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Abstract

In this paper Savage’s theory of decision-making under uncertainty is ex-
tended from a classical environment into a non-classical one. The Boolean lattice
of events is replaced by an arbitrary ortho-complemented poset. We formulate
the corresponding axioms and provide representation theorems for qualitative
measures and expected utility. Then, we discuss the issue of beliefs updating
and investigate a transition probability model. An application to a simple game
context is proposed.

Keywords. Measurement, bet, non-classical probability, qualitative measure,
transition probability, orthomodular poset.

1 Introduction

In this paper we propose an extension of the standard approach to decision-making

under uncertainty in Savage’s style from the classical model into the more general

model of non-classical measurement theory. Formally, this means that we substitute

the Boolean lattice with a more general orthoposet structure.

In order to provide a first line of motivation for our approach we turn back to

Savage’s theory in a very simplified version. In Savage [18], the issue is about the

evaluation (or comparison) of “acts” with uncertain results. For simplicity we shall

assume that the results can be evaluated (cardinally) in utils. But the results are

uncertain, they depend on the unknown state of Nature.
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The classical approach formalizes this situation as follows. There exists a set S of

states of nature, which may in principle occur. (For simplicity, we assume that the set

S is finite.) An act is a function f : S → R. If the state s ∈ S is realized, our agent

receives a utility of f(s) utils. But before hand it is not possible to say which state s

is going to be realized and the agent has to choose among acts before he learns about

the state s. This is the heart of the problem.

Among possible acts there are “constant” acts, i.e. acts with a result that is known

before hand, independently of the state of nature. The constant act is described by a

(real) number c ∈ R. It is therefore natural to link an arbitrary act f with its “certainty

equivalent” CE(f) ∈ R (such that our decision-maker is indifferent between the act f

and the constant act which gives utility CE(f)). The first postulate of our simplified

Savage model asserts the existence of the certainty equivalent :

• S1. There exists a certainty equivalent CE : RS → R and for the constant act

1S we have CE(1S) = 1.

It is rather natural to require the monotonicity of the mapping CE:

• S2. If f ≤ g then CE(f) ≤ CE(g).

The main property we impose on CE is additivity1:

• S3. CE(f + g) = CE(f) + CE(g) for any f and g ∈ RS.

Together with monotonicity the axiom S3 implies the linearity, that is CE(αf +

βg) = αCE(f) + βCE(g) for any α, β ∈ R. As a linear functional on the vector space

RX , CE can be written in a form CE(f) =
∑

s∈S µ(s)f(s). By the axiom S2, µ ≥ 0;

since CE(1S) = 1 we have
∑

s µ(s) = 1. Therefore µ(s) can be interpreted as the

“probability”2 for the realization of the state s. With such an interpretation, CE(f)

becomes the “expected” utility of the act f .

In the present paper we propose to substitute the Boolean lattice of events with a

more general orthoposet. The move in that direction was initiated long ago, in fact

with the creation of Quantum Mechanics (QM). The Hilbert space entered into the

theory immediately, beginning with von Neumann [19] who proposes to use the lattice

of projectors in the Hilbert space as the suitable model for QM instead of the classical

1The requirement in S3 looks very straightforward and ingenuous indeed. Savage himself and his
followers preferred to appeal to the so-called “sure thing principle” and to derive additivity from other
axioms. But the related considerations are not relevant to the point we make in this paper.

2Sometimes this probability is called subjective or personal, because it only expresses the likelihood
that a specific decision-maker assigns to event s.
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(Boolean) logic. In recent years, we have seen a number of works in social sciences and

psychology that propose to use the quantum formalism to explain behavioral paradoxes

and anomalies (see e.g., [4, 9, 10, 14, 15, 2]).

But most closely related to our paper are [6, 11]. In both papers the standard

expected utility theory is transposed into a Hilbert space model. Lehrer and Shmaya

write “We adopt a similar approach and apply it to the quantum framework. While

classical probability is defined over subsets (events) of a state space, quantum probabil-

ity is defined over subspaces of a Hilbert space. Gyntelberg and Hansen (2004) apply

a general event-lattice theory (with axioms that resemble those of von Neumann and

Morgenstern) to a similar framework.” One could expect that Gyntelberg and Hansen

truly would be working with general ortholattices. But no, they again work with a

lattice of subspaces of a Hilbert space.

One of our objectives is to show that there is no need for a Hilbert space and that

Savage’s approach can just as well (and even easier) be developed within the frame of

general orthoposets. This is not merely an attempt to generalize. Instead, our view is

that the Hilbert space model is only one of the possible models for describing situations

characterized by incompatible measurements. Moreover the Hilbert space model may

not always be the most suitable model. According to [20]“Hilbert space, and Physics

in general, are too tightly knit to serve as a criterion for less highly structured situation

such as those occurring in the social sciences.” In our paper [3] we describe the structure

of such a general model.

For the sake of comparison with the Savage setup, we first develop the theory in a

static context. That is we begin with an arbitrary orthoposet of events. We understand

acts as “lotteries” whose results are governed by the outcomes of measurements and

we use the term “bet” to refer to these lotteries. Our main theorem asserts that any

reasonable preference on the set of bets can be represented as expected utility with

respect to some belief, that is a probabilistic measure on the orthoposet of events.

Since non-classical phenomena are intimately linked to the impact of measurements

on the state of the measured system, a static approach cannot be satisfactory. (If

measurements do not change the state of the system, one can use Savage’s classical

paradigm.) A genuine theory of non-classical expected utility should apply to sequences

of bets or measurements. In Sections 6 and 7 we discuss the issue of belief updating and

propose a model which takes in account the impact of measurements on the state. In an

illustration we show that the results in this paper are relevant to modelling interaction

in simple games when a decision-maker faces a type indeterminate opponent, i.e. an

agent whose type changes under the impact of decision-making.

In the Appendix we consider the conditions under which a qualitative measure can
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be represented by a quantitative measure.

2 The structure of events

A central notion in our decision theory under uncertainty is the notion of measurement.

Intuitively, it is a (partial) resolution of uncertainty. One can perform a measurement

on the “world” and obtain some information about “state of the world”. More precisely,

we learn the outcome of the measurement. Thus, every measurement M is characterized

by a set O(M) of possible outcomes.

A bet on the basis of a measurement M (or supported by a measurement M) is a

mapping f : O(M) → R. If we perform the measurement M and an outcome o ∈ O(M)

is realized then the agent obtains f(o) utils.

M denotes the set of admissible measurements. Correspondingly the set of bets

is the (disjoint) union
∐

M∈M RO(M). Our decision maker (DM) is assumed to have

preferences defined on this set. In the classical setup all measurements can be collected

into a single complete measurement. The set of its outcomes can be identified with

the set S of the states of the world. We are interested in a more general situation,

when there may be several essentially different measurements. To explain what we

understand by ‘essentially different measurements’ we have to first introduce the notion

of derived measurement.

Let M be a measurement with the set O(M) of outcomes, and let ϕ : O(M) → O′

be a mapping of sets. Then we can form a new (derived) measurement M ′ with the

set of outcomes O′. It is constructed in the following way: we perform M and declare

ϕ(o) as the outcome of M ′ provided o is the outcome of M . Actually M ′ is merely a

transformation of the results of M . In particular, we can perform a measurement and

completely ignore its result. Denote this (ignored) derived measurement as TM .

We assume further that the set M is stable with respect to derived measurements,

i.e., for any M ∈ M, the measurements derived from M also belong to M. Moreover

we assume that M contains the trivial measurement T with a single outcome, i.e. no

proper measurement is performed.

In general case there can be several (essentially different) incompatible measure-

ments. Roughly speaking, measurements M and M ′ are incompatible if they cannot

be performed simultaneously. More importantly, M and M ′ are incompatible if per-

forming measurement M ′ can change the result of the measurement M compared with

the outcome previously obtained when performing M . Therefore the issue of timing

(i.e., of the sequence in which measurements are performed) becomes important. If

all measurements are compatible, we can design a composite measurement and in the
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limit we get the finest “universal” measurement. But if some measurements are incom-

patible then such a universal measurement does not exist. Of course, measurements

derived from of a common measurement are compatible.

The outcomes of different (even incompatible) measurements can be related to one

another, and the DM is assumed to know these relations.

Definition. We say that an outcome o (of a measurement M) implies outcome

o′ (of another measurement M ′) if performing M ′ immediately after (M, o) gives the

outcome o′ with certainty. We denote this relation as o =⇒ o′.

We assume that the following two axioms are fulfilled:

M1. o =⇒ o.

M2. If o =⇒ o′ and o′ =⇒ o′′ then o =⇒ o′′.

Due to axioms M1 and M2 the relation =⇒ on the set O =
∐

M∈M O(M) of out-

comes is a pre-order. In particular, the symmetric part ≈ of the relation is an equiv-

alence relation. Let us denote E = O/ ≈ the corresponding factor-set; the elements of

E will be called events. The relation =⇒ defines a (partial) order on the set E , which

will be denoted by ≤. Thus E is a poset, i.e. a partially ordered set. The event O(T )

(more precisely, its equivalent class) is the largest element of the poset; we denote it

1. We add formally a minimal element 0 representing the “impossible” event.

The set E possesses one more important structure, that of ortho-complementation.

For any outcome o there exists a dichotomous measurement with outcomes (o, ō),

where ō denotes the outcome opposite to o, i.e. “non-o”. (Generally speaking, ō de-

pends on the choice of the measurement.) Let now o and o′ be two outcomes (generally,

of two different measurements M and M ′). Say that o is orthogonal to o′ (we write

o⊥o′) if o =⇒ ō′. Intuitively, this means that these outcomes exclude one another.

This suggests that the orthogonality relation should be symmetric (apparently, it is

irreflexive). We postulate it as the following axiom:

M3. o⊥o′ if and only if o′⊥o.

Remark. To clarify the meaning of this axiom, we reformulate it in two different

ways. We say that an outcome o′ is possible given an outcome o, and we write o → o′,

if o′ is not orthogonal to o (or the relation o =⇒ ō′ is false). One can easily check that

axiom M3 is equivalent (provided M1 and M2) to the following axiom

M3′. If o → o′ and o′ =⇒ o′′ then o → o′′.

Another equivalent form of M3 is

M3′′. If o → o′ then o′ → o.
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Of course, Axioms M3′ and M3′′ also are disputable although they seem rather

acceptable; in any case the interpretation is clear.

Axiom M3 can be rewritten as the statement: if o =⇒ o′ then ō′ =⇒ ō. In particular,

if o and o′ are equivalent then ō and ō′ are equivalent as well. This implies that the

orthogonality relation ⊥ can be carried over to the factor-set of events E , where it is

a symmetric and irreflexive relation. For an event e (represented by an outcome o) we

denote e⊥ the event represented by the outcome ō. The correctness of this definition

follows from Axiom M3. Moreover, the event e⊥ is the largest event orthogonal to e.

Indeed, suppose that an outcome o′ is orthogonal to an outcome o representing the

event e. That is o =⇒ ō′. Due to Axiom M3, we have o′ =⇒ ō that is e′ ≤ e⊥.

The following proposition gathers the properties of the operation ⊥ on E :

Proposition 1 The operation ⊥ is an anti-monotone involution of E, and e ∨ e⊥ = 1

for any event e.

Proof. The fact that ⊥ is an involution of (that is (e⊥)⊥ = e) is obvious by

construction. Above we already noted that e ≤ e′ implies (e′)⊥ ≤ e⊥. Since there

exists no outcome o′ that implies both o and ō we have e ∧ e⊥ = 0. Applying ⊥ to

this equality and using the anti-monotonicity of ⊥, we get the equality 1 = 0⊥ =

(e ∧ e⊥)⊥ = e⊥ ∨ ((e⊥)⊥) = e⊥ ∨ e. �

Thus, the event set E (equipped with the order relation ≤ and the operation ⊥) is

an orthoposet (an ortho-complemented partially ordered set). It can be considered as

the logic of the one-shot decision-making situation.

Let us return to the measurement M with outcomes o ∈ O(M). (The same letters

o will be used for the corresponding elements in the orthoposet of events E .)

Lemma 1 Let A be a subset of O(M) with Ā = O(M) − A, the complement of A in

O(M). Then the join
∨

o∈A o exists and is equal to (
∨

o∈Ā o)⊥.

Indeed, the join
∨

o∈A o is the event “the outcome of measurement M belongs to

A”, whereas
∨

o∈Ā o is the opposite event. �

This motivate the following notion.

Definition. An Orthogonal Decomposition of the Unit (briefly, an ODU ) is a

family (a(i), i ∈ I) of events satisfying the following two conditions:

1) for any J ⊂ I the join
∨

i∈J a(i) exists; we denote it as a(J).

2) a(J)⊥ = a(I − J) for any J ⊂ I.
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In particular, all events a(i) are pairwise orthogonal, and a(I) =
∨

i∈I a(i) = 1.

This justifies the term ‘ODU’.

For instance, the single-element family 1 is an (trivial) ODU. For any a ∈ E , the

two-element family (a, a⊥) is an ODU.

By Lemma 1 every measurement defines some ODU. For example, the trivial mea-

surement T define the single-element ODU. Any two-element ODU (a, a⊥) is realized

by some (dichotomous) measurement. An ODU is called admissible if it is realized by

some measurement M ∈M.

Thus, a decision situation defines an orthoposet of events E and a setA of admissible

ODUs in the orthoposet. In the sequel, we shall assume that any ODU is admissible.

The reader can easily extend the results to the general case.

We can now identify (to a certain extent) measurements with ODUs. One can

(temporarily) forget about measurements and deal with arbitrary orthoposet E . A bet

is now a pair (α, f), where α = (a(i), i ∈ I(α)) is an ODU (the basis of the bet) and

f : I(α) → R is a real-valued function (the payoff ). The set of bets with fixed basis

α is the vector space F (α) = RI(α). The set F of all bets is the disjoint union of all

F (α). Theorem 1 below asserts that any reasonable preference order on F is given

by a probability measure on E . Our next step will be to define a probability on an

orthoposet.

3 Non-classical probability

The classical probability theory starts with a set S of elementary (mutually exclusive)

events. Thereafter it moves over to general events. The next key concept is a “collection

of mutually exclusive events”. In the classical model this is simply a partition of the set

X, that is a decomposition S = A1 q ... q An. In our language events are represented

by an event orthoposet E . The collection of mutually exclusive events is replaced by

the notion of an Orthogonal Decomposition of the Unit, ODU.

Let E be an orthoposet. To facilitate the presentation we impose the following

finiteness requirement: any ODU is (essentially) finite. For example, this requirement

is fulfilled if the orthoposet E is finite.

Definition. An evaluation on an orthoposet E is a mapping ν : E → R+ such that

ν(0) = 0 and ν(1) = 1. An evaluation ν is called

1) monotone if ν(a) ≤ ν(b) provided a ≤ b;

2) additive if ν(a ∨ b) = ν(a) + ν(b) for orthogonal events a and b. We write a⊕ b

instead of a ∨ b to emphasize that a ⊥ b;

3) probabilistic (or a probability) if
∑

i ν(a(i)) = 1 for every ODU (a(i), i ∈ I).
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It is clear that 2) implies 3). In the classical (Boolean) case 3) implies 1) and 2),

but that is not true in the general case (see Example 3 in Section 4 and Proposition 2

below).

For the sequel we need the following

Lemma 2 Let ν be a probability, and (a(i), i ∈ I) be an ODU. Then, for any J ⊂ I,

ν(
⊕
i∈J

a(i)) =
∑
i∈J

ν(a(i)).

Proof. Since (a(i), i ∈ I) is an ODU, we have the equality
∑

i∈I ν(a(i)) = 1. On the

other hand, the family (a(J); a(i), i ∈ I − J) is an ODU as well. Therefore, we have

the equality ν(a(J)) +
∑

i∈I−J ν(a(i)) = 1. Hence, ν(a(J)) =
∑

i∈J ν(a(i)). �

There exists an important case when everything simplifies and approaches the clas-

sical case. It is the case of orthomodular posets (OMP), that is orthoposets satisfying

the property of orthomodularity : if a ≤ b then b = a ∨ (b ∧ a⊥). For example, every

Boolean lattice is an OMP.

Proposition 2 Let E be an OMP. Then any probabilistic evaluation on E is additive

and monotone.

Proof. Let ν be a probabilistic evaluation on E . We first establish additivity.

Suppose a ⊥ b and pose c = (a⊕ b)⊥. Since (c, c⊥) is an ODU, ν(c) + ν(c⊥) = 1.

We assert that (a, b, c) is an ODU as well. To prove that we need to show that

a⊥ = b⊕c. Since a, b and c are pairwise orthogonal, b⊕c ≤ a⊥. By force of the property

of orthomodularity we have that a⊥ = (b⊕ c)⊕ (a⊥ ∧ (b⊕ c)⊥). But a⊥ ∧ (b⊕ c)⊥ =

(a∨ b∨ c)⊥ = (a⊕ b)⊥ ∧ c⊥ = c∧ c⊥ = 0. Hence a⊥ = b⊕ c. Similarly b⊥ = a⊕ c. The

equality c⊥ = a⊕ b is satisfied by definition. Thus, the triplet (a, b, c) is an ODU.

Therefore we have the equality ν(a) + ν(b) + ν(c) = 1. Hence ν(a ⊕ b) = ν(c⊥) =

1− ν(c) = ν(a) + ν(b), which yields the additivity of ν.

Monotonicity follows trivially from the formula b = a ⊕ (b ∧ a⊥), the additivity of

ν and the inequality ν(b ∧ a⊥) ≥ 0. �

Thus, in the orthomodular case a probability may also be defined as an additive

evaluation. For reasons which will become clear in Section 5, we shall especially be

interested in monotone probabilistic evaluation on E; ∆(E) denotes the set of such

evaluations. If E = 2X is a Boolean lattice, ∆(2X) is the set of ordinary probabilities

(or probability measures) on a (finite) set X.
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4 Some examples

Here we consider a few examples illustrating the material of Section 2 and 3. In each

example we present an event orthoposet E and describe the corresponding set ∆(E).

Example 1. Let S be a set. An event is an arbitrary subset of S, so that E = 2S.

The order is defined by set-theoretical inclusion. For A ⊂ X the opposite event A⊥ =

X − A is the set-theoretical complement. It is the classical situation.

When S is a finite set, the probability set is the unit simplex with vertices in S.

Example 2. Let H be a (finite dimensional) Hilbert space (over the field of real

or complex numbers). An event is a vector subspace in H. ⊥ is the orthogonal

complementation with respect to the inner product. The orthoposet Sub(H) of vector

subspaces in H is an orthomodular ortholattice. This model is standard in Quantum

Mechanics.

Due to Gleason’s theorem, the probabilities on Sub(H) are given by positive self-

adjoint operators with the trace 1 (‘density matrices’). If ρ is such an operator then

the ‘probability’ of a subspace L ⊂ H is equal to the trace of the product ρPL, where

PL is the operator of orthogonal projection on the subspace L.

We next consider several ‘toy’ examples.

Example 3. The event orthoposet (in fact, an ortholattice) is depicted below

d
dd

d d
d
@

@

�
�

@
@

�
�

0

1

l r

r⊥ l⊥

There are two ODUs: (l, l⊥) and (r, r⊥) (the pair (l, r) is not an ODU although r

and l are orthogonal and r ⊕ l = 1). The event l implies r⊥, the event r implies l⊥.

However r⊥ does not exclude l⊥ (and vice versa). Therefore, given the event l⊥, the

measurement (r, r⊥) can yield both r and r⊥ as the outcomes. The following sequence

of outcomes r, l⊥, r⊥ is possible. Hence the measurements are incompatible.

In order to define a probability ν on the orthoposet is to give we only need two

numbers ν(r) and ν(l), both between 0 and 1. Then ν(l⊥) = 1 − ν(l) and ν(r⊥) =

1− ν(r). The probability is monotone if ν(l) + ν(r) ≤ 1; the probability is additive if

ν(l) + ν(r) = 1.

Example 4. Let us consider the orthomodular lattice (OML) depicted below
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L R = L⊥ F B = F⊥

as the event poset. Here are two ODUs: (L, R) and (F, B), and two corresponding

dichotomous (and incompatible) measurements.

A probability here is given by two numbers ν(L) and ν(F ), both between 0 and 1.

Thus the set of probabilities is the square [0, 1]× [0, 1] (or ∆({L, R})×∆({F, B})).

Example 5. Let us consider as the event orthoposet the following OML

d
d dd

d d d
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d d
b
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b
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F B = F⊥
L M R

0

1

There are two complete measurements with outcomes {F, B} and {L, M, R} (and

the derived ones). The set of probabilities is the Cartesian product of the segment

∆({F, B}) and the simplex ∆({L, M, R}).

Example 6 A variant of the Wright’s pentagon [20]. Consider the following ortho-

poset of events (we do not draw 1)

A⊥

0

A

B

CD

E

D⊥C⊥

B⊥ E⊥

6

���:

J
J
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XXXy

����:

�
�
�
��

@
@

@R

����:

�
�

�/

S
S
Sw

XXXXy

�
�

�	

C
C
C
CO XXXXy

We have five dichotomous ODUs: (A, A⊥), (B, B⊥), and so on. Each measurement is

a question: A or not A? B or not B?, and so on.

Let us calculate monotone probabilities on this orthoposet. Such a probability

ν is given by five numbers: a = ν(A), b = ν(B), ..., e = ν(E). They must satisfy

by 10 inequalities: a ≥ 0, ..., e ≥ 0, and a + c ≤ 1, b + d ≤ 1, ..., e + b ≤ 1.

10



Therefore ∆(E) is a convex polytope in a five-dimensional space. It has 12 vertices

(extreme points). These are: 1) the point 0 = (0, ..., 0), 2) five points of the form

(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), ..., (0, 0, 0, 0, 1) which can be identify with A, B, ..., E; 3) five

points (1, 1, 0, 0, 0), (0, 1, 1, 0, 0), ..., (1, 0, 0, 0, 1); and finally 4) the most interest point

ω = (1/2, 1/2, 1/2, 1/2, 1/2). The last point ω is a pure state but it is not dispersion-

free and therefore it has a non classical interpretation (for more details see [20]).

Example 7. Let us give one more striking example. To describe the event ortho-

poset we use the following Greechie diagram

THE DIAG GREECHIE cannot be read!

It consists of the set V of 15 vertices (depicted as black circles) and the collection L of

15 three-elements subsets in V called lines (depicted as smooth curves). We shall not

explain how a general Greechie diagram (V, L) defines the corresponding ortholattice

E . Instead, we confine attention to this specific example. Let E = {0, 1}
∐

V
∐

V ′,

where V ′ is a copy of V (for x ∈ V its ”copy” is denoted x′). We define an order

on the set E as follows. 0 is the least and 1 is the greatest element; for x, y ∈ V,

x < y′ if and only if x 6= y and x and y are collinear (belong to the same line). An

ortho-complementation is defined as follows: for x ∈ V x⊥ = x′ and x′⊥ = x.3

The following property is important for us: if x, y, z is a line then the collection

(x, y, z) is an ODU in the ortholattice E. Indeed, z is the only vertex which is collinear

to both x and y. Therefore x ∨ y = z′ = z⊥.

Let us now consider probabilities on E . To give a probability one needs to give a

function ν : V → R+ such that ν(x) + ν(y) + ν(z) = 1 for every collinear triple x, y, z.

(The numbers ν(x′) are defined from the relations ν(x) + ν(x′) = 1.) We obtain 15

linear equations with 15 unknowns. Direct calculations show that there exists a unique

solution to this system: ν(x) = 1/3 for every x ∈ V . This is the main lesson from this

example: the set ∆(E) consists of a unique (uniform) probability!

Note that Greechie [5] constructed a finite orthomodular lattice with no probability

at all.

5 Non-classical expected utility theory

Let us return to the comparison of bets (given an event orthoposet E). Recall that F

denotes the set of all bets; F =
∐

F (α), where α runs over ODUs. We suppose that

bets are compared using some certainty equivalent.

3One can also show that E is an orthomodular poset but we shall not use this property.
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Definition. A certainty equivalent is a mapping CE : F → R such that CE(1) = 1.

Here 1 is any bet with payoffs equal to 1.

Let us start with an explicit formula for a possible CE. Assume that our DM

has some belief about the state of the world, that is he has in his mind a monotone

probabilistic evaluation µ on the event orthoposet E . Then, for any bet f on the basis

of ODU α = (a(i), i ∈ I(α)), he can compute the following number (the expected value

of the bet f)

CEµ(f) =
∑

i

µ(a(i))f(i).

This is a certainty equivalent, and it possesses two nice properties.

First of all, it is a linear functional on every vector space F (α) = RI(α). This is

obvious from the formula above. The second property is monotonicity in some strong

sense. To formulate this property, we need to introduce a dominance relation between

bets. Intuitively a bet g dominates another bet f if g always yields higher payoff than

f . But what does this precisely mean?

Let f be a bet on the basis of an ODU α = (a(i), i ∈ I), and g be a bet on the

basis of another ODU β = (b(j), j ∈ J). Remind that in Section 2 we have introduced

the relation → of possibility. We shall say that an outcome j ∈ J is possible provided

an outcome i ∈ I if i → j (or, what is the same, a(i) is not orthogonal to b(j)); we

denote this as j ∈ P (i).

Definition. We say that g dominates f if g(j) ≥ f(i) for every j ∈ P (i).

In other words, each time when the bet f gives the payoff f(i), the bet g gives the

no smaller payoff g(j). In particular, suppose that f and g are two bets on the same

basis α; then g dominates f if and only if f ≤ g as functions on I(α).

The second property of the certainty equivalent CE = CEµ is the compatibility

with the dominance relation.

Proposition 3 If g dominates f then CE(f) ≤ CE(g).

Proof. Let us order the elements of I according to decreasing values of f , so that

f(1) ≥ f(2) ≥ ... ≥ f(n), n = |I|. Associate to f an auxiliary function f̂ : [0, 1] → R
defined by the formula:

f̂(t) = f(i), if µ(a(1)) + ... + µ(a(i− 1)) ≤ t < µ(a(1)) + ... + µ(a(i)).

The function f̂ is piece-wise constant, and CE(f) =
∫ 1

0
f̂(t)dt.

For i = 1, ..., n, consider the subset Q(i) = P (1) ∪ ... ∪ P (i) in J ; this is the set

of elements j ∈ J which are possible at 1, ..., i. Let us order the elements of J such

12



that the first elements are in Q(1), the next elements are in Q(2)−Q(1), and so on.

Again associate to g an auxiliary function ĝ : [0, 1] → R defined by the formula:

ĝ(t) = g(j), if µ(b(1)) + ... + µ(b(j − 1)) ≤ t < µ(b(1)) + ... + µ(b(j)).

The function ĝ is piece-wise constant, and CE(g) =
∫ 1

0
ĝ(t)dt. We prove Proposition 3

if we can show that f̂ ≤ ĝ.

Claim 1 µ(a(1)) + ... + µ(a(i)) ≤
∑

j∈Q(i) µ(b(j)) for every i = 1, ..., n.

We first complete the proof of Proposition 3 and then we prove the Claim. Suppose

that t lies in the interval µ(a(1)) + ... + µ(a(i− 1)) ≤ t < µ(a(1)) + ... + µ(a(i)), where

f̂(t) is equal to f(i). By the Claim, we have t <
∑

j∈Q(i) µ(b(j)). Therefore ĝ(t) is

greater or equal to the minimum of g(j), j ∈ Q(i). Since, for any j ∈ Q(i), we have

j ∈ P (i′) for some i′ = 1, ..., i, we conclude that g(j) ≥ min(f(i′), i′ = 1, ..., i) = f(i).

Therefore ĝ(t) ≥ f(i) = f̂(t). Thus we have proved that ĝ ≥ f̂ and consequently we

have proved Proposition 3.

Proof of Claim 1. Accordingly Lemma 2, the left-hand-side of the inequality is

equal to µ(a(1)⊕ ...⊕ a(i)). Similarly, the right-hand-side is equal to µ(
⊕

j∈Q(i) b(j)).

Due to the monotonicity of µ, it is sufficient to prove the inequality

a(1)⊕ ...⊕ a(i) ≤
⊕

j∈Q(i)

b(j) = b(Q(i)).

The set Q(i) consists of all outcomes j which are possible at the outcomes 1, ..., i of

the first measurement. Hence b(Q(i) is the ortho-complement to the event b(J−Q(i)).

But for any outcome j which is not possible at 1, ..., i we have b(j)⊥a(1) ⊕ ... ⊕ a(i).

Therefore b(J−Q(i))⊥a(1)⊕...⊕a(i) and, consequently, a(1)⊕...⊕a(i) ≤ b(J−Q(i))⊥ =

b(Q(i)). This proves the Claim and Proposition 3. �

Following Savage, we shall now go in the opposite direction. We shall show that

if a certainty equivalent CE satisfies the two above properties then it is defined by a

probabilistic evaluation on the orthoposet E . More precisely, we consider two properties

of CE. The first one refers to bets defined on a common basis.

(Add) CE is an additive function on every vector space F (α).

The second property compares bets with different bases and it is actually the state-

ment in Proposition 3:

(Dom) If g dominates f then CE(f) ≤ CE(g).

13



Theorem 1 Let a certainty equivalent CE possess the properties (Add) and (Dom).

Then it has the form CEµ for some (uniquely defined) monotone probability µ on the

orthoposet E.

Proof. First of all we note that CE is monotone functional on every vector space

F (α). Indeed, if f ≤ g then f is dominated by g and hence (due to (Dom)) CE(f) ≤
CE(g). Therefore CE is not only additive but a linear functional on F (α).

Now we construct explicitly the probability evaluation µ. To this aim we consider

an event a and the bet 1a on the basis of a dichotomous ODU (a, a⊥): 1a is equal to 1

on a and 0 on a⊥ (“unit bet on the event a”). Let µ(a) = CE(1a). Obviously µ(a) ≥ 0.

Suppose now that α = (a(i), i ∈ I) is an arbitrary ODU. Let 1i be the bet (on the

basis of α) such that it is equal to 1 on i and equal to 0 on the other outcomes of the

measurement. As it is easy to understand, this bet is equivalent (in the sense of the

domination) to the bet 1a(i). Therefore CE(1i) = µ(a(i)).

Consider now an arbitrary bet f : I → R on the basis of α. Since f =
∑

i f(i)1i we

conclude by the linearity that

CE(f) =
∑

i

µ(a(i))f(i) = CEµ(f).

In particular, if f ≡ 1 we obtain that 1 = CE(1) =
∑

i µ(a(i)). Therefore µ is a

probabilistic valuation and CE = CEµ.

It remains to prove the monotonicity of µ.

Let a ≤ b be two events. Consider two bets: 1a (on the basis of ODU (a, a⊥)) and 1b

(on the basis of (b, b⊥)). We note that 1b dominates 1a. Indeed, given the event a, only

the event b is possible; the event b⊥ is impossible because a⊥b⊥. But 1b(b) = 1 ≥ 1 =

1a(a). Thus 1a is dominated by 1b. Due to (Dom) µ(a) = CE(1a) ≤ CE(1b) = µ(b).

This completes the proof of Theorem 1. �

Thus, there is a natural bijection between the set of ’nice’ certainty equivalents

and the set ∆(E) of monotone probabilities. Any probability µ can be considered as a

possible ‘belief’ of the DM, or as his ‘prior’.

6 The updating problem

Up to now we have ignored the issue of the timing of consecutive measurements. Our

decision situation was of a one-shot character; our DM only ranks bets, but no “real”

resolution of uncertainty occurs. Here we would like to investigate a more dynamic

situation, when the DM chooses a bet, the corresponding measurement is actually per-

formed, the DM gets a payoff and (what can be more important) he obtains some new
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information about the realized (actualized) state of the world. The new information

induces him to revise his beliefs.

In the classical situation we apply Bayes’ rule for updating beliefs. In a non-classical

setup with incompatible measurements, the performance of measurements also induces

a revision of beliefs but the issue is more complicated as we next illustrate.

Let E be an event orthoposet, and let β ∈ ∆(E) be an initial belief of the DM.

Suppose that a measurement is performed and that an event E occurs. Our DM

should revise (update) the belief β, and replace it by some β′ = β(·|E). According to

which rule should β′ be calculated? There is no general answer to this question. It

depends on the DM’s representation of the system.

To illustrate this point, consider the problem of updating in the simple situation

of Example 4. There are two measurements LR and FB. Assume the initial belief

assigns probabilities to the four events R,L, B, F as follows β(R) = 1 − β(L) and

β(B) = 1 − β(F ). Suppose we perform the measurement LR, and obtain outcome

L. Of course, β′(L) = 1 and β′(R) = 0. But what about β′(F ) and β′(B)? The

simplest is to assume that they do not change at all, and similarly when considering

updating after a measurement FB. Such an assumption means that two operations

measure independent (unrelated) properties of the system (or, possibly, properties of

two independent systems). This is clearly a very specific and restrictive method of

updating.

Already from this example we see a natural requirement on the revision of beliefs.

Namely, β(E|E) = 1 and, as a consequence, β(F |E) = 0 if the event F is orthogonal

to E. But what about β(F |E) for general events F? We might try to use a variant of

Bayes’ rule posing, for an event F , β(F |E) = β(F ∧E)/β(E). This rule is sufficiently

reasonable if F ≤ E. Unfortunately, in the general case, it yields an evaluation which

is not a probability.

In addition there can exist plain obstacles to updating. Recall that in Example 7

we have an orthoposet with a unique belief µ, and µ(x) 6= 1 for every x ∈ V . This

belief cannot be revised because there exist no (updated) beliefs compatible with any

(complete) measurement!

This discussion shows that arbitrary orthoposets are too general to provide a frame-

work for addressing the issue of updating when considering sequences of measurements.

An appropriate model must contain not only an event orthoposet (and measurements

as ODUs in the orthoposet) but also a rule for revising (updating) beliefs.

At this point it is convenient to bring into play the notion of a state of a measurable

system. We wish to emphasize at once that it is a subtle and enigmatic notion. Is it

an objective reality (the ontic point of view) or a state of our knowledge (the epistemic
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point of view)?4 We think that both points of view have their merits. On the one

hand, a state is a state of our knowledge, it is a belief. On the other hand, it reflects a

real state of affairs, it is not only a pure product of our mind. In any case the notion

of state is not a primitive one (in contrast, for example, with measurements or events);

it is an element of a model which has to correctly describe a situation.

Below we present elements of a theory of belief updating based on the notion of

state. This theory (originally proposed by Mielnik [12]) explicitly takes into account

the impact of measurements on states.

7 Transition probability space

A transition probability space (TPS) is a pair (S, τ), where S is a set and τ is a mapping

S × S → [0, 1]. The elements of S are interpreted as “pure” states of our system. The

number τ(s, t) is interpreted as the probability for a transition from the state s to the

state t under the impact of a suitable measurement. It is assumed that the function τ

satisfy two axioms (later we shall add a third axiom):

T1) If τ(s, t) = 0 then τ(t, s) = 0;

T2) τ(s, t) = 1 if and only if s = t.

When τ(s, t) = 0 we say that s and t are orthogonal and write (s ⊥ t). By force of

axioms T1 and T2, the relation ⊥ is symmetric and irreflexive. So that the pair (S,⊥)

is an orthospace (see [3]). For subsets A and A′ of S we write A⊥A′ if a⊥a′ for every

a ∈ A and a′ ∈ A′. A⊥ denotes the set of states orthogonal to A.

A subset A ⊂ S is called orthogonal if a⊥b for different a, b ∈ A. A maximal (by

inclusion) orthogonal subset is called an orthobasis of S (or simply an orthobasis). Any

orthogonal set can be extended to an orthobasis.

We shall understand an orthobasis B as a complete (or finest) measurement. This

measurement acts as follows. Let s be an initial state. Under impact of the measure-

ment B, the state s transits (with the probability τ(s, b)) into a new (or updated) state

b ∈ B, and moreover we (or an observer) obtain the signal b. Thus, the set of outcomes

of the measurement B is identified with B. To make it possible to treat the numbers

τ(s, b) as a probabilities, we impose a third axiom:

T3) For any state s ∈ S and any orthobasis B the sum
∑

b∈B τ(s, b) is equal to 1.

4Compare this with Penrose’s dichotomy ([13], p. 309): “to believe in quantum mechanics or to take
it seriously”. In other words, is “the state vector a convenience, useful only for calculating probabilities
for the results of ‘measurements’ performed on a system” or is it “an accurate mathematical description
of a real quantum-level world”?
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For simplicity, we shall assume that any orthobasis has finitely many elements. For

example, this assumption is fulfilled if S is a finite set.

From the axiom T2 we see that if the system before the measurement B was in

a state b ∈ B then it remains in this state. That is our measurement satisfies the

first-kindness property. Besides complete measurements we have to consider derived

measurements. An outcome of such a measurement is an arbitrary orthogonal set. We

shall see soon that events can be realized as subsets of S.

Let A be an orthogonal set. We shall write τ(s, A) =
∑

a∈A τ(s, a). Obviously,

τ(s, A) ≤ 1 for any state s. We associate to the orthogonal set A its “envelope”

E(A) = {s ∈ S, τ(s, A) = 1}.

The E(A) consists of states s yielding an outcome from A when we perform any com-

plete measurement B, A ⊂ B. Obviously, A ⊂ E(A). This envelop allows to de-

scribe the “implication” relation ⇒ between outcomes that we introduced in Section

2. Namely, A ⇒ A′ if A ⊂ E(A′).

Lemma 3 Let A and A′ be two disjoint orthogonal sets such that A∪A′ is an orthoba-

sis. For a state s the following assertions are equivalent:

1) s ∈ E(A);

2) s⊥A′;

3) s⊥E(A′).

Proof. τ(s, A) + τ(s, A′) = 1. This gives the equivalence between 1) and 2). Let

now t be an element of E(A′). By the just named equivalence, we have t⊥A, so that

A∪ t is an orthogonal set. Then τ(s, A∪ t) = τ(s, A) + τ(s, t) = 1 + τ(s, A) ≤ 1, hence

τ(s, t) = 0 and s⊥t. Since t is an arbitrary element of E(A′), we obtain that s⊥E(A′).

This proves the implication 1) ⇒ 3). The implication 3) ⇒ 2) is obvious. �

Corollary 1 E(A) = E(A′)⊥ = A⊥⊥ for an orthogonal set A.

Let now A and A′ be two orthogonal sets in S. If A ⊂ E(A′) then E(A) ⊂ E(A′) by

Corollary 1. This implies the transitivity of the implication relation ⇒ so that axiom

M2 is satisfied. Moreover, the two outcomes A and A′ are equivalent if and only if

E(A) = E(A′). Thus we have proved the following

Proposition 4 The event orthoposet E is identified with the collection of subsets of

the form E(A), where A runs over orthogonal subsets in S.
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The event orthoposet E associated to a TPS (S, τ) has two nice property absent

in the case of general orthoposets. First of all, if e and e′ are orthogonal events then

the join e ∨ e′ = e ⊕ e′ exists. In other words, the orthogonal sums of events exist.

The second property is the orthomodularity of the orthoposet; it was first proved by

Pulmanova [16].

Up to now we have only weakly used transition probabilities and mainly appealed

to the orthogonality relation ⊥. We next turn to them more closely. Fix a state s and

consider τ(s, ·) as a function on S. For brevity, we denote the function as s : S → R+;

s(t) := τ(s, t). Let E = E(A) be an event associated to some orthogonal set A. Set

s(E) =
∑

a∈A s(a). We assert that this definition is correct and is depend only on

the event E, not on A. Indeed, let B ⊃ A be an orthobasis, and A′ = B − A. Then

s(E) = 1−
∑

a′∈A′ s(a′) = 1− s(E(A′)) = 1− s(E⊥), and the right-hand-side depends

on E. It is clear that the function s is an additive evaluation on the event orthoposet

E , that is a probability. Thus, every state s defines some probability (or belief) on E
(denoted by the same letter s).

Theorem 2 The mapping from S to ∆(E) is injective. (This permits to consider S

as a subset in ∆(S,⊥).) Moreover, any state s ∈ S is an extreme point of the convex

hull co(S) of the set S in ∆(E).

Proof. Suppose that the states s and t realize one and the same probability, that

is s(·) = t(·) as functions on S. Let us choose s as the missing argument. We obtain

the equality 1 = τ(s, s) = τ(t, s), which by axiom T2 implies that s = t. This proves

the first statement.

Suppose now that a state s ∈ S can be expressed as a convex combination
∑

αisi

of states si ∈ S with αi strictly positive and summing to 1. Let us consider the value

of this function at the element s. We have the equality

τ (s, s) =
∑

αiτ(si, s).

The left hand side is equal to 1 by axiom T2. Therefore
∑

αi(1 − τ(si, s) =
∑

αi −∑
αiτ(si, s) = 1− 1 = 0. Since τ(si, s) ≤ 1 and αi > 0, we conclude that all τ (si, s) =

1. But this means that all si = s which gives the second statement. �

The first statement of Theorem 2 says that different states can be distinguished by

some appropriate measurement. Moreover, it prompts to consider probabilities on E
as a kind of ‘generalized states’. The second statement justifies using the term ‘pure

state’ for the elements of S. It is natural to consider convex combinations of pure

states as “mixed” states. Theorem 1 tells that ’nice’ certainty equivalents are given

by probabilities. The results of this section suggest that a ‘reasonable’ belief is not an
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arbitrary probability, but should be a mixed state. Indeed, an initial prior could be

an arbitrary probability, but after any (non-trivial) measurement the updated belief

should be a mixed state.

Updating occurs in both the classical and non-classical case. The difference is that

in the classical case only mixed state are revised and once you have reached a pure state

(that is a state of complete information), there is no more updating. The distinguishing

feature of the non-classical case is that even pure states change under the impact of a

measurement and thus induce a revision of beliefs. When we perform a measurement

on a pure state our information does not increase (it is already maximal), it simply

changes.

We illustrate this point in a few examples below.

8 Examples revisited

Example 1 revisited. Let S be a set, and let τ(s, t) = 0 for every distinct elements

s, t of S. This define a TPS. The corresponding event orthoposet is the Boolean lattice

2S, as in Example 1. This is the classical framework where measurements do not impact

on pure states.

Example 2 revisited. Let H be a Hilbert space, and S be the set of one-

dimensional vector subspaces in H. For s, t ∈ S let τ(s, t) be equal to cos2(ϕ), where

ϕ is the angle between the line s and t. The axioms T1 and N2 are obvious; T3 follows

from Parseval equality. Thus we get a TPS. The corresponding orthoposet of event

is the lattice of vector spaces in H, as before. The updating formula is given by the

well-known Luder-von Neumann’s postulate (the projection principle).

Example 3 revisited. Example 3 cannot be represented by any TPS, because the

orthoposet of events is not orthomodular.

Example 4 revisited. Example 4 can be realized as a TPS, moreover, in many

different ways. Let S = {L, R, F, B}, and let τ be given by the following tableau (where

τ(s, t) is placed in the intersection of s-row and t-column)

L R F B

L 1 0 y 1− y

R 0 1 y′ 1− y′

F x 1− x 1 0

B x′ 1− x′ 0 1

These states are realized (in the square ∆(E)) as it is shown in the figure below
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For example, the point R has the coordinates (1, 1 − y′) whereas the point F has the

coordinate (1− x, 0). The set Ŝ of mixed states is the convex hull of the four points.

An illustration.

Let us illustrate with the help of Example 4 a difference between the classical

and the non-classical models. To make the presentation a little more concrete, we

formulate it in a game context. Our decision-maker faces uncertainty about the type

(or preferences) of the agent whom he is interacting with. “The world” here is another

decision-maker.5 In that context the term type is equivalent to the term “state” when

talking about arbitrary systems. A decision situation is measurement. The outcome

of such a measurement, i.e., a choice, provides information about the type of the agent

who made the decision.

Consider the following simple game. Player 1 (our DM) moves first, then player 2

moves and the game is over. The tree of the gave is depicted in the figure below
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We only write the payoffs of player 1 and we consider this game from player 1’s point

of view. He has to choose between move I and II. Move I yields him a payoff of 0 or

100, and move II a payoff of 10 or 1 depending on the choice (type) of player 2 which

is unknown to player 1. To make his decision our DM has to have a model of his

opponent (or a model of the uncertainty).

A classical model consists of four (pure) states (types) of the player 2: LF , LB,

5The idea that agent (represented by its preferences and beliefs) may be viewed as non-classical
system was first proposed in [9]. The motivation for this approach is that a variety of empirical phe-
nomena (see, for instance [2]), the so-called behavioral anomalies, can be explained when representing
uncertainty about the type (preferences) of a decision-maker with a non-boolean ortholattice.
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RF , and RB and a prior belief on this set. Suppose that player 1 knows nothing about

the type of his opponent so he e.g., uses the uniform distribution (1/4,1/4,1/4,1/4) as

his priors. This prompts our DM to choose the move I.

As an alternative we consider a non-classical TPS-model of the player 2. He has

four (pure) states R, L, F , and B. Again he knows nothing about the state of the

player 2 and his belief β is presented by the central point of the square, that is β(L) =

β(R) = β(F ) = β(B) = 1/2. Here too player 1 chooses the move I.

Thus, in the one-shot game we do not see any difference between the two models

with respect to their recommendations to play. But imagine that the game is played

three times in succession (with the same opponent). Suppose that the DM makes the

move I, and his opponent makes the move R. In the classical model we conclude that

the state of player 2 is the mixture 1/2(RF ) + 1/2(RB). So at the second stage of the

game the DM chooses the move II. In the non-classical model we conclude that the

state of the player 2 is the pure state R. So that in the second stage the DM should

also choose the move II. Again we see no difference between the two models.

Imagine, however, that player 2’s move at the second stage is B. The classical

model yields that the actual state of the player 2 is RB, unfortunately. At the third

stage he should choose the move II and expect 1 util. In contrast, the non-classical

model tells us that the current state of the player 2 is B. And if player 1 chooses the

move I, his expected payoff (or its CE) is 50 utils which is more than the expected

payoff of the move II. So we see that here the recommendations of the two models

differ and so do the expected payoffs.

Which one of the two models is the correct one (if any of them) is ultimately an

empirical question.

9 Conclusion

In this paper we show that Savage’s theory of decision-making under uncertainty can be

formulated in terms of a very general algebraic structure called an orthoposets instead

of the more restrictive Boolean algebra. Our results shed new light on the generality

of the Savage’s approach. They also extends it so as to allow considering decision

situations where the payoff relevant uncertainty pertains to non-classical objects. In

this section we want to discuss some limitations of our approach.

Savage arguments are formulated in a static context. In a static context a classi-

cal state space can represent uncertainty even when measurements are incompatible

provided they have disjoint outcome sets (as in Example 4). It is therefore legitimate

to question the practical value of the proposed non-classical generalization. Our re-
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sponse is that the non-classical representation of uncertainty becomes truly valuable

when we consider a dynamic situations, i.e. a situation when a series of decisions under

uncertainty is to be made.

In a classical world, properties pre-exist the measurements, they are only revealed by

measurements. As the decision-maker proceeds in the series of decisions, properties of

the world (type characteristics of the agent) become known to him. The decision-maker,

with a classical representation in mind, makes his next decisions on the basis of updated

beliefs according to the Bayes’ rule. But if the system is non-classical performing

measurement alters state of the system. Bayes’ rule which presupposes that pure

states remain unchanged is not longer appropriate. In section 8 we demonstrated that

already in a simple case the classical and the non-classical representation of uncertainty

yield distinct recommendations for decision-making.

Appendix. Qualitative Measures

In this paper we model uncertainty by an orthoposet of events. Therefore we may talk

of smaller or larger probability for the realization of events. In this appendix, we focus

on the qualitative relation corresponding to the “more (or less) likely than” relation

between events.

Definition. A qualitative measure on an orthoposet E is a binary relation (of

“likelihood”) � on E satisfying the following two axioms:

QM1. � is complete and transitive.

QM2. Let a � b and a′ � b′. Then a⊕a′ � b⊕ b′ (recall that it means that a ⊥ a′

and b ⊥ b′). The last inequality is strict if at least one of the first inequalities is strict.6

We shall call a (quantitative) measure on orthoposet E an arbitrary ortho-additive

mapping µ : E → R; the positivity does not assumed. Each measure µ defines (gener-

ates) the qualitative measure �=�µ: a � b if and only if µ(a) ≤ µ(b). In this appendix

we are interested by the question as to when a qualitative measure can be generated

by a quantitative measure (or when there exists a probabilistic sophistication). For

simplicity we shall assume that the orthoposet E is finite. Even in the classical context

the answer is generally negative ([8]), however. Therefore, in order to obtain a positive

answer, we have to impose some additional conditions strengthening QM2. Here we

consider a condition generalizing the classical “cancellation condition” (see [11]). We

prefer to call it “hyper-acyclicity”.

6The special case of QM2 when a′ = b′ is referred to in [11] as de Finetti axiom.
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Definition. A binary relation � on E is said to be hyper-acyclic if the following

condition holds:

Assume that we have a finite collection of pairs (ai, bi) such that ai � bi for all i. If∑
µ(ai) =

∑
µ(bi) for every measure µ on E then bi � ai for all i .

Clearly, if a qualitative relation � is generated by a measure µ then it is hyper-

acyclic. The main result of this section (and the analog of Theorem 1 in [11]) asserts

that for finite ortholattice the reverse is true.

Theorem 3 Let � be a hyper-acyclic weak order on a finite orthoposet E. Then � is

generated by some measure on E.

Clearly, if the relation � is monotone (that is a � b for a ≤ b), then any measure

µ generating � is also monotone. If, in addition, 0 ≺ 1 then µ(1) > 0; dividing the

measure µ by µ(1) we can assume that µ is a normed measure. Thus, the measure µ

is a monotone probability.

the outtine of the proof is as follows. We embed the orthoposet E into some vector

space V and identify linear functionals on V with measures on E . With the qualitative

measure � we construct a subset P ⊂ V and show that 0 does not belong to the convex

hull of P . The separability theorem then guarantees the existence of a linear functional

on V (hence a measure on E) which is strictly positive on P . It is easy to show that

this measure generates the relation �.

The proof proceeds in several steps.

1. Construction of the vector space V . Denote R⊗E the vector space generated by

the set E . It consists of (finite) formal expressions of the form
∑

i riai, where ri ∈ R
and ai ∈ E . Let K be the vector subspace in R⊗E generated by expressions a⊕b−a−b

(recall that a⊕b means that a⊕b = a∨b and a ⊥ b.) Finally, V = V (E) is the quotient

space R⊗ E by the subspace K, V = (R⊗ E)/K.

The orthoposet E naturally maps into V ; the image 1·a of an event a ∈ E is denoted

a as well. Any linear functional l on V restricted to E gives a valuation on E . Since

l(a⊕ b−a− b) = l(a⊕ b)− l(a)− l(b) = 0, the valuation l is additive, that is a measure

on the orthoposet E . Conversely, let l be a measure on E . We extend it by linearity

to R⊗E assuming l(
∑

riai) =
∑

ril(ai). By force of additivity, l yields 0 for elements

of the form a ⊕ b − a − b, that is l vanishes on the subspace K. Therefore l factors

through V and is obtained from a linear functional defined on V . We just proved

Proposition 5 The vector space of measures on E is identified with the vector space

V ∗ of linear functional on V .
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Remark. The canonical mapping E → V (E) can be considered as the universal

measure on the orthoposet L. It is injective if and only if the orthoposet E is an OMP.

2. Construction of the set P . Let � be a binary relation on E ; as usual, ≺ denote

the strict part of �. By the definition, P = P (�) consists of (finite) expressions of the

form
∑

i(ai − bi), where bi � ai for all i and bi ≺ ai for some i. (P is empty if the

relation ≺ is empty, that is if all elements in E are equivalent relatively to �.) We note

also that P is stable with respect to the addition.

3. Suppose now that a relation � is hyper-acyclic. Note that the hyper-acyclicity

of � means precisely that 0 does not belongs to P .

Proposition 6 If the relation � is hyper-acyclic then 0 does not belong to the convex

hull co(P ) of P in V .

Proof. Assume that 0 is a convex combination of elements of P , 0 =
∑

i ripi, where

pi ∈ P , ri ≥ 0, and
∑

i ri = 1. By Caratheodory’s theorem we can assume that the

pi are affinely independent (and therefore the coefficients ri are uniquely defined). We

assert that in this case the coefficients are rational numbers.

It would be simplest to say that the set P is defined over the field of rational

numbers. But it is not so easy to provide a precise meaning to it. For that purpose

we choose and fix some subset L ⊂ E , such that its image in V is a basis of this vector

space. We also choose a subset M of expressions of the form a ⊕ b − a − b, which

constitute a basis of the subspace K. The union of L and M is a basis of the vector

space R⊗ E . On the other hand side, E is a basis of R⊗ E as well. Since elements of

L ∪M are rational combinations of elements of the E , elements of E , in turn, can be

rationally expressed in terms of L∪M . In particular, the images of elements of E in V

are rational combinations of elements from L. All the more, the elements pi ∈ P can

be rationally expressed in terms of L. Therefore (see, for example, Proposition 6 in [1],

Chap. 2, § 6) that 0 can be expressed rationally through pi. Since the coefficients ri

are defined uniquely, they are rational numbers.

Now the proof can be easily completed. We have an equality 0 =
∑

i ripi, where

pi ∈ P and ri are rational numbers (not all equal to zero). Multiplying with a suitable

integer we may consider ri themselves as integers. Since P is stable with respect

to addition, we obtain that 0 ∈ P , in the contradiction with hyper-acyclicity of the

relation �.

4. Together with Separation theorem of convex sets (see [17]) the results above

imply the existence of a (non-trivial) linear functional µ on V , which is non-negative
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on P . But we need strict positivity on P . To obtain the strict positivity we show that

(in the case of a finite orthoposet E) the convex hull of P is a polyhedron.

Let us introduce some notations. A denotes the set of expression a−b, where a � b.

B denotes the set of rays of the form R+(a− b), where a � b. Finally, Q is the convex

hull of A ∪B in V . By definition, Q consists of elements of the form

q = α1(a1 − b1) + ... + αn(an − bn) + β1(c1 − d1) + ... + βm(cm − dm), (∗)

where ai, bi, cj, dj ∈ E (more precisely, belong to their image in V ), ai � bi for any i,

cj � dj for any j, αi, βi are nonnegative, and
∑

i αi = 1.

Proposition 7 The convex hull of P coincides with Q.

Proof. It is clear from the definitions that any element of P belongs to Q. By the

convexity of Q, the convex hull of P is also contained in Q.

It remains to show the converse, that any element q of Q belongs to the convex

hull of P . For that (appealing to the convexity of co(P )) we can assume that q has the

form in (∗) with n and m equal to 1, that is

q = (a− b) + β(c− d),

where a � b, c � d and β ≥ 0. If β is an integer, it is clear that q ∈ P . In general

case β is a convex combination of two nonnegative integers β1 and β2; then q is the

corresponding convex combination of two points (a−b)+β1(c−d) and (a−b)+β2(c−d)

both belonging to P .

Corollary 2 Assume that an orthoposet E is finite. Then co(P ) is a polyhedron.

In fact, in this case the sets A and B are finite. Therefore (see [17], theorem 19.1)

Q is a polyhedra.

Thus, if 0 does not belong to the convex hull of P (see Proposition 2) then there

exists a linear functional µ on V which is strictly positive on P . As we shall see, this

immediately provides us with a proof of Theorem 1.

5. End of the proof. The assertion in the theorem is trivially true if all elements of

E are equivalent to each other. Therefore we can assume that there exists at least one

pair (a, b) such that a � b. Let µ be a linear functional on V (we may consider µ as

a measure on the ortholattice E) strictly positive on P . We assert that this measure

generates the relation �.

Let us suppose c � d. Since for any integer positive number n the element (a −
b) + n(c − d) belongs to P , we have µ(a) − µ(b) > n (µ(d) − µ(c)) for any n. This
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implies µ(d) ≤ µ(c). Conversely, let us suppose µ(c) ≥ µ(d) for some c, d ∈ E . We

have to show that c � d. If this is not the case then, by completeness of the relation

�, we have d � c. But then d− c belongs to P and µ(d− c) = µ(d)− µ(c) > 0, which

contradicts to our first assumption. This completes the proof of Theorem 3.
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