Supporting Information

Expedient Stereoselective Synthesis of Coronafacic Acid Through Intramolecular Diels-Alder Cyclization

Benoît Moreau, Maryon Ginisty, Dino Alberico and André B. Charette*
Département de Chimie, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec, Canada H3C 3J7

Table of contents

General information S3
Experimental procedures
Preparation of aldehyde 13 S4
Preparation of aldehyde 14 S5
Diastereoslective aldol reaction S5
Diastereoselective elimination of aldol products 18a-18b S11
Synthesis of coronafacic acid via triene 23 S13
Synthesis of coronafacic acid via triene 28 S17
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of selected compounds S20

General: All non-aqueous reactions were run under an inert atmosphere (argon) with rigid exclusion of moisture from reagents and glassware using standard techniques for manipulating airsensitive compounds. ${ }^{1}$ All glassware was stored in the oven and/or was flame-dried prior to use under an inert atmosphere of gas. Anhydrous solvents were obtained either by filtration through drying columns (THF, ether, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, benzene, DMF, $\mathrm{CH}_{3} \mathrm{CN}$, toluene, hexane, methanol) or by distillation over sodium (chlorobenzene, o-xylene). Analytical thin-layer chromatography (TLC) was performed on precoated, glass-backed silica gel. Visualization of the developed chromatogram was performed by UV absorbance, aqueous cerium molybdate, ethanolic phosphomolybdic acid, iodine, or aqueous potassium permanganate. Flash column chromatography was performed using 230-400 mesh silica of the indicated solvent system according to standard technique. ${ }^{2}$ Melting points were obtained and are uncorrected. Infrared spectra are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Reaction for cycloaddition adduct 31 was conducted in a Biotage Initiator Sixty EXP Microwave system. Nuclear magnetic resonance spectra (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT 135, COSY, HMQC, NOESY) were recorded either on a $300 \mathrm{MHz}, 400 \mathrm{MHz}$, or 600 MHz spectrometer. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are recorded in parts per million from tetramethylsilane with the solvent resonance as the internal standard (chloroform, $\delta=7.27 \mathrm{ppm}$). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qn}=$ quintet, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad), coupling constant in Hz , integration, and assignment. Chemical shifts for ${ }^{13} \mathrm{C}$ NMR spectra are recorded in parts per million from tetramethylsilane using the central peak of deuterochloroform ($\delta 77.00 \mathrm{ppm}$) as the internal standard. All spectra were obtained with complete proton decoupling. When ambiguous, proton and carbon assignments were established using COSY, HMQC and DEPT experiments. Optical rotations were determined with a polarimeter at 589 or 546 nm . Data are reported as follows: $[\alpha]_{\text {lemp }}$, concentration (c in g/100 mL), and solvent.

Reagents: Unless otherwise stated, commercial reagents were used without purification. Trifluoromethanesulfonic (triflic) acid was distilled prior to use. Triethylamine and diisopropylethylamine were distilled over calcium hydride. Ethyl (3E)-hex-3-enoate is commercially available.

1. Preparation of aldehyde 13

[^0]

4-(Benzyloxy)butan-1-ol. Butane-1,4-diol ($9 \mathrm{~g}, 100 \mathrm{mmol}$) was dissolved in THF (150 mL) then KH ($4 \mathrm{~g}, 100 \mathrm{mmol}$) was added by portions. $\mathrm{BnBr}(18.8 \mathrm{~g}, 110 \mathrm{mmol})$ and TBAI ($3.7 \mathrm{~g}, 10 \mathrm{mmol}$) were then added and solution was stirred at room temperature for 5 h . Work up: $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sln) was added and the organic layer was extracted with EtOAc. The organic layer was washed with brine, dried on MgSO_{4}, filtered then evaporated under reduced pressure. The residue was directly distilled to afford product as a colorless oil ($15.8 \mathrm{~g}, 88 \%$). $\mathrm{R}_{f}=0.30$ ($30 \% \mathrm{EtOAc} / \mathrm{hexanes}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 7.37-7.32 (m, 4H, Ar-H), 7.31-7.27 (m, 1H, Ar-H), 4.53 (s, 2H, $\mathrm{PhCH}_{2} \mathrm{OCH}_{2}$), 3.66-3.63 ($\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{OCH}_{2}$), 3.54-3.51 (t, J=5.9 Hz, 2H, CH2OH), 1.76-1.64 (m, 4H, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OR}$). Product is identical to that previously reported in the literature. ${ }^{3}$

4-(Benzyloxy)butanal (13). Oxalyl chloride ($660 \mathrm{mg}, 5.2 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. DMSO ($750 \mathrm{mg}, 9.6 \mathrm{mmol}$) was then added. 4-(Benzyloxy)butan-1-ol ($720 \mathrm{mg}, 4 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and added to the solution 15 min later. The solution was stirred for 25 min , then $\mathrm{Et}_{3} \mathrm{~N}(2.02 \mathrm{~g}, 20 \mathrm{mmol})$ was added and the solution was allowed to stir at room temperature. Work up: $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sln) was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then washed with NaHCO_{3} (sat. aq. sln) and brine. The organic layer was dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (20% EtOAc/hexanes) to afford product 13 as a colorless oil ($620 \mathrm{mg}, 87 \%$). $\mathrm{R}_{f}=0.35$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79-$ 9.78 (t, J= $\left.1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right), 7.37-7.28$ (m, 5H, Ar-H), 4.49 (s, 2H, $\mathrm{PhCH}_{2} \mathrm{OCH}_{2}$), 3.53-3.50 (t, $J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{OCH}_{2}$), 2.58-2.54 (dt, $J=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O})$), 1.99-1.92 (m, 2H, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right)$. Product is identical to that previously reported in the literature. ${ }^{4}$

2. Preparation of aldehyde 14

1-(3-Oxopropyl)prop-2-enyl acetate (14). 1-(3-Hydroxypropyl)prop-2-enyl acetate ${ }^{5}$ ($1.0 \mathrm{~g}, 6.3$ $\mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ then pyridinium dichromate (PDC) ($3.57 \mathrm{~g}, 9.5 \mathrm{mmol}$) was added and the solution was stirred at room temperature for 3 h . Work up: a $20 \% \mathrm{EtOAc} /$ hexane solution (100 mL) was added and the solution was filtered on silica gel. The solvent was evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexanes) to afford product 14 as a colorless oil ($810 \mathrm{mg}, 83 \%$). $\mathrm{R}_{f}=0.35(20 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77-9.76\left(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right), 5.8-5.71$ (ddd, $J=17.1,10.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCHOAc}$), $5.30-5.19\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCHOAc}\right.$), 2.52-2.48 (m, 2H, CH2C(O)H), 2.06 (s, 3H, $\mathrm{O}_{2} \mathrm{CCH}_{3}$), 2.01-1.93 (m, 2H, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{H}\right)$; NMR ${ }^{13} \mathrm{C}$: (100 MHz , CDCl_{3}) $\delta 200.7,169.7,135.2,116.8,73.1,39.0,25.9,20.7$; IR (neat) 3067, 2922, 2811, 2722, 1739 (C=O), 1378, 1240, 899, 736, $630 \mathrm{~cm}^{-1}$; HRMS (ESI, Pos) Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 335.1465. Found 335.1474.

3. Diastereoselective aldol reaction

Procedure for preparation of dibutylboron triflate. ${ }^{6}$ Tributylborane ($4.0 \mathrm{~g}, 22 \mathrm{mmol}$) was charged in a Schlenk flask purged under argon. Triflic acid ($3.3 \mathrm{~g}, 22 \mathrm{mmol}$) was added and the solution was warmed at $50^{\circ} \mathrm{C}$ and stirred for 1 h . After this period of time, the solution was kept under argon and used readily.

General procedure for aldol reactions of ethyl (3E)-hex-3-enoate with aldehydes. Ethyl (3E)-hex-3-enoate ($5.2 \mathrm{mmol}, 1.3$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ then freshly distilled

[^1]diisopropylethylamine ($6 \mathrm{mmol}, 1.5$ equiv) was added and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Freshly prepared dibutylboron triflate ($5.2 \mathrm{mmol}, 1.3$ equiv) was slowly added to the solution, which was then stirred for 2 h at $-78^{\circ} \mathrm{C}$. The aldehyde ($4 \mathrm{mmol}, 1$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL}$) and added to the solution, which was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then at $0^{\circ} \mathrm{C}$ for an additional 1 h . Work up: a phosphate buffer solution at $\mathrm{pH}=7(8 \mathrm{~mL})$ was added along with methanol $(12 \mathrm{~mL})$ and hydrogen peroxide (30% aq., 4 mL) and the solution was stirred at room temperature for 12 h . After this period of time, water was added and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford separately the diastereomers of the aldol product.

Ethyl (1,2-syn, 3E)-2-[1-hydroxy-2-methylpropyl]hex-3-enoate (15a); ethyl (1,2-anti, 3E)-2-[1-hydroxy-2-methylpropyl]hex-3-enoate (15b). Following the general procedure for aldol reactions using isobutyraldehyde (4.7 mmol) and purification by flash chromatography on silica gel (30% EtOAc/hexanes) afforded separately the diastereomers of product 15 as colorless oils (872 mg , 87\%, 98:2 syn:ant). 15a: $\mathrm{R}_{f}=0.61$ (25% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.75-5.68 (dt, $J=15.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2}$), $5.58-5.51$ ($\mathrm{dd}, J=15.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCHCO}_{2} \mathrm{Et}$), 4.19-4.13 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.58-3.54 (ddd, $J=6.9,5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}$), 3.163.12 (dd, $\left.J=9.2,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Et}\right), 2.66-2.65(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.12-2.05$ (dq, $J=7.1$, $\left.6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 1.70-1.62\left(\mathrm{dh}, \mathrm{J}=6.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.29-1.25(\mathrm{t}, \mathrm{J}=7.1$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.02-0.97\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 0.91-0.89(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 174.1, 138.3, 122.2, $76.2,60.7,52.4,30.6,25.7,19.1$, 17.6, 14.1, 13.5; IR (neat) 3506 (O-H), 2962, 2874, 1713 (C=O), 1463, 1370, $1178 \mathrm{~cm}^{-1} .15 \mathbf{b}: \mathrm{R}_{\mathrm{f}}=$ 0.52 (25\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.71-5.64$ (dt, $J=15.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHCH}_{2}$), $5.44-5.37$ (ddt, $J=15.4,9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCHCO}_{2} \mathrm{Et}$), 4.19-4.13 (dq, $J=7.1,2.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.61-3.56 (m, 1H, CHOH), 3.17-3.12 (dd, J=8.4, 8.3 Hz, 1H, CHCO ${ }_{2} \mathrm{Et}$), 2.46-2.42 (d, J = 6.6 Hz, 1H, OH), 2.07-1.99 (m, 2H, CH=CHCH2CH3), 1.77-1.68 (m, 1H,
$\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 1.28-1.24 ($\mathrm{t}, \quad \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.98-0.95 (m, 6H, CH(CH3$)_{2}$, $\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$), 0.89-0.86 (d, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\mathrm{NMR}{ }^{13} \mathrm{C}:\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.1$, 136.7, 123.7, 77.1, 60.7, 53.2, 30.4, 25.5, 19.9, 15.4, 14.1, 13.3; IR (neat) 3480 (O-H), 2962, 2934, 2874, 1716 ($\mathrm{C}=\mathrm{O}$), 1464, $1177 \mathrm{~cm}^{-1}$; HRMS for a mixture of 15a and 15b (APCI, Pos) Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 215.1641$. Found 215.1634.

Ethyl (2,3-syn)-2-[(1E)-but-1-enyl]-2,4,5-trideoxy-6,7-O-(1-methylethylidene)-heptonate (16a); ethyl (2,3-anti)-2-[(1E)-but-1-enyl]-2,4,5-trideoxy-6,7-O-(1-methylethylidene)-heptonate (16b). Following the general procedure for aldol reactions using aldehyde $\mathbf{1 2}^{7}$ (1.4 mmol) and purification by flash chromatography on silica gel (30% EtOAc/hexanes) afforded separately the diastereomers of product 16 as colorless oils ($345 \mathrm{mg}, 82 \%, 22: 78$ syn:ant). 16a: $R_{f}=0.24(25 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.68-5.60(\mathrm{dt}, J=15.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.52-5.44$ (ddt, $J=15.4,9.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-3.96(\mathrm{~m}, 4 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.44(\mathrm{dd}, J=7.4,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03-2.99(\mathrm{~m}, 0.5 \mathrm{H}), 2.96-2.92(\mathrm{dd}, J=9.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.88(\mathrm{~m}, 0.5 \mathrm{H}), 2.08-1.99(\mathrm{~h}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.20(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}$), 0.97-0.93 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,138.6,138.5,122.1$, $121.9,108.8,76,71.3,69.4,69.3,60.9,60.8,54.9,54.8,30.4,30.3,29.9,29.8,26.9,26.8,25.7$, 25.6, 14.1, 13.5, 13.4; IR (neat) 3462 (O-H), 2983, 2935, 2873, 1731 (C=O), 1455, 1369, 1215, 1157, $1056 \mathrm{~cm}^{-1}$. 16b: $\mathrm{R}_{f}=0.16$ (25\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.7-5.6$ (dt, J $=15.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-5.31(\mathrm{dd}, J=15.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.98(\mathrm{~m}, 4 \mathrm{H}), 3.84-3.75(\mathrm{dd}, J=7.3$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.08(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.03-2.95(\mathrm{ddd}, J=8.6,8.6,3 \mathrm{~Hz}$, 1 H), 2.89-2.86 (d, $J=6.4 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.06-1.96 (m, 2H), 1.76-1.58 (m, 4H), 1.37 (s, 3H), 1.31 (s, 3 H), 1.26-1.21 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.97-0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.5,137.2,137.1,123.2,123.1,108.8,108.7,75.9,75.8,72.2,72.1,69.3,69.2,60.5,55.9,55.7$, 30.7, 30.5, 29.6, 29.3, 26.7, 25.5, 25.4, 14.0, 13.2; IR (neat) 3453 (O-H), 2982, 2934, 2873, 1730

[^2](C=O), 1456, 1369, 1248, 1217, 1156, $1054 \mathrm{~cm}^{-1}$; HRMS for a mixture of 16a and 16b (ESI, Pos) Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 323.1828. Found 323.1838.

Ethyl (1,2-syn, 3E)-2-[4-(benzyloxy)-1-hydroxybutyl]hex-3-enoate (17a); ethyl (1,2-anti, 3E)-2-[4-(benzyloxy)-1-hydroxybutyl]hex-3-enoate (17b). Following the general procedure for aldol reactions using aldehyde 13 (1.68 mmol) and purification by flash chromatography on silica gel (30\% EtOAc/hexanes) afforded separately the diastereomers of product 17 as colorless oils (358 $\mathrm{mg}, 66 \%, 18: 82$ syn:anti). 17a: $\mathrm{R}_{f}=0.41$ (25% EtOAc/hexanes); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.34-$ $7.28(\mathrm{~m}, 5 \mathrm{H}), 5.72-5.65\left(\mathrm{dt}, J=15.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2}\right.$), $5.56-5.50(\mathrm{dd}, J=15.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHCH}=\mathrm{CHCH}_{2}$), 4.51 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), 4.19-4.14 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.90-3.86 (m, $1 \mathrm{H}, \mathrm{CHOH}$), 3.53-3.46 (m, 2H, $\mathrm{CH}_{2} \mathrm{OBn}$), 3.0-2.92 (m, 2H, CHCO $2 \mathrm{Et}, \mathrm{OH}$), 2.11-2.05 (dq, J=7.3, $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$), 1.85-1.64 (m, 2H, BnO-CH2CH2CH2CH-OH$), ~ 1.58-1.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{BnO}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}-\mathrm{OH}$), 1.28-1.24 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.02-0.98 (t, J = 7.3 Hz, 3H, $\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 173.9,138.3,128.3$ (2C), 127.6, 127.5 (2C), 122.2, 72.8, 71.3, 70.1, 60.8, 54.9, 31.1, 26, 25.7, 14.1, 13.5; IR (neat) 3445 (O-H), 2922, 2852, 1727 (C=O), 1454, 1369, 1247, 1175, 1097, $1028 \mathrm{~cm}^{-1} .17 \mathrm{~b}: \mathrm{R}_{f}=0.33$ (25\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.71-5.64\left(\mathrm{dt}, J=15.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2}\right.$), 5.44-5.37 (ddt, $J=15.4,9.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCHCO}_{2} \mathrm{Et}$), 4.51 (s, 2H, PhCH2O), 4.20-4.14 (dq, J $=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.85-3.80 (ddd, $J=8.3,8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}$), 3.52-3.49 (dd, J $=5.7,6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OBn}$), 3.04-3.00 (dd $J=9.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Et}$), 2.09-2.01 (ddq, $J=7.4$, $6.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$), 1.84-1.68 (m, 3H, Bn- $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}-\mathrm{OH}$), 1.44-1.37 (m, 1H, $\mathrm{Bn}-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}-\mathrm{OH}$), 1.28-1.25 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.00-0.96 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$) ; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 173.7,138.2,137.2,128.3,127.6,123.5,72.9$, 72.4, 70.2, 60.7, 56.1, 31.6, 25.9, 25.6, 14.1, 13.3; IR (neat) 3445 (O-H), 2960, 2925, 2853, 1717 (C=O), 1454, 1369, 1307, 1263, 1174, 1096, 1028, $971 \mathrm{~cm}^{-1}$; HRMS for a mixture of 17a and 17b (ESI, Pos) Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 343.1879. Found 343.1884.

Ethyl (2,3-syn)-6-(acetyloxy)-2-[(1E)-but-1-enyl]-3-hydroxyoct-7-enoate (18a); ethyl (2,3-ant)-6-(acetyloxy)-2-[(1E)-but-1-enyl]-3-hydroxyoct-7-enoate (18b). Following the general procedure for aldol reactions using aldehyde $\mathbf{1 4}(4 \mathrm{mmol})$ and purification by flash chromatography on silica gel (20% EtOAc/hexanes) afforded separately the diastereomers of product 18 as colorless oils ($1.01 \mathrm{~g}, 85 \%, 13: 87$ syn:ant) ; HRMS (ESI, Pos) Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 321.1673$. Found 321.1660. 18a: $\mathrm{R}_{f}=0.23$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81-5.67(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{CHCHOAc}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}$), $5.54-5.47$ (ddd, $J=15.4,9.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}$), $5.30-$ 5.15 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCHOAc}$), 4.19-4.13 (dq, $J=7.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.88-3.82(\mathrm{~m}, 1 \mathrm{H}$, CHOH), 2.98-2.95 (dd, $\left.J=9.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Et}\right), 2.78-2.67$ (b, 1H, OH), 2.11-2.01 (m, 5H, $\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}, \quad \mathrm{O}_{2} \mathrm{CCH}_{3}$), 1.89-1.79 (m, 1H, AcOCHCH $\mathrm{CH}_{2} \mathrm{CHOH}$), 1.71-1.61 (m, 1H, AcOCHCH ${ }_{2} \mathrm{CH}_{2} \mathrm{CHOH}$), 1.55-1.35 (m, 2H. $\mathrm{AcOCHCH} \mathrm{CH}_{2} \mathrm{CHOH}$), 1.29-1.24 (t, J = 7.1 Hz, 3H, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.02-0.98 ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8$, 170.3, 138.9, 136.3, 136.2, 121.9, 116.9, 116.8, 74.7, 74.3, 71.1, 70.9, 60.9, 54.8, 54.7, 30.3, 30.1, 29.5, 29.3, 25.7, 21.2, 14.1, 13.5; IR (neat) 3456, 2961, 2934, 1731 (C=O), 1371, 1236, $1021 \mathrm{~cm}^{-1}$; 18b: $\mathrm{R}_{f}=0.18$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78-5.65(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{CHCHOAc}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}$), $5.42-5.33$ (ddd, $J=15.3,9.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}$), $5.25-$ $5.15\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCHOAc}\right), 4.21-4.13\left(\mathrm{dq}, J=7.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.80-3.77(\mathrm{~m}, 1 \mathrm{H}$, CHOH), 3.03-2.98 (t, J = 7.7 Hz, 1H, CHCO2Et), 2.7-2.5 (b, 1H, OH), 2.07-2.00 (m, 5 H , $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}, \mathrm{O}_{2} \mathrm{CCH}_{3}$), 1.86-1.82 (m, 1H, AcOCHCH $\mathrm{CH}_{2} \mathrm{CHOH}$), 1.72-1.53 (m, 2H, AcO$\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}-\mathrm{OH}, \mathrm{AcO}-\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}-\mathrm{OH}$), 1.39-1.34 (m, 1H, AcO-CHCH $\mathrm{CH}_{2} \mathrm{CH}-\mathrm{OH}$), 1.29-1.24 ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.00-0.95 ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, CDCl_{3}) 138.0, 136.7, 136.6, 123.5, 117.4, 117.2, 75.2, 74.7, 72.7, 72.5, 61.3, 56.3, 56.1, 30.6, $30.4,30.3,26.0,21.6,14.6,13.8$; IR (neat) 3487 (O-H), 2963, 1738 (C=O), $1241 \mathrm{~cm}^{-1}$.

Ethyl (1,2-syn, 3E)-2-[1-hydroxybutyl]hex-3-enoate (19a); ethyl (1,2-anti, 3E)-2-[1-hydroxybutyl]hex-3-enoate (19b). Following the general procedure for aldol reactions using butyraldehyde (1 mmol) and purification by flash chromatography on silica gel (30\% EtOAc/hexanes) afforded separately the diastereomers of product 18 as colorless oils (144 mg , 67\%, 32:68 syn:anti). 19a: $\mathrm{R}_{f}=0.52$ (25% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.74-5.65$ (dt, $J=15.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2}$), $5.56-5.47$ (ddt, $J=15.3,9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCHCO}{ }_{2} \mathrm{Et}$), 4.20-4.13 ($\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.89-3.84 (m, 1H, CHOH), 2.99-2.95 (dd, $J=9,4.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Et}$), 2.68-2.59 (b, 1H, OH), 2.14-2.04 (dq, $J=7.5,6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$), 1.55$1.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.29-1.25\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.03-0.97(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$), 0.94-0.89 (t, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); NMR ${ }^{13} \mathrm{C}:\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174$, $138.5,122,71.2,60.8,54.8,36.1,25.7,18.8,14.1,14,13.5$; IR (neat) 3504 (O-H), 2962, 2874, 1714 (C=O), 1464, 1370, 1248, 1178, $1029 \mathrm{~cm}^{-1} .19 \mathrm{~b}: \mathrm{R}_{f}=0.47$ (25\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 5.72-5.63\left(\mathrm{dt}, J=15.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2}\right.$), $5.46-5.37$ (ddt, $J=15.5,9.0$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCHCO} 2 \mathrm{Et}), 4.21-4.13\left(\mathrm{dq}, J=7.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}$, CHOH), 3.05-2.99 (dd, $J=8.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{Et}$), 2.48-2.38 (b, $1 \mathrm{H}, \mathrm{OH}$), 2.10-2.0 (dq, J=7.6, $\left.6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 1.58-1.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.29-1.24(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.00-0.96 ($\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$), $0.93-0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 173.9,137.2,123.4,72.4,60.7,55.8,36.7,25.6,18.6$, 14.1, 14.0, 13.4; IR (neat) 3484 (O-H), 2962, 2934, 2875, 1715 (C=O), 1464, 1370, 1279, $1176 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS for a mixture of 19a and 19b (ESI, Pos) Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 237.1461. Found 237.1456.

4. Stereoselective elimination of the aldol products 18a and 18b

Ethyl (2Z)-6-(acetyloxy)-2-[(1E)-but-1-enyl]octa-2,7-dienoate (20). Alcohol 18a (385 mg, 1.29 mmol) was dissolved in toluene (10 mL), DCC ($400 \mathrm{mg}, 1.94 \mathrm{mmol}$), CuBr ($19 \mathrm{mg}, 0.13 \mathrm{mmol}$) and molecular sieves (about 200 mg) were added at once, and the solution was warmed to $80^{\circ} \mathrm{C}$ and stirred at this temperature for 15 h . Work up: the solution was filtered on Celite then washed with brine. The organic layer was extracted with EtOAc , dried on MgSO_{4}, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (10\% EtOAc/hexanes) to afford product 20 as a colorless oil ($311 \mathrm{mg}, 86 \%, Z$ isomer exclusively). $\mathrm{R}_{f}=$ 0.30 (10\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.03-5.97$ ($\mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCCO}{ }_{2} \mathrm{Et}$), 5.82-5.69 (m, 3H, $\mathrm{CH}_{2}=\mathrm{CHCHOAc}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}$), 5.28-5.15 (m,3H, $\mathrm{CH}_{2}=\mathrm{CHCHOAc}$), 4.31-4.24 ($q, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.31-2.23 (m, 2H, CH2CH=CCO 2 Et$)$, 2.16-2.06 ($\mathrm{m}, 2 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), $2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{3} \text {), 1.81-1.69 (m, 2H, AcO-CHCH }\right)_{2}$), 1.36-1.31 ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.03-0.98 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.7, 168.4, 136.4, 134.8, 134.6, 134.2, 127.0, 117.4, 74.6, 61.0, 34.0, 26.3, 25.8, 21.6, 14.7, 13.7; IR (neat) 2964, 2934, 1735 (C=O), 1731 (C=O), 1372, 1233 (C=C), 1154, 1021, $963 \mathrm{~cm}^{-1}$; HRMS (ESI, Pos) Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 303.1567. Found 303.1558 (100 \%); also $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 281.1747$. Found 281.1734 (5 \%).

Ethyl (2Z)-6-(acetyloxy)-2-[(1E)-but-1-enyl]octa-2,7-dienoate (20). Alcohol 18b (193 mg, 0.65 mmol) was dissolved in THF (3.2 mL), $\mathrm{PPh}_{3}(338 \mathrm{mg}, 1.29 \mathrm{mmol})$ was added and the solution was cooled to $-40{ }^{\circ} \mathrm{C}$. DEAD ($225 \mathrm{mg}, 1.29 \mathrm{mmol}$) was added dropwise to the solution which was stirred for 3 h . Work up: NaHCO_{3} (sat. aq. sln) was added and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then washed with brine. The organic layer was dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (10\%

EtOAc/hexanes) to afford product 20 as a colorless oil ($160 \mathrm{mg}, 88 \%, 97: 3 \mathrm{Z} / E) . \mathrm{R}_{f}=0.30$ (10% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.03-5.97\left(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCCO}_{2} \mathrm{Et}\right), 5.82-5.69$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCHOAc}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}$), 5.28-5.15 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCHOAc}$), 4.31-4.24 ($\mathrm{q}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.31-2.23 (m, 2H, CH2CH=CCO2Et), 2.16-2.06 (m, 2H, CH $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), $2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{3}\right), 1.81-1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{AcO}-\mathrm{CHCH}_{2}\right), 1.36-1.31\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.03-0.98\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right.$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,168.4,136.4$, 134.8, 134.6, 134.2, 127.0, 117.4, 74.6, 61.0, 34.0, 26.3, 25.8, 21.6, 14.7, 13.7; IR (neat) 2964, 2934, 1735 (C=O), 1731 (C=O), 1372, 1233 (C=C), 1154, 1021, $963 \mathrm{~cm}^{-1}$; HRMS (ESI, Pos) Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 303.1567$. Found 303.1558 (100%); also $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 281.1747$. Found 281.1734 (5 \%).

[3-(Diphenylphosphino)phenyl](triphenyl)phosphonium perchlorate (21). ${ }^{8}$ To [3(diphenylphosphino)phenyl](triphenyl)phosphonium bromide ${ }^{8}$ ($15.0 \mathrm{~g}, 25 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{LiClO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(4.2 \mathrm{~g}, 26 \mathrm{mmol}, 1.05$ equiv). After 15 min, the mixture was concentrated under reduced pressure and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The resulting mixture was washed with water (100 mL). The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$. The organic solution was washed three times with water $(50 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under reduced pressure. The crude product was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and was crunched with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$. This operation was repeated twice to afford pure 21 as a white solid ($14.7 \mathrm{~g}, 95 \%$): mp $160-165{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-6.80$ ($\mathrm{m}, 29 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1$ (dd, $\left.J=18.5,11.1 \mathrm{~Hz}, 1 \mathrm{C}\right)$, 139.4 (dd, $J=22.1,2.3 \mathrm{~Hz}, 1 \mathrm{C}$), 137.2 (dd, $J=$ $13.2,11.0 \mathrm{~Hz}, 1 \mathrm{C}), 135.4$ ($\mathrm{d}, J=2.6 \mathrm{~Hz}, 3 \mathrm{C}$), 134.5 ($\mathrm{d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{C}$), 133.9 ($\mathrm{d}, J=10.3 \mathrm{~Hz}$, 6 C), 133.8 (dd, $J=10.4,1.1 \mathrm{~Hz}, 1 \mathrm{C}), 133.4$ (d, $J=20.2 \mathrm{~Hz}, 4 \mathrm{C}), 130.4$ (d, $J=12.8 \mathrm{~Hz}, 6 \mathrm{C}), 129.7$ (dd, $J=12.6,6.4 \mathrm{~Hz}, 1 \mathrm{C}), 129.5(\mathrm{~s}, 2 \mathrm{C}), 128.7$ (d, $J=7.4 \mathrm{~Hz}, 4 \mathrm{C}$), 118.1 (dd, $J=86.9,3.1 \mathrm{~Hz}, 1 \mathrm{C}$), 116.7 (d, $J=88.7 \mathrm{~Hz}, 3 C$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) $\delta 23.2$, -4.5; IR (film) 1585, 1483, 1435, 1388, $1079 \mathrm{~cm}^{-1}$; HRMS (ESI, Pos) calc. for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{P}_{2}(\mathrm{M})^{+}: 523.1739$. Found 523.1747; LRMS (ESI, Neg) calc. for ${ }^{35} \mathrm{ClO}_{4}(\mathrm{M}): 99.0$, found 99.0 ; calc. for ${ }^{37} \mathrm{ClO}_{4}(\mathrm{M}): 101.0$, found 101.1.

5. Synthesis of coronafacic acid via triene 23

(2Z)-2-[(1E)-But-1-enyl]octa-2,7-diene-1,6-diol (22). Diester 20 ($280 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in THF (6 mL) then the solution was cooled to $-78^{\circ} \mathrm{C}$. DIBAL-H ($710 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added, then the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h 30 . Work up: HCl (sln. aq. 10%) was added then the organic layer was extracted with EtOAc. The organic layer was washed with brine, dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (50% EtOAc/hexanes) to afford product 22 as a colorless oil (145 mg , 74%). $\mathrm{R}_{f}=0.35$ (50% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.99-5.95$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$), 5.89-5.78 (m, 2H, CH ${ }_{2}=\mathrm{CHCH}-\mathrm{OH}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$), 5.49-5.45 (dd, $\mathrm{J}=9.5,6.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CCH}_{2} \mathrm{OH}$), $5.24-5.18\left(\mathrm{dt}, J=17.5,1.6 \mathrm{~Hz}, 1 \mathrm{H},(\mathrm{Z})-\mathrm{CH}_{2}=\mathrm{CHCH}-\mathrm{OH}\right), 5.08-5.05$ (dt, $\left.J=10.6,1.4 \mathrm{~Hz}, 1 \mathrm{H},(E)-\mathrm{CH}_{2}=\mathrm{CHCH}-\mathrm{OH}\right), 4.36-4.33\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.24-4.21$ (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 4.10-4.05 (m, 1H, CHOH), 3.16-2.96 (b, 2H, O-H), 2.50-2.40 (m, 1H, $\mathrm{CH}_{2} \mathrm{CHOH}$), 2.25-2.17 (m, 1H, CH2CHOH), 2.15-2.08 (dq, $J=7.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$), 1.63-1.58 (dt, $J=7.7,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHOH}$), 1.03-0.99 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.0,137.7,132.4,130.7,130.4,114.4,71.0,56.8,36.2,25.8,23.7$, 13.6; IR (neat) 3307 (O-H), 2962, 2929, 1426, 1326, 992, $964,921 \mathrm{~cm}^{-1}$; HRMS (ESI, Pos) Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 219.1355$. Found 219.1353.

(6Z,8E)-7-(\{[tert-Butyl(dimethyl)silyl]oxy\}methyl)undeca-1,6,8-trien-3-ol (23). Diol 22 (98 mg, 0.50 mmol) was dissolved in THF (5 mL), $\mathrm{NaH}(12 \mathrm{mg}, 0.50 \mathrm{mmol})$ was added followed by TBSCI $(75 \mathrm{mg}, 0.50 \mathrm{mmol})$. The solution was stirred at room temperature for 3 h . Work up: $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq. sln) was added and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then washed with brine. The
organic layer was dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (10 to 20% EtOAc/hexanes) to afford product 23 as a clear oil ($124 \mathrm{mg}, 78 \%$). $\mathrm{R}_{\mathrm{f}}=0.45$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.98-$ $5.93\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 5.90-5.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCH}-\mathrm{OH}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right)$, $5.51-5.47$ (t, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CCH}_{2} \mathrm{OTBS}\right), 5.26-5.21$ (dt, $J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H},(Z)-$ $\mathrm{CH}_{2}=\mathrm{CHCH}-\mathrm{OH}$), 5.11-5.08 (dt, $J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H},(\mathrm{E})-\mathrm{CH}_{2}=\mathrm{CHCH}-\mathrm{OH}$), 4.37-4.29 (m, 2H, $\mathrm{CH}_{2} \mathrm{OTBS}$), 4.15-4.08 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCHOH}$), 2.41-2.31 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOH}$), 2.29-2.20 (m, 1 H , $\mathrm{CH}_{2} \mathrm{CHOH}$), 2.16-2.07 (m, 2H, CH=CHCH2 CH_{3}), 1.85-1.73 (b, 1H, CH $=\mathrm{CHCHOH}$), 1.66-1.58 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHOH}\right), 1.03-0.99\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.10(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 141.0, 137.2, 131.8, 130.8, 130.7, 114.4, 71.8, 58.1, 36.6, 26.0, 25.9, 24.0, 18.4, 13.8 (3C), -5.2 (2C); IR (neat) 3356, 2957, 2928, 2856, 1462, 1251, 1076, $834(\mathrm{O}-\mathrm{Si}), 774 \mathrm{~cm}^{-1}$; HRMS (ESI, Pos) Calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 311.2401$. Found 311.2400 (100%); also $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 333.2220$. Found 333.2220 (95 \%).

(6Z,8E)-7-(\{[tert-Butyl(dimethyl)silyl]oxy\}methyl)undeca-1,6,8-trien-3-one (24). Alcohol 23 (36 $\mathrm{mg}, 0.116 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, $\mathrm{PDC}(65 \mathrm{mg}, 0.174 \mathrm{mmol})$ was added and the solution was stirred at room temperature overnight. Work up: a 20% ethyl acetate/hexanes solution was added and solution was filtered on silica gel. The solvent was evaporated and the residue was purified by flash chromatography on silica gel (5 to $10 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane) to afford product 24 as a colorless oil ($15 \mathrm{mg}, 42 \%$). $\mathrm{R}_{f}=0.40$ (10% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.38-6.31$ (dd, $J=17.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.23-6.18$ (dd, $J=17.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.95-5.91(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.86-5.79(\mathrm{~m}, 2 \mathrm{H}), 5.48-5.44(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}\right), 2.71-2.67(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 2 H), 2.52-2.46 (dt, $J=7.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.13-2.06 (dq, $J=7.3, \mathrm{~Hz}, 2 \mathrm{H}$), 1.02-0.98 (t, $J=7.3 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.9, 137.9, 136.5, 131.3, 130.5, 130.1, 128.2, 58.1, 39.5, 29.7, 26.1, 25.9, 22.3, 18.3, 13.7, -5.2; IR (neat) 2957, 2927, 2855, 1703, 1684, 1615, 1462, 1400, 1251, 1076, 962, 835 (O-Si), $774 \mathrm{~cm}^{-1}$; HRMS (ESI, Pos) Calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}_{1}(\mathrm{M}+\mathrm{H})^{+}: 309.2244$. Found 309.2248.

(3a, 6 trans; 3a, 7a cis)-4-(\{[tert-Butyl(dimethyl)silyl]oxy\}methyl)-6-ethyl-2,3,3a,6,7,7a-hexahydro- 1 H-inden-1-one (26). Triene $24(5 \mathrm{mg}, 0.016 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(1 \mathrm{~mL})$ in a sealed tube, then the solution was warmed to $155^{\circ} \mathrm{C}$ for 3 h . Work up: the solvent was evaporated under reduced pressure then the residue was purified by flash chromatography on silica gel (5% EtOAc/hexanes) to afford product 26 as a colorless oil ($1.2 \mathrm{mg}, 24 \%$). $\mathrm{R}_{f}=0.35$ (5% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.63-5.59(\mathrm{~b}, 1 \mathrm{H}), ~ 4.24-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.8-2.71$ (m, 1 H), 2.49-2.17 (m, 3H), 2.09-1.88 (m, 2H) 1.86-1.80 (dt, $J=12.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 1 \mathrm{H})$, 1.44-1.23 (m, 2H), 1.10-0.99 (m, 1H), $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 221.5, 138.0, 127.1, 65.7, 47.0, 38.2, 37.1, 36.7, 28.7, 27.5, 27.2, 25.9 (3C), 18.4, 11.1, -5.3, -5.4; IR (neat) 2956, 2927, 28551743 (C=O), 1462, 1253, 1137, 1069, 836, $775 \mathrm{~cm}^{-1}$; HRMS (ESI, Pos) Calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}_{1}(\mathrm{M}+\mathrm{H})^{+}: 309.2244$. Found 309.2255 (100%); also $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}_{1} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 331.2064 . Found 331.2075 (60\%).

(3a, 6 trans; 3a, 7a cis)-4-(\{[tert-Butyl(dimethyl)silyl]oxy\}methyl)-6-ethyl-2,3,3a,6,7,7a-hexahydro-1 H -inden-1-one (26). Optimized procedure: tandem oxidation and cyclization. Triene 23 ($97 \mathrm{mg}, 0.313 \mathrm{mmol}$) was dissolved in toluene (10 mL) in a Schlenk flask, then PDC (176 $\mathrm{mg}, 0.469 \mathrm{mmol}$) was added and the solution was heated to $155^{\circ} \mathrm{C}$ for 4 h . Work up: the solvent was evaporated under reduced pressure then the residue was purified by flash chromatography on silica gel (5% EtOAc/hexanes) to afford product 26 as a colorless oil ($59 \mathrm{mg}, 61 \%$). $\mathrm{R}_{f}=0.35$ (5% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.63-5.59 (bs, 1H), 4.24-4.09 (m, 2H), 2.80-2.71 (m, 1 H), 2.49-2.17 (m, 3H), 2.09-1.88 (m, 2H) 1.86-1.80 (dt, $J=12.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 1 \mathrm{H})$,
1.44-1.23 (m, 2H), 1.10-0.99 (m, 1H), $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 221.5, 138.0, 127.1, 65.7, 47.0, 38.2, 37.1, 36.7, 28.7, 27.5, 27.2, 25.9 (3C), 18.4, 11.1, -5.3, -5.4; IR (neat) 2956, 2927, 2855, 1743 (C=O), 1462, 1253, 1137, 1069, 836, $775 \mathrm{~cm}^{-1}$; ; HRMS (ESI, Pos) Calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}_{1}(\mathrm{M}+\mathrm{H})^{+}: 309.2244$. Found 309.2255 (100\%); also $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}_{1} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+}: 331.2064$. Found $331.2075(60 \%)$.

(3a, 6 trans; 3a, 7a cis)-6-Ethyl-4-(hydroxymethyl)-2,3,3a,6,7,7a-hexahydro-1H-inden-1-one (27). Silyl ether $26(54 \mathrm{mg}, 0.175 \mathrm{mmol})$ was dissolved in THF ($500 \mu \mathrm{~L}$) then a solution of tetrabutylammonium fluoride (1 M in THF, $260 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) was added, and the solution was stirred for 5 min . The solvent was reduced and the residue was purified by flash chromatography on silica gel (30% EtOAc/hexanes) to afford product 27 as a colorless oil ($32 \mathrm{mg}, 94 \%$). $\mathbf{R}_{f}=0.30$ (40% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.66-5.61$ (s, 1 H), 5.19-5.11 (m, 2H), 2.85$2.79(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.01(\mathrm{~b}, 1 \mathrm{H}), 1.87-1.82(\mathrm{dt}, \mathrm{J}=12.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.56$ (1H), 1.54-1.20 (m, 4H), 1.06-0.92 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.0,138.3,128.7$, 65.8, 46.9, 38.3, 37.2, 36.8, 28.6, 27.5, 27.0, 11.1; IR (neat) 3389 (O-H), 2958, 2920, 2853, 1736 (C=O), 1461, 1155, 1135, 1079, 1038, 1011, 912, $850 \mathrm{~cm}^{-1}$; HRMS (APCI, Pos) Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 195.1379$. Found 195.1374 ; also $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)^{+}: 177.1274$. Found 177.1271.

(\pm)-(3a,6-trans; 3a,7a-cis)-6-Ethyl-1-oxo-2,3,3a,6,7,7a-hexahydro-1 H-indene-4-carboxylate (coronafacic acid) (2). Chromium(VI) oxide (267 mg) as well as concentrated sulfuric acid (230 $\mu \mathrm{L}$) were dissolved in water (1 mL) to obtain a Jones oxidant solution. Alcohol $27(21 \mathrm{mg}, 0.107$ mmol) was dissolved in acetone, then a $50 \mu \mathrm{~L}$ of Jones oxidant solution was added. The solution
was stirred at room temperature for 3 h . Work up: the solvent was evaporated, then the residue was purified by flash chromatography on silica gel ($30 \% \mathrm{EtOAc} /$ hexanes) to afford coronafacic acid (2) as a white solid ($16.5 \mathrm{mg}, 74 \%$). $\mathrm{R}_{\mathrm{f}}=0.25$ ($30 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.09-7.07 (bs, 1H, H_{5}), 3.13-3.05 (m, 1H, $\mathrm{H}_{3 \mathrm{a}}$), 2.66-2.57 (m, 1H, H_{3}), 2.46-2.17 (m, 4H, $\mathrm{H}_{2}(2 \mathrm{H})$,
 $0.97\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{3}\right)$. Product is identical in all respects to authentic material. ${ }^{9}$

7. Synthesis of coronafacic acid via triene 28

Ethyl (2Z)-2-[(1E)-but-1-enyl]-6-hydroxyocta-2,7-dienoate (28). Triene 20 ($311 \mathrm{mg}, 1.11 \mathrm{mmol}$) was dissolved in ethanol (10 mL), p - $\mathrm{TsOH}(211 \mathrm{mg}, 1.11 \mathrm{mmol})$ was added then the solution was warmed to $50^{\circ} \mathrm{C}$ and stirred for 18 h . Work up: the solvent was evaporated under reduced pressure, then the residue was purified by flash chromatography on silica gel (40\% EtOAc/hexanes) to afford product 28 as a colorless oil ($225 \mathrm{mg}, 85 \%$). $\mathrm{R}_{f}=0.35$ (50% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.01-5.97\left(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCCO}_{2} \mathrm{Et}\right), 5.89-5.81$ (ddd, $\left.J=17.1,10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHCHOH}\right), 5.79-5.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}\right), 5.25-5.20$ (dt, $\left.J=17.1,1.4 \mathrm{~Hz}, 1 \mathrm{H},(Z)-\mathrm{CH}_{2}=\mathrm{CHCHOH}\right), 5.10-5.06\left(\mathrm{dt}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H},(E)-\mathrm{CH}_{2}=\mathrm{CHCH}-\mathrm{OH}\right)$, $4.30-4.25\left(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 4.13-4.08 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHOH}$), 2.48-2.43 (bs, $1 \mathrm{H}, \mathrm{OH}$), 2.42-2.24 (m, 2H, CH $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CCO}_{2} \mathrm{Et}$), 2.14-2.06 (dq, $J=7.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), 1.671.61 (m, 2H, CH2CH=CCO2Et), 1.35-1.31 (t, J=7.2 Hz, 3H, CO2 $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.02-0.98 (t, J=7.4 Hz, $3 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,140.7,135.3,134.2,133.8,126.5$, 114.5, 71.5, 60.9, 36.1, 25.8, 25.6, 14.3, 13.3; IR (neat) 3423 (O-H), 2964, 2932, 1712 (C=O), 1645, 1445, 1378, 1253, 1187, 1151, 1022, 991, 962, $920 \mathrm{~cm}^{-1}$; HRMS (ESI, Pos) Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{\dagger}: 261.1461$. Found 261.1459.

Ethyl (2Z)-2-[(1E)-but-1-enyl]-6-oxoocta-2,7-dienoate (29). Alcohol 28 (100 mg, 0.42 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, PDC ($236 \mathrm{mg}, 0.64 \mathrm{mmol}$) was added and the solution was stirred at room temperature for 4 h . Work up: a EtOAc/hexanes (20\%) solution was added and the solution was filtered on silica gel. The solvent was evaporated and the residue was purified by flash chromatography on silica gel (10\% EtOAc/hexanes) to afford product 29 as a colorless oil (77 mg, 77%). $\mathrm{R}_{f}=0.35$ (10\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.38-6.31$ (dd, $J=17.1,10.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CHC}=\mathrm{O}$), 6.25-6.20 (dd, $J=17.1,1.1 \mathrm{~Hz}, 1 \mathrm{H},(E)-\mathrm{CH}_{2}=\mathrm{CHC}=0$), 6.01-5.97 (d, $J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCCO} 2 \mathrm{Et}), 5.86-5.72\left(\mathrm{~m}, 3 \mathrm{H},(Z)-\mathrm{CH}_{2}=\mathrm{CHC}=\mathrm{O}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 4.31-4.26(\mathrm{q}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.76-2.72 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{2} \mathrm{CH}_{2}$), 2.56-2.50 (dt, J=9, 7.6 Hz, $2 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{2} \mathrm{CH}_{2}$), 2.15-2.07 (dq, $J=7.6,6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$), 1.35-1.31 (t, $J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.03-0.99 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $199.5,167.9,136.3,134.4,134.0,133.9,128.4,126.5,60.7,38.9,25.8,23.9,14.3,13.3$; IR (neat) 2964, 2932, 1715 (C=O), 1682 (C=O), 1615, 1445, 1399, 1378, 1217, 1181, 1143, 1096, 1023, $962 \mathrm{~cm}^{-1}$; HRMS (ESI, Pos) Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 259.1304. Found 259.1302.

Ethyl (3a,6-trans; 3a,7a-cis)-6-ethyl-1-oxo-2,3,3a,6,7,7a-hexahydro-1H-indene-4-carboxylate (31). Triene 29 ($30 \mathrm{mg}, 0.127 \mathrm{mmol}$) was dissolved in benzene (1 mL) and DMSO (1 mL) in a sealed tube, then the solution was heated to $180^{\circ} \mathrm{C}$ for 5 min in a microwave apparatus. NMR monitoring of the reaction indicated that $\mathbf{3 0}$ was initially formed by complete epimerization to $\mathbf{3 1}$ upon purification. Work up: the solvent was evaporated under reduced pressure then the residue was purified by flash chromatography on silica gel ($10 \% \mathrm{EtOAc} /$ hexanes) to afford product 31 as a colorless oil ($23.4 \mathrm{mg}, 78 \%$). $\mathrm{R}_{f}=0.25$ ($10 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93-$
6.91 (bs, $1 \mathrm{H}, \mathrm{H}_{5}$), 4.30-4.16 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.13-3.05 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{a}}$), 2.61-2.53 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{3}$), 2.44-2.25 (m, 3H, $\mathrm{H}_{2}(2 \mathrm{H}), \mathrm{H}_{7 \mathrm{a}}$), 2.23-2.14 (m, 1H, H_{6}), 1.89-1.84 (dt, $\left.J=12.7,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 1.64-$ $1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{3}, \mathrm{H}_{3}\right)$, 1.45-1.37 (m, 1H, $\mathrm{CHCH}_{2} \mathrm{CH}_{3}$), $1.34-1.30(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.12-1.02 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{7}$), 1.00-0.96 ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{3}$). Product was identical in all respects to authentic material. ${ }^{9}$

(\pm)-(3a,6-trans; 3a,7a-cis)-6-Ethyl-1-oxo-2,3,3a,6,7,7a-hexahydro-1 H-indene-4-carboxylate

 (coronafacic acid) (2). Ester 31 ($20 \mathrm{mg}, 0.085 \mathrm{mmol}$) was dissolved in THF (1 mL) then $\mathrm{HCl} 10 \%$ (sln. aq.) (1 mL) was added and the solution was heated to $50^{\circ} \mathrm{C}$ for 20 h . Work up: the organic layer was extracted with ether (2x).The organic layer was dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (30% EtOAc/hexanes) to afford coronafacic acid (2) as a white solid ($16 \mathrm{mg}, 90 \%$) $\mathrm{R}_{f}=0.25$ (30% EtOAc/hexanes) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09-7.07\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.13-3.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{a}}\right), 2.66-$ $2.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, 2.46-2.17 ($\left.\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{2}(2 \mathrm{H}), \mathrm{H}_{7 \mathrm{a}}, \mathrm{H}_{6}\right)$, 1.92-1.86 (m, 1H, H_{7}), 1.66-1.38 (m, 3H, $\mathrm{CHCH}_{2} \mathrm{CH}_{3}, \mathrm{H}_{3}$), 1.15-1.06 (m, 1H, H_{7}), 1.01-0.97 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{3}$). Product was identical in all respects to authentic material. ${ }^{9}$${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of selected compounds

Page S26

Page S29

Page S30

Page S32

Page S35

Page S37

Page S43

Page S55

Page S56

Page S57

[^0]: 1 Shriver, D.F.; Drezdzon, M. A. the manipulation of air-sensitive compounds; 2nd ed.;Wiley: New York, 1986.

[^1]: 5 Crevisy, C.; Couturier, M.; Dugave, C.; Dory, Y. L. Deslongchamps, P. Bull. Soc. Chim. Fr. 1995, 132, 360-370. Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103, 3099.

[^2]: 7
 Mulzer, J.; Berger, M. J. Org. Chem. 2004, 69, 891.

