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Abstract

Shannon entropy H and related measures are increasingly used in molecular ecology and

population genetics because (1) unlike measures based on heterozygosity or allele number,

these measures weigh alleles in proportion to their population fraction, thus capturing a

previously-ignored aspect of allele frequency distributions that may be important in many

applications; (2) these measures connect directly to the rich predictive mathematics of infor-

mation theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical

nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity

properties that heterozygosity-based measures lack. We derive simple new expressions for

the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral

locus in a single isolated population under two models of mutation: the infinite allele model

and the stepwise mutation model. Surprisingly, this complex stochastic system for each

model has an entropy expressable as a simple combination of well-known mathematical

functions. Moreover, entropy- and heterozygosity-based measures for each model are

linked by simple relationships that are shown by simulations to be approximately valid even

far from equilibrium. We also identify a bridge between the two models of mutation. We

apply our approach to subdivided populations which follow the finite island model, obtaining

the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the

total population. We also derive the expected mutual information and normalized mutual in-

formation (“Shannon differentiation”) between subpopulations at equilibrium, and identify

the model parameters that determine them. We apply our measures to data from the com-

mon starling (Sturnus vulgaris) in Australia. Our measures provide a test for neutrality that is

robust to violations of equilibrium assumptions, as verified on real world data from starlings.

PLOSONE | DOI:10.1371/journal.pone.0125471 June 11, 2015 1 / 24

OPEN ACCESS

Citation: Chao A, Jost L, Hsieh TC, Ma KH, Sherwin

WB, Rollins LA (2015) Expected Shannon Entropy

and Shannon Differentiation between Subpopulations

for Neutral Genes under the Finite Island Model.

PLoS ONE 10(6): e0125471. doi:10.1371/journal.

pone.0125471

Academic Editor: Mark D. McDonnell, University of

South Australia, AUSTRALIA

Received: July 30, 2014

Accepted: March 24, 2015

Published: June 11, 2015

Copyright: © 2015 Chao et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information files.

Funding: The Mathematics Research Center (of

Taiwan Ministry of Science and Technology), The

Population Biology Foundation, and the Ministry of

Science and Technology, Taiwan, Contract 100-2118-

M007-006-MY3 (http://www.most.gov.tw/). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0125471&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.most.gov.tw/


Introduction

Genetic analysis of populations has nearly always relied on measures based on expected hetero-

zygosities or gene identities [1], because these link to variance and the binary nature of sexual

reproduction and diploid inheritance. The corresponding FST measures and their various gen-

eralizations for subdivided populations have also played a central role in population genetics

and evolutionary biology [2,3,4]. This approach emphasizes the frequent alleles by giving them

much more weight than their population fraction, and multi-level hierarchical additive parti-

tioning is not usually possible with heterozygosity-based measures [5–8].

Researchers in various disciplines have increasingly recognized that diversity within popula-

tions and compositional differentiation between populations cannot be completely character-

ized by a single measure. For example, ecologists have reached a consensus [9,10] that instead

of one or a few diversity measures, it is best to use a multifaceted diversity measure parameter-

ized by order q (which determines the measures’ emphasis on rare or common species), to

completely characterize the species abundance distributions in ecological assemblages. By anal-

ogy, in addition to measures based on heterozygosity, complementary abundance-sensitive

measures that are sensitive to less frequent alleles are needed to portray a more complete pic-

ture of allele frequency distribution or differentiation among populations.

This paper mainly focuses on Shannon entropy H and its differentiation measures. Shannon

entropy H and its monotonic transformations, such as exp(H), connect directly to the rich

mathematics of information theory initiated by Shannon [11], singularly appropriate for DNA

information [12,13,14]. Unlike heterozygosity, information measures weigh alleles in propor-

tion to their population fraction. Shannon entropy and its exponential are also the most popu-

lar summary statistics for ecological biodiversity [15], so their use in genetics would allow

integrated ecological and genetic modeling.

Shannon entropy and its monotonic transformations can be partitioned into independent

within- and between-subpopulation components. The between-group component, called mu-

tual information, measures the differentiation of allele proportions between subpopulations as

the mean reduction in uncertainty about allele identity when we learn the subpopulation from

which the allele was drawn. In measuring compositional differentiation among subpopulations,

the between-group component of Shannon entropy obeys stronger monotonicity properties

than the between-group component of heterozygosity [8,16] (see Discussion). Mutual informa-

tion is closely related to entropy-based measures of compositional differentiation among eco-

logical communities [17,18].

Although entropy and mutual information have been widely used in information science

and ecology after Shannon [11] and MacArthur [19], they were rarely applied to genetics until

recently. Lewontin [20] pioneered the use of entropy and its decomposition in population ge-

netics. Shannon entropy and mutual information have more recently been used to analyze a

wide variety of genetic processes and patterns [12,13]. Examples cover a range of taxa, includ-

ing viruses [21], bacteria [22], protist parasites [23], mosses [24], higher plants [25–31], inver-

tebrates [14,32] and vertebrates including humans [33,34,35]. Many concentrate on

microsatellites [12], but they have also assessed AFLPs [29], and single-nucleotide polymor-

phisms [14]. Recent theoretical uses of Shannon entropy and mutual information in genetics

also include: dynamics of populations of genetically variable individuals in landscapes [36]; dy-

namics of molecules in gene expression networks [37,38,39]; analysis of gene-environment in-

teractions, including genome wide association studies [40–44]; phylogenetic reconstruction

[45,46,47]; mapping genes [48,49]; and derivations of classical population genetic results re-

garding drift and selection [50]. Outside genetics, there is much parallel work in species,
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phylogenetic and functional diversity involving entropy [51–54], so there may be further op-

portunities for expansion.

Given all these applications, it is vital to link Shannon entropy and mutual information to

neutral genetic models. Previous attempts [12,14,55] fell short of general analytic expressions.

For a single isolated population, Sherwin et al. [12] used the diffusion approximation to predict

equilibrium Shannon entropy under the infinite allele model (IAM) or stepwise mutation

model (SMM). However, these led to slowly-converging infinite series. For two populations

connected by dispersal, with SMM, simulation results provided an empirical equation for mu-

tual information at equilibrium, but no analytical equation was obtained [12]. Dewar et al. [14]

derived a Taylor approximation to mutual information for bi-allelic genes only. Even with this

incomplete armory of methods, Sherwin et al. [12] and Sherwin [13] showed firstly that for

analysis of geographic subdivision and genetic exchange between sub-populations, mutual in-

formation readily yields an estimate of the dispersal rate per generation, and secondly that

compared to all other approaches for analyzing such data, this method is robust to an extraor-

dinarily wide range of dispersal rates and population sizes. The method has been used to assess

current and historical subdivision in rainforest trees [25]. Thus mutual information might be

more useful than heterozygosity-based measures for genetic estimation of dispersal, as noted

by [12,13]. These considerations motivated us to derive analytic formulas for the general case

of Shannon entropy and mutual information for genetic data.

Here we report remarkably simple expressions for expected Shannon entropy (and its expo-

nential, “Shannon diversity” or the “effective number of alleles”) of the equilibrium allele distri-

bution at a neutral locus in an isolated population under IAM or SMM. A bridge that connects

the two models of mutation is identified. Our formulas and simulations also show for each

model a robust relationship between entropy and heterozygosity under neutral models in equi-

librium. Simulations show this relationship is often approximately valid even under some non-

equilibrium conditions. Thus, the relationship between these two classes of measures may pro-

vide a test for neutrality that is relatively robust to violations of equilibrium assumptions.

We generalize this result to find the entropy of subdivided populations that follow the finite

island model (FIM), and use the results to predict the mutual information between subpopula-

tions at equilibrium under two models: IAM-FIM (FIM with mutation following IAM) and

SMM-FIM (FIM with mutation following SMM). We can thus identify the model parameters

that determine mutual information. We apply our measures to common starling (Sturnus vul-

garis) data collected from their introduced range in Australia, to assess the robustness of the

theoretical relationship we have found between entropy and heterozygosity.

Methods

Single isolated population under IAM
Assume N is the number of diploid individuals in an idealized population, μ is the mutation

rate per generation, and there are A alleles at the target locus, with allele proportions (or frac-

tions) p1, p2,. . ., pA. Throughout the paper, we assume that the population size is sufficiently

large so that the distribution of allele proportions is essentially continuous. For non-ideal pop-

ulations, N is replaced by effective population size. Shannon entropy is defined as
1H ¼ �

PA

i¼1
pilog pi and heterozygosity is

2H ¼ 1�
PA

i¼1
p2i . Here we use the notation 1H for

Shannon entropy and 2H for heterozygosity because these two measures are special case, of

order q = 1 and q = 2 respectively, of the generalized Tsallis or HCDT entropies qH [5,6,7] (see

Discussion).

We first seek the expected value of Shannon entropy for neutral alleles under IAM in a sin-

gle completely isolated population. Using the diffusion approximation, the allele proportion

Entropy-Based Measures for Genetic Models
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distribution under IAM is approximately F(p) = θp−1(1−p)θ−1, thus the equilibrium expecta-

tion value of any function ∑i h(pi), where h(pi) tends to zero when pi approaches zero, is given

by the Ewens’ sampling formula [55]

X

i

hðpiÞ �

Z 1

0

hðpÞFðpÞdp ¼ y

Z 1

0

hðpÞp�1ð1� pÞ
y�1

dp;

where θ = 4Nμ. Setting h(p) = p2 in the above integral, we obtain the well-known formula for

the expected heterozygosity [56]:

2H ¼ y=ðyþ 1Þ or y ¼ ½1=ð1� 2HÞ� � 1: ð1Þ

Setting h(p) = –p log p, we obtain the equilibrium expectation of Shannon entropy [12,55]:

1H ¼ �y

Z 1

0

ð1� pÞ
y�1

log pdp:

The above can be expressed as an integral of the logarithm function with respect to a beta

distribution, so we obtain a simple formula for the expected Shannon entropy as a function of

θ (see S1 Appendix for details)

1H ¼ cðyþ 1Þ � cð1Þ ¼ cðyþ 1Þ þ g; ð2AÞ

where ψ(z) is the digamma function, and g ¼ �cð1Þ ¼ limk!1

X

k

j¼1

1

j
� logk

 !

� 0.5772 is

the famous Euler’s constant. It is remarkable that this complex stochastic system has an entro-

py expressable as a simple combination of well-known mathematical functions. If θ is greater

than 2, then ψ(θ+1) can be accurately approximated by log(θ+0.5), so for many practical cases

the expected Shannon entropy is approximately a linear function of the logarithm of θ:

1H � logðyþ 0:5Þ þ 0:5772: ð2BÞ

Substituting Eq 1 into Eq 2A or 2B leads to a direct relationship (or link) between expected

Shannon entropy and heterozygosity at equilibrium:

1H ¼ c½1=ð1� 2HÞ� þ 0:5772 � log½1=ð1� 2HÞ � 0:5� þ 0:5772: ð3AÞ

Shannon entropy (1H) and heterozygosity (2H), can be transformed into an effective num-

ber of alleles (or diversity), 1D and 2D, which possess useful mathematical properties [8,57,58].

The transformation for heterozygosity is 2D = 1/(1−2H) = θ + 1, which is interpreted as the

number of equi-frequent alleles that would give the same heterozygosity as that of the actual

population. The transformation for Shannon entropy is 1D = exp(1H), which is interpreted as

the number of equi-frequent alleles that would give the same Shannon entropy as that of the

actual population [19,56].

We summarize all results for Shannon entropy (q = 1, Eq 2A) and heterozygosity (q = 2) in

the second column of Table 1. When θ is greater than 2, the approximation (Eq 2B) leads to

the following linear relationship between the Shannon-entropy-based and heterozygosity-

based diversities:

1D � e0:5772 ðyþ 0:5Þ ¼ 1:781ð2D � 0:5Þ: ð3BÞ

In this regime the Shannon diversity is itself a linear function of θ.
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Single isolated population under SMM
Ohta and Kimura developed the framework of SMM, in which each mutation only creates adja-

cent alleles [59,60,61]. Here we consider the simplest form: the one-phase mutation model in

which mutation is always only a single step, e.g. to one more or less repeat in microsatellite

DNA. They used a diffusion approximation to obtain the allele proportion distribution:

FðpÞ ¼
ð1� pÞ

y�1
pa�1

Bðaþ 1; yÞ
;

where θ = 4Nμ, α = [(1+2θ)1/2−1]/2, B(x,y) = Γ(x)Γ(y)/Γ(x+y) is the beta function, and Γ(x) is

the gamma function. Their approach in [60] is reviewed in S1 Appendix to provide the neces-

sary background for the generalization to the theory of multiple populations. As implied by

their theory and also explained in S1 Appendix, if the parameter α tends to 0, then the allele

distribution tends to that in IAM. This explicitly bridges between the allele proportion distribu-

tions of SMM and IAM, implying all properties derived from allele proportion distributions of

the two models can also be connected by this bridge. For example, the expected heterozygosity
2H derived by Kimura & Ohta is [60]:

2H ¼
y

aþ yþ 1
: ð4AÞ

When α is zero, the above reduces to the expected heterozygosity under IAM (in Eq 1). Using

the relationship between α and θ (α = [(1+2θ)1/2−1]/2; details in S1 Appendix), we can also ex-

press the expected heterozygosity in terms of a function of only θ:

2H ¼ 1�
1

ð1þ 2yÞ
1=2

: ð4BÞ

From the allele proportion distribution, the expected Shannon entropy for a population in

Table 1. The expected Shannon entropy 1
H, heterozygosity 2

H, for the equilibrium allele distribution at a neutral locus under IAM and SMM for an
isolated population, and for a total population (subscript T) composed of n subpopulations (subscript S).

Model/measure Isolated population Total population Subpopulation

IAM:

Shannon entropy 1H = ψ(θ+1)−ψ(1) 1HT = ψ(θT+1)−ψ(1) 1HS ¼ c½4Nðm� þ mÞ þ 1� �
R 1

0
cð4Nm�y þ 1ÞyT ð1� yÞ

yT�1
dy

(See S2 Appendix for approximation)

Heterozygosity 2H = θ/(1+θ)
2HT ¼ yT=ð1þ yT Þ ¼ 1� 4Nnmþ

m� þ nm

m� þ m

� ��1
2HS ¼ 1� 4Nm� ð1� 2HT Þþ1

4Nðm�þmÞþ1
¼ 1� 4Nnm m�þm

m�þnm
þ 1

� ��1

SMM:

Shannon entropy 1H = ψ(θ+α+1)−ψ(α+1) 1HT = ψ(θT+αT+1)−ψ(αT+1) 1HS ¼ c½4Nðm� þ mÞ þ aS þ 1� �

Z 1

0

cð4Nm�y þ aS þ 1Þ

BðaT þ 1; yT Þ
yaT ð1� yÞ

yT�1
dy

(See S3 Appendix for approximation)

Heterozygosity 2H ¼
y

aþ yþ 1
¼ 1�

1

ð1þ 2yÞ
1=2

2HT ¼
yT

aT þ yT þ 1
¼ 1�

1

ð1þ 2yT Þ
1=2

2HS ¼ 1� 4Nm� ð1� 2HT ÞþaSþ1

4Nm�þ4NmþaSþ1

N = population size, m = dispersal rate, μ = mutation rate, m* = nm/(n–1), NT = effective population size in the total population, and ψ(x) = digamma

function. See S1 and S2 Appendices for all derivations. For an isolated population, when α tends to 0, all formulas for SMM reduce to those for IAM. For

the total population, when αT tend to 0, all formulas for SMM reduce to those for IAM. For subpopulation, when both αT and αS tend to 0, all formulas for

SMM reduce to those for IAM.

(Notation for IAM) θ = 4Nμ, yT ¼ 4NTm ¼ 4Nnmþ ðn�1Þm

m�þm
.

(Notation for SMM) θ = 4Nμ, α = [(1 + 2θ)1/2−1]/2, θT = [1/(1−2HT)
2
−1]/2, αT = [1/(1−2HT)−1]/2 = [(1+2θT)

1/2
−1]/2. aS ¼ 4ðNm�Þ ð2HT�

2HSÞ
2HS

þ 4ðNmÞ ð1�2HSÞ
2HS

� 1,

where 2HT and
2HS are shown in Eqs 8A and 8B. B(x,y) = Γ(x)Γ(y)/Γ(x+y): beta function, Γ(x): gamma function.

doi:10.1371/journal.pone.0125471.t001
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mutation-drift equilibrium under SMM is approximately equal to

1H �

Z 1

0

ð�p log pÞFðpÞdp ¼

Z 1

0

ð�log pÞ
pað1� pÞ

y�1

Bðaþ 1; yÞ
dp:

Again, this is the negative of an integral of the logarithm function with respect to a beta dis-

tribution. We thus have a simple analytic formula for expected Shannon entropy under SMM:

(see S1 Appendix for derivation of the following three equations):

1H ¼ cðaþ yþ 1Þ � cðaþ 1Þ: ð5AÞ

When α is zero, the above reduces to the expected Shannon entropy under IAM (Eq 2A).

From Eqs 4A, 4B and 5A, we obtain a simple relationship (or link) between 1H and 2H (see S1

Appendix for details):

1H � log
1þ 2H � ð2HÞ

2

1� 2H

� �

; ð5BÞ

and between 1D and 2D:

1D � 1þ 2D �
1
2D

: ð5CÞ

We summarize all results for Shannon entropy (q = 1, Eq 5A) and heterozygosity (q = 2, Eqs

4A or 4B) in the second column of Table 1.

Multiple populations under IAM-FIM
In Wright’s finite island model (FIM) there are n idealized subpopulations each with size N,

mutation rate μ per generation, and dispersal (or migration) ratem per generation, so that in

each generation the alleles of any subpopulation include a proportionm/(n−1) randomly cho-

sen from each of the other n−1 subpopulations. For notational simplicity, we follow Latter [62]

and usem
�

=mn/(n
—
1) instead ofm. Note FIM assumes that population size, dispersal rate

and mutation rate are all constant across all subpopulations. Spatially homogeneous dispersal

is also assumed [63].

As with a single isolated population, the allele proportion y for the total population is [64]:

FTðyÞ ¼ yTy
�1ð1� yÞ

yT�1
; 0 � y � 1; ð6Þ

where θT = 4NT μ¼ 4Nnmþ ðn�1Þm

m�þm
, and NT denotes the effective size of the total population NT

= Nn+(n−1)/[4(m�+μ)] under IAM-FIM ([65], p. 431). Therefore, all formulas for a single iso-

lated population can be used for the total population if the parameter θ in a single population is

replaced by the effective number of mutations per generation in the total population θT. We

summarize the results in the third column of Table 1.

Barton & Slatkin [66] showed that the conditional distribution for allele proportion x in a

subpopulation, given its proportion in the total population y, can be expressed as:

�ðxjyÞ ¼ Kð1� xÞ
4Nm�ð1�yÞþ4Nm�1

x4Nm
�y�1;

where K = 1 / B(4Nm
�
y +1, 4Nm

�
(1—y)+4Nμ), a normalizing constant so that

R

x�ðxjyÞ dx ¼ 1, and B is a beta function defined earlier. The unconditional proportion x can

be obtained by integrating over all possible y values in the total population with distribution

Entropy-Based Measures for Genetic Models
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function given in Eq 6. Then the allele proportional distribution in a subpopulation is

FSðxÞ ¼

Z 1

0

�ðxjyÞyFTðyÞdy

¼

Z 1

0

K x4Nm
�y�1ð1� xÞ

4Nm�ð1�yÞþ4Nm�1
yTð1� yÞ

yT�1
dy: ð7AÞ

Based on the above distribution, we can directly obtain the heterozygosity for a

subpopulation as

2H S ¼ 1�

Z 1

0

x2FSðxÞdx ¼ 1�

Z 1

0

4Nm�y þ 1

4Nðm� þ mÞ þ 1

� �

yFTðyÞdy

¼ 1�
4Nm�ð1� 2HTÞ þ 1

4Nðm� þ mÞ þ 1
¼ 1�

4Nm�=ðyT þ 1Þ þ 1

4Nðm� þ mÞ þ 1
: ð7BÞ

This formula (Eq 7B) was derived in Maruyama [67], using a recurrence formula for hetero-

zygosity in the total and in a subpopulation; see Rousset [68] for a review. Our approach here is

a direct method based on the allele proportion distribution.

Based on the distribution in Eq 7A, the exact formula for Shannon entropy for a subpopula-

tion can be expressed as: (see S2 Appendix).

1H S ¼ �

Z 1

0

ðx log xÞFSðxÞdx

¼ c½4Nðm� þ mÞ þ 1� �

Z 1

0

cð4Nm�y þ 1ÞyTð1� yÞ
yT�1

dy: ð7CÞ

The above formula can be numerically evaluated using standard numerical integration soft-

ware. Table 1 (last column) summarizes the exact formulas for expected subpopulation entropy

and heterozygosity. A general approximation in terms of the digamma function is

1H S � c½4Nðm� þ mÞ þ 1� � c
4Nm�

yT þ 1
þ 1

� �� �

þ
1

2

4Nm�

4Nm� þ yT þ 1

� �2
yT

ðyT þ 2Þ
: ð7DÞ

See S2 Appendix for derivation and for more approximation formulas under various condi-

tions to examine some analytic properties; see Discussion for some special cases.

Multiple populations under SMM-FIM
Based on the theory of Rousset [68] under SMM-FIM, we can express the expected heterozy-

gosities of the total population and in a subpopulation as follows:

2HT ¼ 1�
1

p

Z p

0

m�=nm

ð1� cos tÞ
þ

1

n

� �

4Nð1� costÞmþ
m�=nm

ð1� costÞ
þ 1

� ��1

dt; ð8AÞ

2H S ¼ 1�
1

p

Z p

0

m�=nm

ð1� costÞ
þ 1

� �

4Nð1� costÞmþ
m�=nm

ð1� costÞ
þ 1

� ��1

dt: ð8BÞ

Note that ifm = 0 and n = 1, then both heterozygosities in SMM-FIM reduce to that in a sin-

gle population under the model SMM. That is, in the casem = 0, n = 1, we have 2HS =
2HT = 1

−1/(1+8Nμ)1/2; see Eq 4B.
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As derived in S3 Appendix, the allele proportion distribution in the total population can be

written as

FTðyÞ ¼
ð1� yÞ

yT�1
yaT�1

BðaT þ 1; yTÞ
;

where θT = 4NT μ, αT = [(1+2θT)
1/2
−1]/2 and NT is the effective total population size under

SMM-FIM. We can express NT as a formula in terms ofm and μ; see below for description.

Comparing the allele proportion distributions of a single isolated population and of the total

population of a subdivided population, we see that both have exactly the same form, but the pa-

rameters (α, θ) in an isolated population should be replaced by (αT, θT) in the subdivided popu-

lation. Thus, all results in an isolated SMM are also valid for the total population with

population parameters (αT, θT). For example, the expected heterozygosity in the total popula-

tion can be expressed as 2HT = 1−1/(1+8NTμ)
1/2, and θT and αT can be expressed as functions

of heterozygosities (see S3 Appendix):

yT ¼ ½1=ð1� 2HTÞ
2
� 1�=2; aT ¼ ½1=ð1� 2HTÞ � 1�=2: ð8CÞ

Substituting Eq 8A into Eq 8C, we can express θT (and thus NT) as well as αT in terms ofm

and μ. Shannon entropy has the same formula as that given in Eqs 4A and 4B, with (α, θ) re-

placed by (αT, θT). Table 1 (with column label “Total population” for the model SMM) summa-

rizes the formula. Note here if αT tends to 0, then all results reduce to those under IAM. This

shows the fundamental connection between IAM and SMM formulas for the total population.

In S3 Appendix, we also derive the allele proportion distribution in a subpopulation. Con-

sider an allele with allele proportion x in the subpopulation given its allele proportion in the

total population is y, and let ϕ(x|y) be the conditional allele frequency distribution. Applying

Wright’s formula [69], we obtain the conditional steady-state allele proportion distribution in

a subpopulation:

�ðxjyÞ ¼ KSx
4Nm�yþaS�1ð1� xÞ

4Nm�ð1�yÞþ4Nm�1
; ð9AÞ

where KS = 1/B(4Nm�y + αS + 1, 4Nm�(1−y) + 4Nμ) and αS can be expressed as a function of

heterozygosities:

aS ¼ 4Nm� ð
2HT �

2HSÞ
2HS

þ 4Nm
ð1� 2HSÞ

2HS

� 1:

(It then follows from Eqs 8A and 8B that αS can be expressed as a function ofm and μ.)

Thus we have the marginal allele proportion distribution in a subpopulation:

FSðxÞ ¼

Z 1

0

�ðxjyÞyFTðyÞdy

¼
1

BðaT þ 1; yTÞ

Z 1

0

KS x
4Nm�yþaS�1ð1� xÞ

4Nm�ð1�yÞþ4Nm�1
yaT ð1� yÞ

yT�1
dy: ð9BÞ

When both αT and αS tend to 0, the allele proportion distribution of SMM given in Eq 9B re-

duce to that of IAM given in Eq 7A. Based on this distribution, the expected heterozygosity of a

subpopulation becomes

2H S ¼ 1�

Z 1

0

x2FSðxÞdx ¼ 1�
4Nm�ð1� 2HTÞ þ aS þ 1

4Nm� þ 4Nmþ aS þ 1
:
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Also, we obtain the expected Shannon entropy for a subpopulation:

1H S ¼ cð4Nm� þ 4Nmþ aS þ 1Þ �

Z 1

0

cð4Nm�y þ aS þ 1Þ

BðaT þ 1; yTÞ
yaT ð1� yÞ

yT�1
dy: ð9CÞ

As shown in S3 Appendix, this Shannon entropy for a typical subpopulation can be approxi-

mated by:

1H S � cð4Nm� þ 4Nmþ aS þ 1Þ � c
4Nm�ðaT þ 1Þ

aT þ yT þ 1
þ aS þ 1

� �

þ
1

2

4Nm�

4Nm�ðaT þ 1Þ þ ðaS þ 1ÞðaT þ yT þ 1Þ

� �2
yTðaT þ 1Þ

aT þ yT þ 2
: ð9DÞ

When both αT and αS tend to 0, Eqs (9C) and (9D) reduce to (7C) and (7D) respectively.

Shannon differentiation measure
Based on the heterozygosities, the commonly used measure GST is expressed as GST =

(2HT−
2HS)/(

2HT). Since the value of GST is constrained by 2HS, a class of unconstrained n-as-

semblage differentiation measures called 1− Cqn were derived [18,70,71]. This class of differen-

tiation measures is independent of within-group diversity. When q = 2, this measure gives

Jost’s genetic differentiation measure D [58], which is a function of heterozygosities, i.e.,

D = 1–C2n = (2HT−
2HS)/[(1−1 / n)(1−

2HS)]. We can substitute the expectations for 2HT and
2HS (given in Table 1) into the formulas of GST and D to obtain the resulting measures in terms

of the model parameters under IAM-FIM and SMM-FIM.

In the limit as q approaches unity, the differentiation measure 1− Cqn yields a function of

Shannon entropies which is referred to as Shannon differentiation measure throughout the

paper:

Shannon differention ¼ 1� C1n ¼
1HT �

1HS

log n
: ð10Þ

The numerator 1HT−
1HS is the mutual information (MI). Division by log n standardizesMI

onto the unit interval if the n subpopulations are equally weighted. In the special case of two

subpopulations, Shannon differentiation reduces to Horn’s [17] heterogeneity measure in ecol-

ogy. Substituting the formulas 1HT and
1HS (given in Table 1) into the formula forMI, we ob-

tain the Shannon differentiation formulas for IAM-FIM and SMM-FIM. Although theMI

formulas in both models look complicated, we have provided some simplified formulas for

IAM-FIM under some circumstances as summarized below (see Table B in S2 Appendix):

1. When 4Nm
�

>> 4Nnμ>>0,MI is approximated by a simple function of 4Nnμ, GST and

Jost’s D (Eq. B5 in S2 Appendix), revealing that both 4N(m
�

+μ) (the main factor which de-

termines GST) andm
�

/(nμ) (the main factor which determines Jost’s D) affect Shannon dif-

ferentiation. If the number of mutations is large enough, the ratiom
�

/(nμ) becomes the

dominating factor (see Discussion). Herem
�

/(nμ) =m/[(n–1)μ] is the familiar scaled immi-

gration rate [72].

2. In the case in which 4Nm
�

>> 4Nnμ and 4Nnμ is small,MI is a simple function of 4Nnμ

and Jost’s D (Eq. B6 in S2 Appendix). In the extreme case that 4Nnμ tends to 0,MI ap-

proaches 0 and thus Shannon differentiation in this extreme case approaches 0.
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3. In the opposite case in which 4Nnμ>>4Nm
�

,MI is a simple function ofm
�

/(nμ) (Eq. B7 in

S2 Appendix). Whenm
�

/(nμ) tends to 0,MI approaches log(n) and Shannon differentiation

approaches unity.

We plot the performances of GST, Shannon differentiation, and Jost’s D under IAM-FIM

(Fig 1) and SMM-FIM (Fig 2) as functions of Nm (the average number of dispersals per genera-

tion), Nμ (the average number of mutations per generation) andm
�

/(nμ) (the balance between

pairwise dispersal and mutation). The Shannon differentiation measure and Jost’s D always ex-

hibit consistent patterns. For both mutation models, the two measures are increasing functions

of Nμ, and decreasing functions of Nm and ofm
�

/(nμ). Although the classic GST measure is

also decreasing in Nm and inm
�

/(nμ), GST exhibits a strikingly different pattern being a gener-

ally decreasing or stable function of the number of mutations. In the center row of Figs 1 and 2,

for Shannon and Jost’s measures: mutation-driven differentiation is more effective when there

is low dispersal. In contrast, GST is either insensitive to mutation, or at very low mutation rates,

the level of differentiation is set by dispersal (compare the three panels of the centre row).

Fig 1. (IAM-FIM n = 2,N = 5000). Plots of the Shannon differentiation (i.e., normalized mutual information,
solid lines), Jost’s differentiation measureD (dashed lines), andGST (dash-dotted line) as a function of Nm
(upper panels), Nμ (middle panels), andm*/(nμ) (lower panels).

doi:10.1371/journal.pone.0125471.g001
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In fact, whenm> μ as in the case of middle right panel in Figs 1 and 2, GST becomes nearly

independent of Nμ, unlike the other two measures. Under IAM-FIM, there is also a dramatic

contrast between GST and the two measures when 4Nnμ>>4Nm
�

! 0 (as the case in the mid-

dle left panel of Fig 1). In this case,MI approaches log n, and thus Shannon differentiation ap-

proaches 1, and Jost’s D also approaches 1. However, GST values are very low and tend to 0 as

Nμ becomes large. See S2 Appendix for more analytic formulas for mutual information under

IAM-FIM.

Simulation

We did simulations to test the robustness of our predicted relationship between Shannon mea-

sures and heterozygosity-based measures. Under IAM, the relationship for an isolated popula-

tion is given by Eq 3A, 1H = ψ[1/(1−2H)]+0.5772; this is also valid for the total population

under IAM-FIM. Under SMM, Shannon entropy and heterozygosity for an isolated population

are linked through the equation 1H� log{[1+2H−(2H)2]/(1−2H)} (Eq 5B), which holds for the

total population under SMM-FIM (Table 1). For a subpopulation, the expected Shannon

Fig 2. (SMM-FIM n = 2,N = 5000). Plots of the Shannon differentiation (i.e., normalized mutual information,
solid lines), Jost’s differentiation measureD (dashed lines), andGST (dash-dotted line) as a function of Nm
(upper panels), Nμ (middle panels), andm*/(nμ) (lower panels).

doi:10.1371/journal.pone.0125471.g002
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entropy is a function of not only the expected subpopulation heterozygosity but also the ex-

pected total-population heterozygosity. Under IAM-FIM, we propose an explicit link in terms

of an integral involving 2HT and
2HS (Eq. D7 of S4 Appendix). Under SMM-FIM, the link is

not explicit, so numerical procedures are needed; see S4 Appendix for details.

We used simulations to calculate Shannon entropy in two ways: directly from the simulated

allelic data, and predicted from heterozygosity via the equations for FIM, as described in the

preceding paragraph and also noted in the figure caption. Representative outputs are presented

to show that the simulated curve and the curve predicted from heterozygosity for the total pop-

ulation (Fig 3A) and for a subpopulation (Fig 3B) under IAM-FIM. The corresponding plots

for SMM-FIM are shown in Fig 3C and 3D. These simulations results were averaged over 5

loci, which each start out fixed for a single allele. Our simulation results showed that the Shan-

non entropy curve predicted from the heterozygosity values for IAM-FIM is slightly lower than

Fig 3. Simulation plots. Simulation results showing stochastic behavior of the average (over 5 loci) of total-
population and subpopulation Shannon entropies for N = 10000, n = 4, μ = 0.005%,m = 0.1% in the
simulation. The horizontal line in each panel represents the theoretical equilibrium value. The initial condition
was set to be just one allele (all shared) in each subpopulation. (a) The stochastic pattern for the total-
population entropy 1HT is shown in black curve, and the red curve is 1HT = ψ[1/(1−2HT)]+0.5772, which is the
1HT value calculated from a function of heterozygosity under IAM-FIM. (b) The pattern for subpopulation
entropy 1HS is shown in black curve, and the red curve is obtained via a link from heterozygosity (see Eq. D7
in S4 Appendix) under IAM-FIM. In both (a) and (b), the processes converge roughly after 40000 generations,
but the two lines become close before equilibrium (around 20000 generations). (c) The stochastic pattern for
total- population entropy 1HT under SMM-FIM is shown in black curve, and the red curve is log{[1
+2HT−(

2HT)
2]/(1−2HT)}, which is the 1HT value calculated from a function of heterozygosity. (d) The pattern for

subpopulation entropy 1HS is shown in black curve, and the red curve is obtained via a link from
heterozygosity (see S4 Appendix for the link). The relationship between heterozygosity and Shannon entropy
exists in all stages of the stochastic process under SMM-FIM.

doi:10.1371/journal.pone.0125471.g003
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the simulated line, but the two lines become very close even before equilibrium is reached, re-

vealing that the relationship is also approximately valid before the equilibrium is attained. For

SMM-FIM, the simulated curve and the curve predicted from heterozygosity match very close-

ly, and almost overlap starting from the initial stages when the initial population is fixed for a

single allele, shared by all subpopulations.

Empirical Test

Simulations in the preceding section show that our predicted relationship between Shannon

entropy and heterozygosity is approximately valid under some non-equilibrium conditions;

and for SMM the relationship is valid even in nearly all stages of the process. By examining real

populations of various ages, we can test the robustness of these relationships in practice. Star-

lings were introduced to south-eastern Australia in the mid-19th century [73–76] and provide

a good test case, having several populations of different ages. Since the 1970s, starlings have

begun to invade Western Australia [77] and have been intensively controlled since that time.

Rollins [74,75] used genetic markers to trace the possible invasion pathways. Using starlings

captured in 17 localities throughout their Australian range, four genetically distinct starling

subpopulations were identified and their localities are shown in the footnotes of Table A (S5

Appendix), and are numbered 1−4 in order from west to east. Subpopulations 1 and 2 are the

youngest, being established approximately 5 and 35 years (respectively) before the time of sam-

pling, while subpopulations 3 and 4 are older, having been established in the 19th century.

Since generation time is about three years [74], the subpopulations cannot be in equilibrium or

near equilibrium, especially the two youngest populations, 1 and 2.

We consider two types of data, which have different expected models [74]. (1) A locus

which is expected to follow the IAM: Dopamine receptor D4 (DRD4) allele frequency data for

the four subpopulations (Table A of S5 Appendix). (2) Three loci which are expected to follow

the SMM: microsatellite data for 3 loci for the four subpopulations (Table B of S5 Appendix)

[75]. While we expect these microsatellites to be selectively neutral, there is some evidence of

selection on DRD4 in other avian taxa [78,79]. Rollins [74] explicitly tested the DRD data used

here for departures from neutrality (Tajima’s D, Fu’s F) and found no evidence of selection at

this locus in the starlings included in our analysis. The graded series of Australian starling

Table 2. Consistency of empirical data with IAM based on the Dopamine receptor D4 (DRD4) alleles data.

Method/Model Measure Subpopu- Subpopu- Subpopu- Subpopu-
lation 1 lation 2 lation 3 lation 4

Empirical Estimated Shannon 2.0539 2.2415 2.6845 2.7638

(s.e.) (0.0952) (0.1139) (0.0460) (0.0815)

Estimated heterozygosity 0.8018 0.8688 0.9004 0.8949

(s.e.) (0.0232) (0.0193) (0.0059) (0.0147)

IAM expected# Expected Shannon 2.0933 2.5410 2.8336 2.7763

(s.e.) (0.1250) (0.1392) (0.0608) (0.1426)

Proportional difference 0.0188 0.1179 0.0526 0.0045

Empirical and expected values by treating each of the four subpopulations as an isolated population following IAM for mutation. Data are shown in

Table A (S5 Appendix). See Table 1 for the expected formulas and S4 Appendix for statistical methods to obtain empirical values. The proportional

difference PD � (expected value−estimated value)/expected value. All s.e. estimates were obtained by a bootstrap method based on 1000 resamples

generated from the observed allele frequency distribution.
#The expected parameters under IAM for the four subpopulations: Nμ = (1.0113, 1.6552, 2.2610, 2.1280); see Eq 1.

doi:10.1371/journal.pone.0125471.t002
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populations of different known ages provided us with the possibility of investigating approach

to equilibrium, and robustness to non-equilibrium situations [80].

Based on allele frequencies (DRD4 and microsatellite data), statistical estimation techniques

are applied to obtain bias-corrected estimates of heterozygosity, Shannon entropy, Shannon

differentiation and other parameters [53,81]; these estimates are referred to as “empirical” (or

“estimated”) values in tables and the following discussions. The bias-correction is necessary be-

cause parameters/measures based directly on observed frequencies are biased. All the statistical

estimation method for calculating the empirical values from sample data is summarized in S4

Appendix. The procedures to obtain the expected values under different models (IAM, SMM,

IAM-FIM, and SMM-FIM) are summarized in S4 Appendix, and also briefly described below.

DRD4 data
Using the DRD4 data, we did two independent analyses. (a) We performed analysis under IAM

by treating each of the four subpopulations as completely isolated from each other; all results

are summarized in Table 2 and described below. (b) We treated the four populations as partial-

ly-connected subpopulations under IAM-FIM; all results and comparisons are summarized in

Table 3.

(a) Treating each of the four subpopulations as an isolated population following IAM

for mutation (Table 2). The sample sizes for DRD4 data from subpopulations 1−4 were 146,

52, 486 and 176 respectively, revealing 16, 11, 31 and 25 alleles, a total of 38 different alleles

over all subpopulations (S5 Appendix). Table 2 gives the empirical Shannon entropy values

along with estimated s.e. (to quantify sampling errors) from subpopulation 1 to subpopulation

4. The empirical Shannon entropies are 1Ĥ = 2.0539 (s.e. 0.0952), 2.2415 (s.e. 0.1139), 2.6845

(s.e. 0.0460), and 2.7638 (s.e. 0.0815) respectively, which shows an increasing pattern from

west to east, consistent with the history of invasion. In our analysis, all s.e. estimates were ob-

tained by a bootstrap method based on 1000 resamples generated from the observed allele fre-

quency distribution. Table 2 also gives the empirical heterozygosity values and s.e from

subpopulations 1−4, based on unbiased estimation theory (see S4 Appendix).

Table 3. Consistency of empirical data with IAM-FIM based on the Dopamine receptor D4 (DRD4) alleles data.

Method or Measure Total Subpopu- Shannon Jost GST

assumptions population lation differentiation differentiation

Empirical Estimated Shannon 2.7444 2.4359 0.2225

(s.e.) (0.0400) (0.0447) (0.0226)

Estimated heterozygosity 0.9106 0.8665 0.4407 0.0485

(s.e.) (0.0046) (0.0083) (0.0386) (0.0070)

IAM-FIM

expected# Expected Shannon 2.9466* 2.3918§ 0.4002

(s.e.) (0.0524) (0.0626) (0.0315)

Proportional difference 0.0686 -0.0184 0.4440

Empirical and IAM-FIM expected values for total-population, subpopulation and differentiation measures under IAM-FIM. Data are shown in Table A (S5

Appendix). See Table 1 for the expected formulas and S4 Appendix for statistical methods to obtain empirical values. The proportional difference PD �

(expected value−estimated value)/expected value. All s.e. estimates were obtained by a bootstrap method based on 1000 resamples generated from the

observed allele frequency distribution.
# The expected parameters under IAM-FIM: Nμ = 0.6058, Nm = 3.0748; see Eqs. D5 and D6 of S4 Appendix.
* Total population entropy value calculated from total population-heterozygosity under IAM via Eq 3A: 1HT = ψ[1/(1−2HT)]+0.5772.
§ Subpopulation entropy is calculated from heterozygosity via a link described in Eq. D7 in S4 Appendix.

doi:10.1371/journal.pone.0125471.t003

Entropy-Based Measures for Genetic Models

PLOS ONE | DOI:10.1371/journal.pone.0125471 June 11, 2015 14 / 24



The IAM expected values in Table 2 are obtained via the relationship (Eq 3A) 1H = ψ[1/(1

−
2H)]+0.5772 under IAM within each subpopulation using the assumptions of equilibrium

and complete isolation. Both of these assumptions are likely to be violated by the starling sub-

populations. Nevertheless, our relationship still accurately predicts their observed entropies

(except for subpopulation 2 due to relatively low sample size). The proportional differences

(PD) between observed and predicted entropy values for subpopulations 1−4 are respectively

1.88%, 11.79%, 5.26% and 0.45%. Except for subpopulation 2 (in which sample size is relatively

low and thus the s.e. of 1Ĥ is relatively high), this relationship therefore appears to be robust

for IAM loci in real populations, even if they are far from equilibrium and even if they are not

completely isolated. Here the bootstrap method can take into account model uncertainty in the

estimation procedures. Thus the uncertainty in estimating heterozygosity was incorporated in

our estimated error of the expected Shannon entropies. Note that the s.e. for the expected

Shannon entropy (via estimated heterozygosity under FIM assumptions and under equilibrium

status) in each case is higher than s.e. of the estimated Shannon entropy (based on data only)

due to the propagation effect of model uncertainty on the expected Shannon entropies. This is

also valid in nearly all cases in the following discussions.

(b) Assuming IAM-FIM for the four subpopulations (Table 3). Under IAM-FIM, Table 3

first gives the empirical results of Shannon entropy and heterozygosity for the total population,

subpopulation (the mean of the empirical subpopulation Shannon entropies) and three related

differentiation measures: Shannon’s differentiation, Jost’s D and GST. See S4 Appendix for de-

tails. The difference between the empirical Shannon entropy for the total population (2.7444)

and subpopulation (2.4359) is the empirical mutual information. Thus, it follows from Eq 10

that the estimated Shannon differentiation is (2.7444–2.4359) / log4 = 0.2225. Based on the em-

pirical heterozygosities, Jost’s differentiation measure D is estimated to be 0.4407, while GST is

much lower (0.0485).

For the IAM-FIM expected values, the link between heterozygosity and Shannon entropy

for an isolated population (Eq 3A) can also be applied to the total population. This gives an ex-

pected total-population entropy of 2.9466, with PD of 6.86% when it is compared with the em-

pirical total-population entropy. The expected subpopulation entropy was computed from the

total and subpopulation heterozygosities; see Eq. D7 of S4 Appendix for details. Although the

model may be wrong and the equilibrium is unlikely to have been attained, the total-population

and subpopulation Shannon entropies are still predicted from heterozygosities with very high

relative accuracy (PD = 6.86% for the total-population entropy and—1.84% for subpopula-

tion). However, due to over-prediction for 1HT (positive PD) and under-prediction for 1HS

(negative PD), the Shannon differentiation calculated is subjected to relatively large PD

(44.4%) for these data. The large PD could derive from various departures, from the model,

such as selection (although there is no evidence of differential fitness of the DRD4 genotypes

[74]) and the discrepancy between heterozygosity and Shannon entropy (see Fig 3A and 3B),

or from stochasticity, heightened by the availability of only a single IAM locus, which is dis-

cussed further below, in comparison to the SMM results.

Microsatellite data
As with the DRD4 data, we performed two independent analyses based on the allele frequencies

for the three microsatellite loci (Locus Sta213, Locus Sta294, and Locus Sta308). (a) We first es-

timated parameters under SMM separately for each locus by treating each of the four subpopu-

lations as isolated from each other. (b) We treated the four populations as partially-connected

subpopulations under under SMM-FIM separately for each locus for the four divided
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subpopulations. The average results for the three loci for the two studies are shown respectively

in Tables 4 and 5. (The results for each locus are provided in S5 Appendix.)

(a) Treating each of the four subpopulations as an isolated population following SMM

for mutation (Table 4). For the three microsatellite loci (Locus Sta213, Locus Sta294, and

Locus Sta308), the sample sizes for subpopulations 1–4 are 296, 76, 620 and 274 respectively

(except that the sample size for Locus Sta294 in subpopulation 3 is 616). The average numbers

of alleles for the four subpopulations are respectively 8.33 (average of 9, 6, 10 for the three loci),

7.66 (9, 7, 7), 10.33 (13, 7, 11) and 11.67 (14, 7, 14); see S5 Appendix for data details. The em-

pirical values tabulated in Tables 4 and 5 were obtained by applying the same methods de-

scribed for DRD4 data; see S4 Appendix for formulas.

Table 4. Consistency of empirical data with SMM based on the microsatellites for each subpopulation (all results are averaged over 3 loci).

Method/Model Measure Subpopu- Subpopu- Subpopu- Subpopu-
lation 1 lation 2 lation 3 lation 4

Empirical Estimated Shannon 1.6115 1.7696 2.0344 2.1313

(s.e.) (0.0227) (0.0484) (0.0142) (0.0215)

Estimated heterozygosity 0.7585 0.7905 0.8491 0.8569

(s.e.) (0.0073) (0.0160) (0.0034) (0.0045)

SMM expected# Expected Shannon 1.6220 1.7398 2.0272 2.1088

(s.e.) (0.0436) (0.1061) (0.0313) (0.0484)

Proportional difference 0.0065 -0.0171 -0.0036 -0.0107

Empirical and expected values by treating each of the four subpopulations as an isolated population following SMM for mutation. Data are shown in

Table B (S5 Appendix). See Table 1 for the expected formulas and S4 Appendix for statistical methods to obtain empirical values. The proportional

difference PD � (expected value−estimated value)/expected value. All s.e. estimates were obtained by a bootstrap method based on 1000 resamples

generated from the observed allele frequency distribution.
#The expected parameters (average over 3 loci) for the four subpopulations: Nμ = (2.7901, 3.4202, 6.0214, 8.0434); see Eq 4B.

doi:10.1371/journal.pone.0125471.t004

Table 5. Consistency of empirical data with SMM-FIM based on the microsatellites for each subpopulation (all results are averaged over 3 loci).

Methods or Measure Total Subpopu- Shannon Jost GST

assumptions population lation differentiation differentiation

Empirical Estimated Shannon 2.0948 1.8867 0.1501

(s.e.) (0.0122) (0.0153) (0.0086)

Estimated heterozygosity 0.8554 0.8138 0.2983 0.0512

(s.e.) (0.0028) (0.0047) (0.0185) (0.0045)

SMM-FIM

expected# Expected Shannon 2.0707* 1.8773§ 0.1395

(s.e.) (0.0166) (0.0187) (0.0104)

Proportional Difference -0.0117 -0.0050 -0.0762

Empirical and SMM-FIM expected values for total-population, subpopulation and differentiation measures under SMM-FIM. Data are shown in Table B (S5

Appendix). See Table 1 for the expected formulas and S4 Appendix for statistical methods to obtain empirical values. The proportional difference PD �

(expected value−estimated value)/expected value. All s.e. estimates were obtained by a bootstrap method based on 1000 resamples generated from the

observed allele frequency distribution.
# The expected parameters (average over 3 loci) under SMM-FIM: Nμ = 6.31, Nm = 9.11; see Eqs. D8 and D9 of S4 Appendix.
* Total population entropy value calculated from total population heterozygosity under SMM via Eq 5B of the main text: 1HT�log{[1+2HT−(

2HT)
2]/(1−2HT)}.

§ Subpopulation entropy is calculated from heterozygosity via a link described in S4 Appendix.

doi:10.1371/journal.pone.0125471.t005
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Table 4 shows that the average of the empirical Shannon entropy values (over 3 loci) from

subpopulation 1–4 are respectively 1Ĥ = 1.6115 (s.e. 0.0227), 1.7696 (s.e. 0.0484), 2.0344 (s.e.

0.0142), 2.1313 (s.e. 0.0215), revealing the expected increase with subpopulation age from west

to east. Again, the s.e. of the estimated Shannon entropy in subpopulation 2 is higher than

those in the other three areas due to relatively low sample size in subpopulation 2. The corre-

sponding empirical heterozygosity values from subpopulations 1–4 also exhibit an increasing

trend from west to east, as expected from invasion history.

If these microsatellites follow the single-phase isolated SMM within each subpopulation,

Shannon entropy should be related to heterozygosity through the equation (Eq 5B): 1H� log

{[1+2H−(2H)2]/(1−2H)}. Table 4 shows that the average PD values (over 3 loci) between the en-

tropies predicted from heterozygosity and the empirical entropies are 0.65%, −1.71%, −0.36%

and −1.07%. The predicted values match the empirical values very closely, even for the youn-

gest populations. Thus, as we have demonstrated in Fig 3C and 3D, for loci that obey single-

phase SMM, the relationship between Shannon entropy and heterozygosity applies even to

non-equilibrium populations and even if they are not completely isolated, in agreement with

our simulation results.

(b) Assuming SMM-FIM for the four subpopulations (Table 5). Table 5 gives the average

of the empirical results for the total population, subpopulation and three differentiation mea-

sures, based on the same methods described for Table 3. As in DRD4 data, the empirical GST

(0.0512) is much lower than the Shannon’s differentiation value (0.1501) and Jost’s D (0.2983).

Applying the same link between heterozygosity and entropy for an isolated population to the

total population, we obtain the SMM-FIM expected value of 2.0707 for the total-population en-

tropy, which is very close to the empirical value of 2.0948 (PD = -1.17%). The mean within-

subpopulation entropy is also very accurately predicted (PD = -0.50%) from our SMM-FIM

theory given in S4 Appendix, even though nearly all the assumptions of the FIM model may

not be satisfied, as in this starling population (which is far from equilibrium, with unequal sub-

population sizes, variable number of subpopulations through time, and spatially non-homoge-

neous migration). The expected Shannon differentiation value is 0.1395, which agrees well

with the empirical value of 0.1501 with PD = -7.62%. This good performance compared to the

Shannon differentiation for IAM (Table 3, with PD -44.4%) may be simply due to the averaging

over three loci in the SMM case (Table 5). This can be seen by the improvement in perfor-

mance relative to cases where each is analysed separately. The results for each locus are shown

in S5 Appendix (Tables C-E), where the PDs for Shannon differentiation are -18.5%, 16.8%

and -15.4% for the three loci. We also note that, according to our simulations, the link between

heterozygosity and Shannon entropy under SMM-FIM (Fig 3C and 3D) is very robust and

valid in nearly all stages. The link applies even in populations that violate two conditions: being

far from equilibrium, and being connected by some dispersal.

Conclusions and Discussion

Geneticists have long known that in an isolated population at equilibrium, the heterozygosity

at a neutral locus in equilibrium under IAM is a simple function of the fundamental biodiversi-

ty parameter θ (= 4Nμ). Here we have shown that for neutral alleles in equilibrium, Shannon

entropy is also a simple function of θ (see Eqs 2A and 2B). It follows that Shannon entropy is

also a simple function of heterozygosity (Eq 3A). This provides a novel test for neutrality: if the

observed entropy is significantly different from the entropy predicted on the basis of the ob-

served heterozygosity, then the locus violates the assumptions of the neutral model or the IAM

mutation model. We have also shown in an isolated population at equilibrium under a single-

phase SMM that Shannon entropy is a simple function of θ (Eq 5A), and a simple link between
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heterozygosity and Shannon entropy also exists (Eq 5B). Then a similar test for neutrality for

SMM is also provided. All theory for IAM and SMM is valid not only for isolated population

but also for the total population under FIM by replacing θ with θT (= 4NT μ) where NT denotes

the effective size of the total population a finite island model; see Table 1 for a summary.

In Fig 3, we have demonstrated for partially-connected subpopulations under IAM-FIM

and SMM-FIM that our new link between entropy and heterozygosity turns out to be quite ro-

bust for neutral alleles and is satisfied even before equilibrium is attained, at least when the ini-

tial population has low diversity (as is often the case after a founding event). Our simulations

and empirical data from starlings introduced to Australia both suggest the robustness of our

proposed links.

In Table 1, we summarized all formulas derived in this paper for two mutation models:

IAM and SMM. In this paper, we have provided a bridge between the two models. As shown in

Table 1, when the parameter α in SMM tends to 0 for an isolated population, all formulas re-

duce to those for IAM. For total population, when αT in SMM-FIM tend to 0, all formulas for

SMM reduce to those for IAM-FIM. For subpopulation, when both αT and αS tend to 0, all for-

mulas for SMM-FIM reduce to those for IAM-FIM. Generally, all properties of these two muta-

tion models based on allele proportion distributions can be connected by this bridge.

We are also now able to link Shannon differentiation (normalized mutual information) to

the parameters of the finite island model at equilibrium under both IAM-FIM and SMM-FIM.

Shannon differentiation, like Jost’s D, is zero when all allele distributions are identical in each

subpopulation, and is unity when the subpopulations share no alleles. Figs 1 and 2 reveal that

Shannon’s differentiation is increasing with mutation rate, and decreasing with dispersal rate if

all other parameters are fixed. In Table B (S2 Appendix), we tabulate the expected values of

GST, Jost’s D and some simplified formulas for the mutual information under IAM with equi-

librium in the FIM. The expected values of GST is determined by the sum of dispersal and mu-

tation, N(m
�

+μ), whereas the expected values of Jost’s D is determined by the scaled

immigration rate [58,72], a ratio between pairwise dispersal rate and mutation rate, as express-

ed by the factorm
�

/(nμ) =m/[(n–1)μ]. When 4Nm
�

>> 4Nnμ>> 0 or 4Nnμ>> 4Nm
�

, Shan-

non differentiation simplifies greatly, revealing the factors that control it. In the latter case,

Shannon differentiation is nearly controlled by the ratiom
�

/(nμ), like Jost’s D; see the last for-

mula in Table B of S2 Appendix. In the former case, Shannon differentiation is determined by

a combination of 4Nnμ, GST and D, or equivalently, by a combination of N(m
�

+μ) andm
�

/(nμ).

However, the dependence on N(m
�

+μ) is very weak when 4Nnμ>> 2, and thus the main thing

that controls entropy differentiation is the ratiom
�

/(nμ); see S2 Appendix for details.

In statistics, information theory, ecology, and physics, Shannon entropy has been general-

ized into numerous parametric families of “generalized entropies”, which vary in the weight

they give to common versus rare alleles (or their analogs in other disciplines). The Tsallis or

HCDT generalized entropies of order q, and the Rényi entropies [82], are two widely used fam-

ilies. Each family of generalized entropies generates a smooth curve when plotted as a function

of the order parameter q. When q = 0 the generalized entropy ignores allele frequencies (it is a

function only of allele number). As q increases, the generalized entropies are increasingly sensi-

tive to allele frequencies. At q = 1 we have Shannon entropy which weighs alleles according to

their population share. Moving beyond q = 1, the entropies increasingly emphasize the most

abundant alleles. When q = 2 the measures use the same allele weighting as heterozygosity.

This graph of generalized entropy as a function of q is called an “entropy spectrum”, and there

is a corresponding “diversity profile” when the entropies are converted to effective number of

alleles before plotting them. Either one of these curves completely characterizes a given allele

proportion distribution, and carries the same information as the Ewens’ probability density

function [55]. In S1 Appendix, we have provided the theoretical expressions for these entropy
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spectra or diversity profiles in terms of model parameters, under IAM and SMM. This provides

a new way of characterizing the neutral equilibrium allele proportion distribution.

Fig 3 shows that it takes tens of thousands of generations to reach equilibrium in the scenar-

ios we considered. However, the starling data (Tables 2–5) show that the methods appear to be

quite robust to all but the most extreme deviations from equilibrium in the newest western

populations (Subpopulation 2 with relatively sparse data), although even the oldest of the pop-

ulations was established only of the order of a hundred generations ago. It is encouraging there

is generally good fit to real biological data, even with only small numbers of loci, and various

known deviations from the theoretical model listed above, although there is better fit when

there is averaging over more than one locus, and more time allowed for equilibration (Tables

2–5).

We summarize the major comparisons between the measures based on the traditional het-

erozygosity and our proposed measures based on Shannon entropy below. This summary also

reveals the limitations of each approach.

1. As discussed, heterozygosity and Shannon entropy each contain useful but partial informa-

tion about an allele frequency distribution. These two measures, along with allele numbers

[64,83, p. 263], are the three most informative special cases of a complete profile of the Tsal-

lis entropies or the Rényi entropies. Measures based on the traditional heterozygosity dis-

proportionately favor the frequent alleles whereas measures based on Shannon entropy

weigh alleles in proportion to their frequencies.

2. Both the heterozygosity and Shannon entropy and their differentiation measures can be

linked to neutral genetic models under equilibrium, e.g., IAM and SMM for an isolated pop-

ulation, and IAM-FIM and SMM-FIM for subdivided populations. These formulas are

shown in Table 1. Our formulas based on Shannon entropy in Table 1 for an isolated popu-

lation are at least as simple as those based on heterozygosity. Although our formulas for sub-

divided populations and mutual information look more complicated, all can be numerically

evaluated using standard software.

3. Under IAM-FIM, the measures GST and Jost’s D, or equivalently
2HT and

2HS, can be jointly

used to obtain analytic estimates of dispersal rate and mutation rate based on estimated het-

erozygosities (see Eqs. D5 and D6 in S4 Appendix for the estimation formulas and the foot-

notes of Table 3 for their estimates as applied to the starling data). Under SMM-FIM,

numerical method is required to obtain estimates of dispersal rate and mutation rate (see

Eqs. D8 and D9 in S4 Appendix and the footnotes of Table 5 for their estimates as applied

to the starling data). However, for measures based on Shannon entropy, currently it is not

feasible to obtain analytic or numerical estimates of dispersal rate and mutation rate unless

empirical equations are adopted [12,13].

4. The Shannon differentiation measure C1n based on the between-group component of entro-

py, obeys stronger monotonicity properties than the GST and Jost’s D based on the between-

group component of heterozygosity. A monotonicity property in Jost et al. [70] implies that

Shannon’s differentiation measure always increases any time a new allele is added to any

subpopulation, with any abundance, whereas GST and Jost’s D do not satisfy this property.

In S6 Appendix, we further prove that if some copies of an allele that is shared among sub-

populations are replaced by copies of unshared alleles, Shannon differentiation measure al-

ways increases. We also give a counter-example to show that GST and Jost’s D do not satisfy

this requirement. These monotonicity properties reveal that the Shannon differentiation

measure has some good properties that are lacking for measures based on heterozygosity,
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and these properties may better capture the meaning of differentiation in many contexts,

including conservation.

5. The measure GST in FIM converges very quickly in the genetic stochastic processes whereas

the normalized mutual information based on Shannon entropy converges relatively slowly.

This is expected because the maximum possible value of GST is constrained by the subpopu-

lation heterozygosity and thus takes values in a very narrow range, whereas the value of the

normalized mutual information is not constrained a priori and thus potentially spans the

full range [0, 1] no matter what the value of subpopulation entropy.

6. Estimators of Shannon entropy or heterozygosity should be used, instead of calculating

their observed values directly from the sample allele frequencies. From the perspective of

statistical inference, measures based on heterozygosity can be accurately estimated from in-

complete samples nearly without any bias because these measures focus on the frequent al-

leles, which always appear in samples. However, it is surprisingly non-trivial to make

accurate estimates of population entropy based on small samples; it can be proven that no

unbiased estimator exists [84]. Recently Chao et al. developed a low-bias entropy estimator

[53]. See S4 Appendix for statistical estimation.

In conclusion, the theoretical advances presented here, combined with the estimation theory

[53], should entice geneticists to add Shannon entropy to their genetic toolkit, and to develop

connections between the entropy of allele proportion distributions, the entropy of gene se-

quences, the mutual information between gene regions, and other information-theoretical

properties of genes. The R scripts for computing all measures discussed in this paper are avail-

able in S7 Appendix with comments.
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