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Abstract

Each length k pattern occurs equally often in the set Sn of all permutations of
length n, but the same is not true in general for a proper subset of Sn. Miklós
Bóna recently proved that if we consider the set of n-permutations avoiding the
pattern 132, all other non-monotone patterns of length 3 are equally common. In
this paper we focus on the set Avn(123) of n-permutations avoiding 123, and give
exact formulae for the occurrences of each length 3 pattern. While this set does not
have the same symmetries as Avn(132), we find several similarities between the two
and prove that the number of 231 patterns is the same in each.

1 Background

Let p = p1p2 . . . pn be a permutation in the symmetric group Sn written in one-line
notation. Given a permutation q ∈ Sk, say that p contains q as a pattern if there exist
indices 1 6 i1 6 i2 6 . . . 6 ik 6 n such that the entries pi1pi2 . . . pik are in the same
relative order as the entries of q (that is, qj < qk if and only if pij < pik). If p does not
contain q as a pattern, we say that p avoids q.

The set of all permutations equipped with this ordering can be viewed as a partially
ordered set which is graded with respect to permutation length. With this in mind, we
define a permutation class to be a downset (or ideal) of this poset. That is, a class is a
collection of permutations C for which, if p ∈ C and q is contained in p, then q ∈ C.

Given a pattern q, the set Av(q) of all permutations avoiding q forms a permutation
class, and much study has been devoted to understanding and enumerating classes of this
form. An early result in the area from Knuth [8], is that the number of n-permutations
avoiding the pattern 231 is equal to the Catalan number cn = 1

n+1

(

2n
n

)

, and these are ex-
actly the stack sortable permutations. A more comprehensive introduction to permutation
patterns can be found in [1].
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A question of Joshua Cooper and a recent result of Miklós Bóna have opened up a
new line of research: in the set of all permutations of length n in a given permutation
class, what can be said about the average number of occurrences of each pattern? or
equivalently: what is the total number of occurrences of each pattern in this set? It
is simple to show that in the set of all permutations, all patterns of a given length are
equally common. The situation becomes much more complex as we restrict our attention
to proper subclasses.

2 Preliminaries

Definition 1. Let p, q be permutations. Denote by fq(p) the number of occurrences of q
in p as a pattern.

For example, f213(462513) = 2 since the first, third, and fourth entries as well as the
third, fifth, and sixth entries form 213 patterns. Also, for any permutation p, f21(p) counts
the number of inversions of p. Note that every permutation statistic can be expressed
through combinations of counts of permutation patterns, as described in [4].

We shall be concerned primarily with the total number of patterns in a set of permu-
tations. For simplicity, we use similar notation.

Definition 2. For an integer n and a permutation class C, let Cn denote the set of
permutations of length n in C. For a pattern q, define fq(Cn) =

∑

p∈Cn
fq(p). We will omit

the Cn when the set in question is unambiguous.

Example 3. Let q ∈ Sk. Then it follows by linearity of expectation that

fq(Sn) =
n!

k!

(

n

k

)

.

The Catalan numbers will appear frequently in our enumeration, and so it will be
useful to establish some standard notation and a few simple identities.

Definition 4. Let cn = 1
n+1

(

2n
n

)

denote the nth Catalan number. Also, let

C(x) =
∑

n>0

cnx
n =

1−
√
1− 4x

2x
.

Fact 5. The following identities follow directly from the recurrence C(x) = xC(x)2 + 1.

C(x)2 =
C(x)

1− xC(x)
=

1

(1− xC(x))2
and

C(x)− 1

C(x)
= xC(x).

In [2] and [3], Miklós Bóna studied the class Av(132) and found some surprising
symmetries. He also gave exact formula and generating functions for the expectation of
all length three patterns. In this paper we give a similar classification of the class Av(123),
with some equally surprising connections to Av(132).

Because both 132 and 123 are involutions and 231−1 = 312, we have the following
identity. Further identities, however, require considerably more effort.
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Fact 6. In both Avn(132) and Avn(123), f231 = f312.

For a fixed integer k, in each of the sets Avn(132) and Avn(123) inversion provides
a bijection from the set of permutations containing exactly k 231 patterns to the set
containing exactly k 312 patterns. This proves not only that the total number of each
pattern is the same, but that these numbers are equidistributed in each set. Bóna showed
that equidistribution is not required for the total number of patterns to be equal.

Theorem 7 (Bóna). In Avn(132), the total numbers of 231, 213, and 312 patterns are
equal, and their numbers, with respect to n, are given by the generating function

x2C(x)3

(1− 2xC(x))(1− 4x)3/2
.

Furthermore, 321 is the most common pattern and 123 is the least common.

The first few values of fq(Avn(123)) and fq(Avn(132)) for q of length 3 are shown in
the table below

Avn(123)
length f123 f132 f213 f231 f312 f321

3 0 1 1 1 1 1
4 0 9 9 11 11 16
5 0 57 57 81 81 144
6 0 312 312 500 500 1016
7 0 1578 1578 2794 2794 6271

Avn(132)
length f123 f132 f213 f231 f312 f321

3 1 0 1 1 1 1
4 10 0 11 11 11 13
5 68 0 81 81 81 109
6 392 0 500 500 500 748
7 2063 0 2794 2794 2794 4570

Note that f231 and f312 are not equidistributed as statistics in Avn(132). Theorem
7 was proved with a bijection from patterns to patterns, not necessarily respecting the
underlying permutation.

Turning our attention to the class Av(123), we will similarly classify the expectation
of all length 3 patterns and provide both generating functions and exact formula. In
addition, we show some interesting and surprising connections to patterns in Av(132). In
particular, we will show that there are an equal number of 231 patterns in Avn(123) and
Avn(132), as suggested by the numerical evidence.
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3 The class Av(123)

3.1 Patterns of length 2

The simplest place to start is with patterns of length 2. The number of 12 patterns
corresponds to the total number of non-inversions, and these numbers have already been
studied, most notably in [5]. Clearly, the total number of 12 patterns plus the number of
21 patterns gives the total number of pairs of entries in all permutations in the set which,
for Avn(123), is given by

(

n
2

)

cn.

Theorem 8 (Cheng, Eu, Fu). Let Cn = Avn(123). Then

∑

n>0

f12(Cn)xn =
x2C(x)2

1− 4x
.

Furthermore, we have that

f12(Cn) = 4n−1 −
(

2n− 1

n

)

.

Corollary 9. The number of 21 patterns in the set of all n-permutations avoiding 123 is
given by

f21(Avn(123)) =

(

n

2

)

cn +

(

2n− 1

n

)

− 4n−1.

3.2 Patterns of length 3

We turn our attention now to patterns of length 3, and provide a similar classification. To
start, using the fact that 123 is an involution and is fixed under reverse complementation
provides some immediate identities, as these provide bijections from Avn(123) to itself.

Fact 10. In Avn(123), f132 = f213 and f231 = f312.

Numerical data and intuition suggest that f132 < f231 < f321. We begin by establishing
some basic relationships between these numbers which will eventually combine to give us
exact formulae. First, note that the total number of all length k patterns is exactly

(

n
k

)

cn.
For k = 3 this gives the following fact.

Fact 11. In the set Avn(123) we have that

f132 + f213 + f231 + f312 + f321 =

(

n

3

)

cn.

Note that since f132 = f213 and f312 = f231, we can rewrite this as

2 f132 +2 f231 + f321 =

(

n

3

)

cn.
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Our next uses Theorem 8 to provide another linear relationship between these three
numbers.

Proposition 12. In the set Avn(123), we have

4 f132 +2 f231 = (n− 2) f12 .

Proof. Rewrite the equation as

(n− 2) f12 −(f132 + f213) = f132 + f213 + f231 + f312 .

We claim that both sides count the total number of length 3 patterns which contain at
least one 12 pattern. Indeed, the right hand side counts all length 3 patterns other than
321. The left hand side first takes a 12 pattern and adds another entry to it. However, this
double counts each triple which has two 12 patterns, and these are exactly the patterns
132 and 213. Subtracting these off yields the desired identity.

Note that we now have two linear relationships between the three unknown quantities,
and so some new information would completely solve the system. We summarize this in
the following lemma.

Lemma 13. Let C = Avn(123), and let an = f132(C) = f213(C), bn = f231(C) = f312(C),
and dn = f321(C). Then we have

2an + 2bn + dn =
(

n
3

)

cn
4an + 2bn = 4n−1 −

(

2n−1
n

)

.

We note that Proposition 12 has a complementary analogue, obtained by counting
inversions instead of non-inversions. However, this leads to a relation which is linearly
dependent on the first two. It takes a new approach to yield new information, which
requires a few new definitions.

Definition 14. A permutation p = p1p2 . . . pn is decomposable (sometimes referred to as
skew-decomposable) if there exists k ∈ [n] such that for all i 6 k and all j > k, we have
that pi > pj. An indecomposable permutation is one for which no such k exists.

Definition 15. Denote the set of all indecomposable 123-avoiding permutations by
Av∗(123), and Av∗(123) ∩ Sn by Av∗n(123).

In general, for simplicity of notation, indecomposability will be denoted with a star.
Our first step, naturally, is to find the size of the set Av∗n(123).

Proposition 16. For all n > 1,

|Av∗n(123)| =
1

n

(

2n− 2

n− 1

)

= cn−1.
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Proof. We know that |Avn(123)| = cn, so

∑

n>0

|Avn(123)|xn =
1−

√
1− 4x

2x
= C(x).

Let C∗(x) =
∑

n>1 |Av∗n(123)|xn. Every permutation in Avn(123) can be expressed as a
skew sum of indecomposable 123-avoiding permutations, so it follows that

C(x) = 1 + C∗(x) + (C∗(x))2 + (C∗(x))3 + . . . =
1

1− C∗(x)
.

Solving this algebraically gives that C∗(x) = C(x)−1
C(x)

= xC(x), which finishes the proof.

Lemma 13 now has an immediate indecomposable analogue, and for all integers n
and each pattern q the numbers fq (Avn(123)) and fq (Av

∗

n(123)) can be related easily.
However, this alone does not allow us to solve for an exact formula.

Our new information will come from exactly counting the number of 213 patterns in
the set Av∗n(123) by building a bijection to Dyck paths. We start by defining these paths,
which are counted by the Catalan numbers.

Definition 17. A Dyck path of length 2n (or of semilength n) is defined as a sequence of
steps from the set {(1, 1), (−1, 1)} which begins at (0, 0), ends at (2n, 0), and never steps
below the line x = 0.

Lemma 18. The generating function A∗(x) for the number of 213 patterns in Av∗n(123)
is given by

A∗(x) =
∑

n>0

f213(Av
∗

n(123)) =
x3C(x)

(1− 4x)3/2
=

x2

2(1− 4x)3/2
− x2

2(1− 4x)
.

Proof. The proof consists of three parts: First, we examine the structure of permutations
in Av∗n(123), and find a simple way of counting the number of 213 patterns. Second, we
build a bijection onto Dyck paths which maps 213 patterns to a path statistic. Finally,
we find the weighted sum of all Dyck paths with respect to this statistic.

Fix n, and let p be a permutation in Av∗n(123). Note that since p avoids 123, it can be
viewed as a union of two descending sequences, so every entry in p is a left-to-right minima
or a right-to-left maxima, and by indecomposability no entry is both. Graph p on an n×n
lattice by plotting (i, p(i)) for each i ∈ [n], and color each left-to-right minima red and
each right-to-left maxima blue. Denote the sequence of red entries (ordered from left to
right) byR = (r1, r2, . . . rj), and the sequence of blue entries by B = (b1, b2, . . . bk). Denote
by Span bi the number of red entries below and to the left of bi. Note that Span bi > 1 for
all bi by indecomposability. Now, we count the number of 213 patterns in p. It follows
that for any such pattern q, the 2 entry and 1 entry must be red, and the 3 entry blue. It
is also clear that each blue entry is contained in

(

Span bi
2

)

213 patterns. Therefore we have
that

f213(p) =
k
∑

i=1

(

Span bi
2

)

.
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Now we are ready to build our bijection φ : Av∗n(123) → Dn−1, where Dn−1 denotes
the set of Dyck paths of semilength n− 1. From each blue vertex, extend a vertical line
to the x-axis and a horizontal line to the y-axis, and color each point of intersection of
these lines green. Define a path P ′ from (1, n) to (n, 1) by the following rules:

1) Begin by walking east from (1, n)

2) At a blue vertex, turn south and continue walking

3) At a green vertex, turn east and continue walking

4) End at (n, 1)

Rotate the path P ′ by π/4 radians counter-clockwise to obtain a Dyck path P . This path
is a slight modification of the path given by Krattenthaler’s bijection [9], taking advantage
of the indecomposability of the permutation to yield a more geometric description. This
geometric interpretation of the bijection gives some additional insight into the number of
213 patterns.

Figure 1: φ(4762513) = UDUDUUDDUUDD

Note that each blue entry in p produces a peak in P . Furthermore, bi corresponds to
a peak of height Span bi above the x-axis in P . Therefore, if we let hn,k denote the total
number of peaks of height k in all Dyck paths of semilength n, we have that

f213(Av
∗

n(123)) =
n−1
∑

k=1

(

k

2

)

hn−1,k.

Finally, we can compute H(x, u) =
∑

n,k>0 hn,kx
nuk as follows. First, note that since

each Dyck path begins with an upstep it has a unique first point at which the path returns
to the x-axis, so we can decompose each path P of length n into the concatenation of two
shorter paths Q and R. This gives that P = uQdR, where u denotes an upstep and d a
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downstep, and each peak of height k− 1 in Q and height k in R leads to a peak of height
k in P . With this in mind, we have the following generating function relation:

H(x, u) = ux(H(x, u) + 1)C(x) + xH(x, u)C(x).

Here the first term counts the peaks from the uQd part, including the case when Q is
empty. The second term counts the contribution from the R part. Rearranging leads to

H(x, u) =
uxC(x)

1− uxC(x)− xC(x)
.

Now, to count 213 patterns, we need to count each peak with weight
(

k
2

)

. By taking
derivatives twice with respect to u, setting u = 1, dividing by two and scaling by x, we
find that

∑

n,k>0

(

k

2

)

hn−1,kx
n = x

∂2
uH(x, u)|u=1

2
=

x3C(x)

(1− 4x)3/2

= x3 + 7x4 + 38x5 + 187x6 + 874x7 + . . . .

The sequence 0, 0, 1, 7, 38, 187 . . . is entry A000531 in the OEIS. Finally, the correspon-
dence between peaks and 213 patterns completes the proof.

Now, it is relatively simple to move from the set of indecomposable 123-avoiding
permutations to the larger set of all 123-avoiding permutations.

Theorem 19. Let an be the number of 213 patterns in Avn 123. Then

∑

n>0

anx
n =

x3C(x)3

(1− 4x)3/2
=

x− 1

2(1− 4x)
− 3x− 1

2(1− 4x)3/2
.

Proof. Let A(x) be the generating function for the numbers an, and let A∗(x) denote
the generating function for the number of 213 patterns in indecomposable 123-avoiding
permutations.

Now, any permutation p in Av(123) can be written uniquely as a skew sum of a
nonempty indecomposable 123-avoiding permutation q and another, possibly empty, 123-
avoiding permutation r. Now, it is clear that any 213 pattern in p must be contained
entirely in either q or r. This leads to the following relation:

A(x) = A∗(x)C(x) + xC(x)A(x).

Solving for A gives

A(x) =
A∗(x)C(x)

1− xC(x)
= C2(x)A∗(x).

Lemma 18 now implies

A(x) =
x3C(x)3

(1− 4x)3/2
.
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Theorem 19 combined with Lemma 13 allows us to obtain both generating functions
and exact formulae for the occurrence of all length 3 patterns in Avn(123). We start with
231 patterns, which reveal a surprising connection to the class Av(132).

Corollary 20. Let bn denote the number of 231 (or 312) patterns in all 123-avoiding
n-permutations. Then

∑

n>0

bnx
n =

3x− 1

(1− 4x)2
− 4x2 − 5x+ 1

(1− 4x)5/2
.

Proof. Let B(x) be the generating function for the numbers bn, let A(x) be the generating
function for the number of 213 patterns, and let jn be the number of 12 patterns with
corresponding generating function J(x). We know from Lemma 13 that

4A(x) + 2B(x) =
∑

n>0

(n− 2)jnx
n = (J(x)/x2)′x3.

Solving this for B(x) using elementary algebra and a bit of calculus yields

B(x) =
x2C(x)3

(1− 2xC(x))(1− 4x)3/2

=
3x− 1

(1− 4x)3/2
− 4x2 − 5x+ 1

(1− 4x)5/2

.

The connection between the classes Av(123) and Av(132) is now immediate.

Corollary 21. Theorem 20 together with Theorem 7 imply immediately that the total
number of 231 patterns in Avn(123) is equal to the total number of 231 patterns in
Avn(132).

We can similarly apply Lemma 13 to 321 patterns.

Corollary 22. Let dn = f321(Avn(123)). Then we have that

∑

n>0

dnx
n =

8x3 − 20x2 + 8x− 1

(1− 4x)2
− 36x3 − 34x2 + 10x− 1

(1− 4x)5/2
.

Before analyzing these generating functions, we note also that Lemma 13 and its
indecomposable analogue produce several other interesting identities. We summarize
some of them here for completeness.

Corollary 23. The following identities hold.

f21(Avn(123)) = 2 f213(Av
∗

n(123))
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f213(Avn(123)) + f231(Avn(123)) = f231(Av
∗

n−1(123))

C(x)

(

∑

n>0

f213(Avn(123))x
n

)

= xC ′(x)

(

∑

n>0

f12(Avn(123))x
n

)

∑

n>0

f213(Av
∗

n(132)x
n) =

∑

n>0

(

f132(Av
∗

n(123)) + f231(Av
∗

n(123))
)

xn.

Note that each of these identities are equivalent. That is, combined with Lemma 13,
a combinatorial proof of any of them would imply all of the others (including Lemma 18).

Now we can do some analysis of the main sequences. Using some standard generating
function analysis [7], we find that the asymptotic growth of the number of length 3 patterns
are as follows:

f213(Avn(123)) ∼
√

n

π
4n

f231(Avn(123)) ∼
n

2
4n

f321(Avn(123)) ∼
8

3

√

n3

π
4n.

We see that the three sequences each differ by a factor of approximately
√
n. Sur-

prisingly, this is the same factor that the sequences f123, f231, f321 differ by in the class
Av(132), as seen in [2].

Each of these generating functions are simple enough that exact formulas can be
obtained with relatively little hassle. One could argue that the asymptotic values are
more interesting and provide more insight than the complicated formulas, but we present
them here for completeness.

Corollary 24. Let an = f132(Avn(123)), bn = f213(Avn(123)), and dn = f321(Avn(123)).
Then we have that

an =
n+ 2

4

(

2n

n

)

− 3 · 22n−3

bn = (2n− 1)

(

2n− 3

n− 2

)

− (2n+ 1)

(

2n− 1

n− 1

)

+ (n+ 4) · 22n−3

dn =
1

6

(

2n+ 5

n+ 1

)(

n+ 4

2

)

− 5

3

(

2n+ 3

n

)(

n+ 3

2

)

+
17

3

(

2n+ 1

n− 1

)(

n+ 2

2

)

− 6

(

2n− 1

n− 2

)(

n+ 1

2

)

− (n+ 1) · 4n−1.
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3.3 Larger Patterns

Some of these same techniques are applicable to larger patterns. For example, we can
easily modify Lemma 13 to patterns of all sizes. This leads to increasingly complicated
expressions, but this simple idea can be used to prove the following proposition.

Proposition 25. Let k ∈ Z+, and q be any permutation in Sk other than the decreasing
permutation. Then for n large enough, we have that

fk...321(Avn(123)) > fq(Avn(123)).

Proof. Let T be the set of permutation in Sk which are not the decreasing permutation.
As in Proposition 12 and Fact 11, we can express the number

(

n−2
k−2

)

f12(Avn(123)) as a

positive linear combination of all of fq(Avn(123)) where q ∈ T , and we can express
(

n
k

)

cn
as the sum of all fr(Avn(123)) where r ∈ Sn. It follows that there is a positive integer m
and positive integers ei such that

(

n

k

)

cn −m

(

n− 2

k − 2

)

f12(Avn(123)) = fk...321 −
∑

q∈T

ei fq(Avn(123)).

Asymptotic analysis shows that the left hand side is eventually positive, and so the first
term on the right side eventually outgrows the second term, which completes the proof.

4 Further Directions

The numbers fq(Avn(p)) for permutations p, q exhibit numerous symmetries and produce
many new questions. All of the generating functions presented here and in [2] are al-
most rational, in the sense that they lie in the ring Q(x,

√
1− 4x). This allows for easy

asymptotic analysis, and leaves open the possibility of bijections to other Catalan-related
objects.

Building on what was mentioned in [3], we have instances of the same sequence of
numbers which correspond to sums of statistics with different distributions in objects
counted by the Catalan numbers. Do these sequences and statistics have analogues in
other such objects?

Thus far, to the author’s knowledge, the expectation of patterns has only been studied
for the classes Av(123) and Av(132) (and their symmetries). Applying these ideas to more
general classes could yield similarly interesting identities. Note that the increasing and
decreasing permutations do not always provide the opposite extreme cases: it is simple
to show that f123(Avn(2413)) = f321(Avn(2413)). This leads to the natural question: in
the set of n-permutations avoiding a specific pattern (or a set of patterns), can we easily
determine what pattern is most common? And how large can the difference be between
the most and least common?

Finally, are there other occurrences of the same sequence of patterns arising in different
classes? Or within the same class, as in Av(132)? Taking this to the extreme, is there a
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proper, non-trivial permutation class for which each pattern of a given length is equally as
common, as in the class of all permutations? Various computer searches have yet to pro-
duce any similarly unexpected coincidences. In particular, searches on patterns of length
3 in permutations avoiding length 4 patterns have uncovered no nontrivial symmetries.
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