithm based on natural selection and
genetics. It is an efficient method to find the optimal solution
without relying on any initial data. Due to its simplicity, GA
is widely used to solve TSP. However, it has a certain de-
pendence on the selection of the initial population. As a
result, GA is often improved by combining it with other
heuristic algorithms. For example, Li et al. [2] proposed to
combine GA with other algorithms such as greedy, hill

Table 1: Proposed models in previous research.

Model
number Author/s Model

(1) Beardwood
et al. L ≈ α

����
NA

√

(2) Daganzo L � ∅(δl2)
����
NA

√

(3) Daganzo L ≈ 2D (N/C) + α1
����
NA

√

(4) Chien L � α1RBAR + α2
����������������
RECTAN2(N − 1)



(5) Kwon et al. L � (α1 + α2N + α3S/N)
����
NA

√

(6) Kwon et al. L � (α1 + α2N + α3S/N)
����
NA

√
+ α4D
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climbing (HC), and simulated annealing (SA) algorithm to
improve GA to achieve better performance. Meng et al. [29]
proposed a PBIL algorithm combining GA and competitive
learning to explore better solutions. Later, Meng et al. [30]
also proposed a variable neighborhood search (VNS) ap-
proach that utilizes a two-stage greedy initialization al-
gorithm to generate an initial solution and employs a 2-opt
method for local search. Xu et al. [31] proposed a bio-
bjective variable neighborhood search (BVNS) approach
based on the VNS proposed by Meng et al. Kumar [32]
proposed to improve the GA with a greedy algorithm to
improve the quality of the initial population. Among them,
the combination of GA and the greedy algorithm has
generated good results within a reasonable time. +erefore,
this paper uses Gurobi and GA combined with the greedy
algorithm to obtain the shortest path of the 3D-TSP in
different scenarios.

A randomly generated geometric TSP instance [3] as-
sumes each point is independently and randomly generated
from the service area based on the uniform distribution. +e
travel cost between two points is the Euclidean distance
between the corresponding points. +is study implements
relevant experimental designs and randomly generates TSP
examples in 3D space. In addition, TSPLIB contains more
than 100 TSP instances and 85,900 cities [33]. It provides a
testbed for the proposed algorithm.

3. 3D-TSP and Improved GA Algorithm

3.1. 3D-TSP. Let us give a formal definition of the 3D-TSP.
Suppose that there is a drone (or performer of action) that
needs to visit each of the N demand points once and come
back to the origin. It can be formulated over a complete
graph G � (V, E), where vertex set V � 0, 1, 2, . . . , N − 1{ };
and each edge in (i, j) ∈ E, i≠ j, is associated with a weight
dij, which represents a visit cost (or distance) between two
demand points i and j. +e objective is to determine the
route along which the drone departs from the origin, visits
each point once, and returns to the origin with the lowest
total travel cost.

+e integer programming model of 3D-TSP is presented
as follows [4]. Binary variable xij � 1, i≠ j, i, j ∈ V, if the
drone passes through the edge (i, j); and otherwise, xij � 0.
+e objective function of the problem is

minF � 
N−2

i�0


N−1

j�1
dijxij. (1)

Subject to the following constraints: first, the drone
departs from the demand point numbered 0 (origin) and
returns to the origin, that is,



N−1

j�1
x0j � 1, (2)



N−2

i�0
xi0 � 1. (3)

Each demand point except 0 must be visited by the drone
exactly once, that is:



N−1

j�1
xij � 1, (4)



N−2

i�0
xij � 1. (5)

For each demand point, introduce a decision variable
μi,∀i ∈ V, μi ≥ 0. μi is the access order of demand point i. For
example, in μ1 � 5, it can be understood that point 1 is the
fifth point visited from the starting point. M is a very large
number. M should be an upper bound of μi − μj + 1. Some
papers pointed out that the effect will be better if the tightest
upper bound is taken, so we take M�N [25]. Construct
Miller–Tucker–Zemlin (MTZ) constraint to eliminate sub-
tour, that is:

μi − μj + Nxij ≤N − 1,∀i ∈ 0, 1, 2, . . . N − 2{ },

j ∈ 1, 2, . . . N − 1{ }, i≠ j.
(6)

It should be noted that since the classical TSP is NP-hard
[1, 2] and 3D-TSP is an extension of the classical TSP in the
3D space, 3D-TSP is also NP-hard. When all the points of
the 3D-TSP fall onto the same plane, 3D-TSP turns into the
classical TSP.

3.2. Improved GA Algorithm. Due to the complexity of 3D-
TSP and the relatively large number of demand points in this
study, it is necessary to use heuristic algorithms to solve the
3D-TSPs. As mentioned in the literature review, GA has a
good global search ability and is easy to be combined with
other algorithms for improvement. Combining the GA with
the greedy algorithm can shorten the time to obtain the
solution. It is achieved by using the greedy algorithm to
improve the initial population of the GA since a high-quality
initial population can accelerate the evolution of the GA to
quickly reach a satisfactory optimal solution [2, 32].
+erefore, this paper chooses to use the GA combined with
the greedy algorithm to find the shortest path of 3D-TSP.

+e initial parameters include the population sizeM, the
number of chromosome genes N (that is, the number of
demand points), the number of iterations C, the crossover
probability Pc, and the mutation probability Pm. +e specific
steps to perform the algorithm are as follows.

Step 1. Generate the digital codes (chromosomes) of M
feasible solutions of 3D-TSP through the greedy algorithm
as the initial population (the feasible solution set).

Table 2: Commonly used algorithms for solving TSP.

Exact algorithm Heuristic search algorithm
Mixed integer programming Genetic algorithm (GA)
Branch-and-bound search method Simulated annealing
Cutting-plane method Neural network algorithms
Dynamic programming Ant colony optimization
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Step 2. Select the inverse of the total length of the path as the
�tness function, which indicates the shorter the distance is,
the better the �tness function is. �e �tness of each indi-
vidual is calculated by the �tness function.

Step 3. Use the wheel selection mechanism for the selection
operation, eliminate individuals with low �tness, and select
individuals with high �tness.

Step 4. Randomly select two individuals and perform the
partial matching crossover. �e speci�c steps are as follows:
�rst randomly generate two intersection points, determine
the matching areas between the two points, and exchange
the two matching areas. If the code repetition occurs outside
the matching area, it will be replaced based on the corre-
sponding position in the matching area.

Step 5. Randomly select an individual, extract two genes
from the individual code, and exchange their positions. In
this way, variation of individual code is achieved.

Step 6. �e selection, crossover, and mutation of individuals
generate a new population for the next generation. After a
new population is generated, it is evaluated and then se-
lected, crossed, and mutated. �ese steps are repeated until
the maximum number of iterations or the termination
condition of the algorithm is reached. Finally, an approxi-
mate optimal solution is found.

�e �owchart of the improved GA is as follows
(Figure 1).

3.3. Illustration. Figure 2 presents an example of the 3D-
TSP. In this example, there are 10 demand points and the
volume of the service area is 1000 with equal length, width,
and height. �e red line in the �gure is the obtained shortest
path. It can be seen from the �gure that the length of the
shortest path is 42.0285. �e coordinates of each demand
point are marked.

4. Experiments and Results

In this section, we �rst design the simulation experiment
scenarios according to the previous literature [14, 15, 34],
including the setting of the volume, shape, and the number
of demand points of the service area. �is section �rst
compares the solution obtained by the GA combined with
the greedy algorithm to the solution obtained by the solver
Gurobi. �e better solutions are selected for further analysis
and modeling.

4.1. Settings of the Experimental Scenarios. �e volume of
the service area, the number of demand points, and the
shape of the service area are three important factors that
a�ect the expected length of the shortest path. We only
consider the shape of the service area as a cuboid or cube.We
assume that the longest side is length, the second longest side
is width, and the shortest side is height. �is study also
assumes that the service area has three parameters: the

Start

Determine the population size M, the number
of iterations C, the crossover probability Pc, 

and the mutation probability Pm

Randomly generate 3D
coordinates of points

Use greedy algorithm to
generate initial population

Calculate the fitness of each
individual

Select

Crossover

Mutate

Termination condition met

Output the solution
with the highest fitness

No

Yes

End

Figure 1: Flowchart of the improved GA for the population
initialization.
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Figure 2: �e 3D �gure of initial points and the shortest path of
3D-TSP for the experiment.
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volume of the service area (V), the ratio of length to width
(S1, the ratio of the longest side to the second longest side),
and the ratio of length to height (S2, the ratio of the longest
side to the shortest side). When V is �xed, the shape of the
service area will change with the change in S1 and S2. For
example, when S1 � S2 � 1, which means that the length,
width, and height are equal, the shape of the service area is a
cube.

A total of 500 (5·10·10) experimental scenarios are
designed in this study. �e range of V includes 1000, 8000,
27,000, 64,000, and 125,000. Under the premise of keeping V
constant, let S1 and S2 increase from 1 to 4 at an interval of 1,
such that the shape of the service area is gradually elongated
from a cube to a cuboid. After the service area is set, demand
points are randomly generated in each of the 3D service
areas. �e number of demand points increases from 10 to
100 at intervals of 10. �e demand generation process is
repeated under each scenario.

4.2. Algorithm Comparison. �e computer environment is
as follows: Windows 10 (64 bit), CPU is AMD R9-5900HX
processor and baseline speed is 3.30GHz. First of all, in
order to verify the e�ectiveness of the improved GA, this
paper selects 4 cases from the TSPLIB database with the
number of cities less than or equal to 100. �e solution
results are shown in Table 3. �e test results show that the
improved GA algorithm used in this paper generates results
that are very close to the solution given by the TSPLIB. �e
TSPLIB o�cial website states that any solution that is close
to or better than the solution they provide can be considered
a good solution [33], which veri�es the e�ectiveness of the
algorithm.

�e improved GA and Gurobi are used to obtain the
shortest path lengths of 3D-TSP. �e computing time and
quality of the two solutions are compared. We set the pa-
rameters of the improved GA as M� 200, C� 10,000,
Pc� 0.7, Pm� 0.1. 500 simulation experiments were per-
formed for each scenario, and the average value of the length
of the shortest path of the 500 experiments was taken as the
expected length of the shortest path in this scenario. To
prove that 500 simulation experiments for each scenario are
su�cient to accurately estimate the expected length of the
shortest path, we plotted the relationship between the av-
erage length of the shortest path and the number of ex-
periments (see Figure 3). As shown in the �gure, the
�uctuation is large when the number of simulations is less
than 100. When the number of simulations is between 100
and 300, the �uctuation is smaller. When the number of
simulations exceeds 300, the average value tends to be stable.
To obtain accurate results, we set the number of simulation
experiments to 500.

In each of the 50 scenarios with N� 10, we compute the
di�erence between the lengths of the shortest paths obtained
by the two methods and divide the di�erence by the length
obtained by Gurobi to get a percentage. Figure 4 shows the
distribution of the percentage. Figure 4 shows that 90% of
the di�erence is lower than 1%, and the biggest di�erence is
1.37%, which is also very small. As a result, the quality of the

solutions obtained by the twomethods is not much di�erent.
At the same time, we found that the improved GA takes
much less computing time than using Gurobi. Especially
when the value of N is greater than 30, Gurobi cannot
generate the results for the 500 scenarios in three days, while
the improved GA can. As a result, this paper uses the so-
lution obtained by the improved GA to further establish the
estimation models.

4.3. Estimation Models of the Expected Length of the Shortest
Path. We start by de�ning some variables that will be used
in the estimation models. We then explore the relationship
between these variables and the expected length of the
shortest path and propose possible models for estimating the
expected length. Finally, the goodness of �t of the proposed
models is evaluated.

4.3.1. Variables for Building the Models. We obtain four
variables (A, N, S, and L) from the previous literature
[11–15]. �ese studies assume that the service area is a
rectangle, where A is the area of the service area, N is the

Table 3: Comparison of the improved GA and TSPLIB.

Instances Optimal solution
(improved GA) Optimal solution (TSPLIB)

ulysses22 75.27 74
att48 33523.7 33,522
eil76 545.25 538
rand100 7920.8 7891
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Figure 3: Relationship between the average length of the shortest
path and the number of experiments.
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number of demand points in the service area, S is the ratio of
the length of the service area to its width, and L is the
expected length of the shortest path in the service area.
Because this study focuses on the 3D space, the number of
variables is expanded to �ve (V, N, S1, S2, and L), where V is
the volume of the service area, S1 is the ratio of the length to
the width, and S2 is the ratio of the length to the height.

4.3.2. Analysis of the Expected Length of the Shortest Path.
Before establishing the estimation models, it is necessary to
analyze the relationship between the variables and L based
on the experimental data. �e results of the expected length
of the shortest path for some of the 500 scenarios obtained
using the improved GA are shown in Table 4. �e demand
points are randomly generated three-dimensional coordi-
nates, as explained in Section 4.1. �is table shows the
change in the mean value of the shortest path length when
di�erent values of V, N, S1, and S2 are selected. As indicated
in Table 4, the mean value of the shortest path length in-
creases with an increase in V,N, S1, and S2. When V, S1, and
S2 are �xed, the mean value of the shortest path length
increases as N increases. When N, S1, and S2 are �xed, the
mean value of the shortest path length increases as V in-
creases. When V and N are �xed, the mean value of the
shortest path length increases gradually as S1 and S2
increase.

We use the data when the shape of the service area is a
cube as an example to demonstrate the relationship between
the expected length of the shortest path and the volume of
the service area and the number of demand points in the
service area. We �rst present the relationship between the
volume of the service area (V) and the expected length of the
shortest path (L) under the di�erent number of demand
points (N) (Figure 5). As shown in Figure 5, whenV does not
change, L gradually increases as N increases. When N is
constant, L gradually increases with an increase in V and
there is a nonlinear relationship between the two variables. It
can be seen from the �gure that L and the cubic root of the
volume of the service area (

��
V3

√
) may have a linear

relationship. To construct better models, we also explore the
relationship between L and

��
V3

√
.

On the basis of the expected length of the shortest path
model (L ≈ α

����
NA

√
) proposed by Beardwood et al. [11], we

speculate that the expected length of the shortest path in 3D-
TSP may have a linear relationship with

��
N

√ ��
V3

√
or

����
NV3

√
.

�erefore, we use the data when the shape of the service area
is a cube as an example to visualize the relationship between
the variables in the form of a scatterplot. �e scatterplot of
the expected length of the shortest path and

��
N

√ ��
V3

√
is shown

in Figure 6. �e scatterplot of the expected length of the
shortest path and

����
NV3

√
is presented in Figure 7.

Figure 6 shows an evident linear relationship between
the expected length of the shortest path (L) and

��
N

√ ��
V3

√
. By

contrast, the linear relationship between L and
����
NV3

√
in

Figure 7 is not that obvious.
In addition, this study calculates that when the volume of

the service area is �xed to 1000, the ratio of L to
��
N

√ ��
V3

√
and

the ratio of L to
����
NV3

√
under di�erent shapes are provided in

Tables 5 and 6. As indicated in Table 5, when the volume of
the service area (V) and the number of demand points (N)
are �xed, the ratio increases as the shape of the service area is
elongated (refer to any row in Table 5). When the shape and
volume of the service area are �xed, the ratio increases with
the number of demand points (refer to any column in
Table 5). When the volume of the service area is �xed, the
di�erence between ratios becomes smaller as the number of
demand points increases. �e conclusions drawn from
Table 6 are similar to those drawn from Table 5.

4.3.3. Model Results. From the analysis above, we could
build the following models:

L � coefficient ·
��
N

√ ��
V3

√
, (7)

L � coefficient ·
����
NV3

√
, (8)

where the coefficient is a linear combination of the inde-
pendent variables.
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Figure 4: Distribution of the di�erence between the lengths of the shortest paths obtained by the two methods in percentage.
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�is study establishes multiple linear regression equa-
tions based on the data obtained in the simulation experi-
ments. Test and analyze the signi�cance of the
comprehensive linear e�ect of each independent variable on
the dependent variable through RStudio, select the inde-
pendent variable that only has a signi�cant e�ect on the
independent variable, and establish the regression equations.
Based on correlation analysis, eight di�erent models are
considered and presented in Table 7. Models 1 and 2 are
extensions of the models proposed by Beardwood [11].
Models 3–6 are extensions of the models proposed by Kwon
[15]. In these models, α, α1, α2, α3, and α4 are unknown
parameters.

After the regression models are determined, the ex-
perimental data is used to estimate the unknown parameters

of the models, and RStudio is used to analyze the signi�cance
of the coe�cients of the �tted regression equations. �e
parameter estimation method used in this study is the least
square method.�eir adjusted R2 and p values of eachmodel
are recorded. �e results are summarized in Table 8. From
Table 8, we can see that the R2 of eachmodel is very high, and
the p value is very small. �at means all the models �t the
data well. Model 1 has the highest R2.

However, R2 should not be the only evaluation measure
of the model because the models could su�er from an
over�tting problem. To deal with the possible over�tting
problem, the k-fold cross-validation method is used [35].
�e mean absolute error (MAE) and mean absolute per-
centage error (MAPE) of each model are calculated at the
same time to compare the performance of these 6 models.

�e k-fold cross-validation is a cross-validation method
that can e�ectively compare models [35]. It �rst divides the

Table 4: Mean value of the shortest path length under di�erent conditions.

Number of demand points in 3D TSP
N � 20 N � 40 N � 60 N � 80 N � 100

V � 1000, S1 � 1, S2 � 1 63.64 96.93 126.3 152.1 177
V � 8000, S1 � 1, S2 � 1 127.29 193.9 252.6 304.2 353.9
V � 27000, S1 � 1, S2 � 1 190.9 290.5 378.5 456.3 530.9
V � 64000, S1 � 1, S2 � 1 254.6 387.7 505.1 608.3 707.8
V � 125000, S1 � 1, S2 � 1 318.2 484.4 630.8 760.5 884.9
V � 1000, S1 � 1, S2 � 2 64.37 97.64 126.7 153.1 178.1
V � 1000, S1 � 1, S2 � 3 66.33 99.29 128.3 154.5 179.5
V � 1000, S1 � 1, S2 � 4 68.87 101.47 130.3 156.2 181.5
V � 1000, S1 � 2, S2 � 2 64.56 97.72 126.9 152.8 177.9
V � 1000, S1 � 3, S2 � 3 67.31 99.3 128.1 154.1 179.3
V � 1000, S1 � 4, S2 � 4 70.41 100.92 129.3 155.8 180
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Figure 5: Relationship between the volume of the service area and
the expected length of the shortest path under the di�erent number
of demand points (s1 � 1, s2 � 1).
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Figure 7: Scatterplot of the expected length of the shortest path and
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NV3

√
(s1 � 1, s2 � 1).

Table 5: Ratio of L to
��
N

√ ��
V3

√
under di�erent conditions (V � 1000).

Service region shapes
S1 � 1 S1 � 1 S1 � 1 S1 � 1 S1 � 2 S1 � 2 S1 � 2 S1 � 3 S1 � 3 S1 � 4
S2 � 1 S2 � 2 S2 � 3 S2 � 4 S2 � 2 S2 � 3 S2 � 4 S2 � 3 S2 � 4 S2 � 4

N � 10 1.33 1.37 1.46 1.55 1.41 1.44 1.52 1.50 1.58 1.66
N � 20 1.41 1.45 1.49 1.54 1.45 1.47 1.50 1.51 1.53 1.58
N � 30 1.48 1.49 1.53 1.58 1.50 1.51 1.54 1.53 1.55 1.57
N � 40 1.54 1.55 1.57 1.60 1.55 1.56 1.57 1.57 1.58 1.60
N � 50 1.59 1.59 1.62 1.65 1.60 1.61 1.61 1.61 1.62 1.63
N � 60 1.63 1.64 1.65 1.68 1.63 1.65 1.66 1.65 1.66 1.67
N � 70 1.66 1.67 1.69 1.71 1.67 1.68 1.69 1.68 1.69 1.70
N � 80 1.70 1.71 1.73 1.75 1.71 1.71 1.73 1.72 1.73 1.74
N � 90 1.74 1.74 1.76 1.78 1.74 1.76 1.76 1.76 1.76 1.78
N � 100 1.77 1.78 1.79 1.81 1.78 1.79 1.80 1.79 1.80 1.80

Table 6: Ratio of L to
����
NV3

√
under di�erent conditions (V � 1000).

Service region shapes
S1 � 1 S1 � 1 S1 � 1 S1 � 1 S1 � 2 S1 � 2 S1 � 2 S1 � 3 S1 � 3 S1 � 4
S2 � 1 S2 � 2 S2 � 3 S2 � 4 S2 � 2 S2 � 3 S2 � 4 S2 � 3 S2 � 4 S2 � 4

N � 10 1.96 2.01 2.14 2.27 2.07 2.12 2.24 2.20 2.32 2.43
N � 20 2.33 2.40 2.45 2.54 2.38 2.42 2.48 2.48 2.53 2.60
N � 30 2.62 2.63 2.69 2.78 2.64 2.66 2.71 2.69 2.73 2.77
N � 40 2.84 2.87 2.91 2.97 2.87 2.89 2.91 2.90 2.93 2.95
N � 50 3.05 3.06 3.11 3.16 3.07 3.09 3.10 3.09 3.12 3.12
N � 60 3.22 3.24 3.27 3.33 3.23 3.26 3.28 3.27 3.29 3.30
N � 70 3.37 3.40 3.43 3.47 3.39 3.41 3.43 3.42 3.44 3.45
N � 80 3.54 3.55 3.58 3.63 3.55 3.56 3.59 3.58 3.60 3.61
N � 90 3.68 3.68 3.72 3.77 3.69 3.72 3.73 3.72 3.73 3.76
N � 100 3.82 3.83 3.86 3.91 3.83 3.86 3.87 3.86 3.87 3.88
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dataset into k groups of mutually exclusive subsets of the
same size. +en, it selects one subset each time as the testing
set, leaving k−1 subsets as the training set. In this manner, k
groups of training and testing sets are obtained. +e op-
eration is performed k times. +e MAE and MAPE are used
to evaluate the model performance.+e average values of the
measures are calculated for eachmodel.+e value of k in this
study is set to 10. +e results are provided in Table 9. +e
MAE andMAPE of the testing set are larger than those of the
training set, and such findings are reasonable.

Among the 6 models, Model 1 and Model 2 are the
simplest models. +e MAE and MAPE of Model 1 are
smaller than those of Model 2. Model 1 is selected as the
representative of the simple models. Models 3 to 6 are more
complex and fit the data better in terms of MAE and MAPE.
Among them, Model 4 has the smallest MAE and MAPE,
followed by Model 3. As a result, Model 4 is selected as the
representative of the complex models.

5. Conclusions

In this paper, we intend to study the expected length of the
shortest path of the 3D-TSP. By changing the volume, shape,
and number of demand points within the service area, 500
experimental scenarios were designed. +e improved GA and
the solver Gurobi are used to obtain the shortest path of 3D-
TSP in each scenario. +e results of the two methods are
compared and analyzed. +ough the Gurobi could generate

better results, it takes much longer computing time. Especially
when the number of demand points is large, it becomes in-
feasible to obtain the results in an acceptable time.+e shortest
path obtained by the improved GA is very similar to that
obtained by the Gurobi. As a result, the shortest path obtained
by the improved GA is used in this study for further analysis
and modeling. Regression models of the expected length of the
shortest path are proposed based on data analysis and previous
studies.+e coefficients of models are fitted using RStudio.+e
k-fold cross-validation is applied to evaluate the model per-
formance based on MAE andMAPE. All the models proposed
in this study fit the training and testing datasets well.+e results
indicate that Model 1 can accurately estimate the expected
length of the shortest path of the 3D-TSP and has a simple
formulation. For a more complex model formulation, Model 4
could generate better prediction accuracy.

+e results of this study can be used to estimate the
expected length of the shortest path of 3D-TSP. Although
this study uses linear regression tomodel the expected length
of the shortest path of the 3D-TSP, machine learning
methods, such as neural networks, are also worth exploring.
+e limitation of this study is as follows. Firstly, we obtained
the solution using the improved GA. +e solution may not
be globally optimal. Better algorithms could be explored in
the future to make sure the global optimal solution is ob-
tained. Secondly, this study is based on experiments
designed under ideal conditions. +e applicability of the
proposed models in practice should be further verified.

Data Availability

+e data used to prove the validity of the algorithm of this
study are available from https://comopt.ifi.uni-heidelberg.
de/software/TSPLIB95/.
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Table 7: Proposed regression models.

Model number Model
1 L � α

��
N

√ ��
V3

√

2 L � α
����
NV3

√

3 L � (α1 + α2
��
N

√
+ α3(S1/N + S2/N))

��
N

√ ��
V3

√

4 L � (α1 + α2
��
N

√
+ α3S1/N + α4S2/N)

��
N

√ ��
V3

√

5 L � (α1 + α2
��
N

√
+ α3(S1/N + S2/N))

����
NV3

√

6 L � (α1 + α2
��
N

√
+ α3S1/N + α4S2/N)

����
NV3

√

Table 8: Fitted models.

Model number Fitted model R2 p value
1 L � 1.6841

��
N

√ ��
V3

√
0.9969 <2.2e− 16

2 L � 3.3183
����
NV3

√
0.9813 <2.2e− 16

3 L � (1.0611 + 0.0713
��
N

√
+ 0.4239(S1/N + S2/N))

��
N

√ ��
V3

√
0.9759 <2.2e− 16

4 L � ( 1.0499 + 0.0724
��
N

√
+ 0.2168S1/N + 0.5966S2/N)

��
N

√ ��
V3

√
0.9807 <2.2e− 16

5 L � (1.0539 + 0.2788
��
N

√
+ 0.5639(S1/N + S2/N))

����
NV3

√
0.9960 <2.2e− 16

6 L � ( 1.0384 + 0.2804
��
N

√
+ 0.2742S1/N + 0.8055S2/N)

����
NV3

√
0.9964 <2.2e− 16

Table 9: MAE and MAPE of the models.

MAE MAPE (%)
Training set Testing set Training set Testing set

Model 1 18.17 18.19 6.40 6.41
Model 2 45.16 45.31 16.95 16.99
Model 3 0.01 0.01 0.72 0.73
Model 4 0.01 0.01 0.64 0.65
Model 5 0.02 0.02 0.83 0.84
Model 6 0.02 0.02 0.78 0.79
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