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ABSTRACT Design of modern antennas relies—for reliability reasons—on full-wave electromagnetic

simulation tools. In addition, increasingly stringent specifications pertaining to electrical and field perfor-

mance, growing complexity of antenna topologies, along with the necessity for handling multiple objectives,

make numerical optimization of antenna geometry parameters a highly recommended design procedure.

Conventional algorithms, particularly global ones, entail often-unmanageable computational costs, so alter-

native approaches are needed. This work proposes a novel method for cost-efficient globalized design

optimization of multi-band antennas incorporating the response feature technology into the trust-region

framework. It allows for unequivocal allocation of the antenna resonances even for poor initial designs,

where conventional local algorithms fail. Furthermore, the algorithm is accelerated by means of Jacobian

variability tracking, which reduces the number of expensive finite-differentiation updates. Two real-world

antenna design cases are used for demonstration purposes. The optimization cost is comparable to that of

local routines while ensuring nearly global search capabilities.

INDEX TERMS Antenna design, input characteristics, EM-driven design, trust-region methods, response

features.

I. INTRODUCTION

Rapid development of cutting-edge technologies (e.g., 5G [1],

internet of things [2], or wearable devices [3], including

those for tele-medicine purposes [4]), leads to increasingly

exacting requirements imposed on contemporary antenna

structures. Among these, demands for miniaturization [5],

multi-functionality [6], or multi-band operation [7] can be

listed. In consequence, the complexity of the antenna geome-

tries grows steadily, along with the number of design vari-

ables required for their parameterization. Satisfying stringent

specifications pertaining to electrical and field performance

while maintaining small antenna footprints makes the design

closure task a truly challenging endeavor. Because simpler
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models, such as equivalent networks, are either unavailable

or unreliable, full-wave electromagnetic (EM) tools have

become mandatory.

Unfortunately, EM-driven design optimization in multi-

dimensional parameter spaces is inevitably associated with

massive EM simulations generating considerable CPU costs.

This is the case even for local methods (gradient [8] or pattern

search algorithms [9]), let alone global algorithms, nowa-

days extensively utilizing population-based metaheuristics

(genetic algorithms [10], differential evolution [11], or par-

ticle swarm optimizers [12]).

To lessen the computational overhead, various approaches

have evolved in the recent years. In the context of gradient-

based algorithms, adjoint sensitivities constitute an attrac-

tive way of accelerating the design process [13], [14]. Yet,

for the time being, only a few high-frequency simulation
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packages (e.g., CST Microwave Studio 2018 [15]; ANSYS

HFSS 2019 [16]) support this technology. Another approach

includes surrogate-based optimization (SBO) techniques,

widely applied in antenna design [17]. The SBO routines

exploit fast replacement models (surrogates) that can be

of one of the two types: data-driven and physics based.

The numerous examples of the data-driven surrogates (also

referred to as approximation models) comprise polynomial

regression [18], artificial neural networks [19], radial basis

functions [20], kriging [21], support vector regression [22],

Gaussian Process regression [23], or multidimensional ratio-

nal approximation [24].

The primary advantages of the approximation models are

their versatility and low evaluation cost. The surrogate is set

up with the sole usage of the sampled data acquired from the

system of interest; virtually no physical insight is required.

Unfortunately, a usable predictive power of the surrogate

can only be secured if the design space is sampled with

sufficient density, necessary to account for the system output

variations within the model domain. For this reason, usually

large training data sets are required to construct functional

surrogates, rapidly increasing with the number of antenna

parameters (so called curse of dimensionality [25]). In prac-

tice, construction of the surrogates in parameter spaces of

high dimensions can be successfully conducted only if the

system outputs are weakly nonlinear. This is not the case for,

e.g., multi-band antennas of sharp, resonant-like responses.

Even more importantly, in real-world engineering applica-

tions, for the model to be truly useful for design purposes,

it has to cover wide ranges of parameters [26], [27]. Satisfying

this demand is challenging as the characteristic features of

the responses, such as frequency allocation of the resonances,

change rapidly across the design space [28], [29].

Whereas, in the construction of the physics-based surro-

gates, a system-specific knowledge is exploited [30], usually

in the form of a simplified physical description of the system

at hand. SBO techniques involving physics-based surrogates

encompass, among others, space mapping [31], response

correction algorithms [32], feature-based optimization [33],

or adaptive response scaling [34]. In the case of antennas,

the main disadvantage of the physics-based surrogates is

that—due to the lack of alternatives—they are primarily

obtained through coarse-mesh EM analysis and are therefore

quite expensive. As a result, computational efficiency may be

more problematic to secure even for SBO processes.

Here, a novel framework for expedited EM-driven design

closure of multi-band antennas is proposed. The key concept

is an application of the two mechanisms: (i) cost-effective

trust-region (TR) gradient search with tracking of Jacobian

variation throughout the optimization run, along with (ii) the

response feature technology [35]. In the former procedure,

the response gradient changes are monitored. Upon discov-

ering stable sensitivity patterns, CPU-intensive finite dif-

ferentiation (FD)-based gradient updates are omitted for a

specific number of iterations proportional to the magnitude

of the gradient difference. The response feature technology

globalizes the search process by exploiting the frequency and

level coordinates of the selected characteristics points rather

than the entire antenna responses. This has an effect of ‘‘flat-

tening’’ the functional landscape handled by the optimiza-

tion process. The proposed framework is demonstrated using

the dual- and triple-band uniplanar antennas. The results

confirm that positioning of the antenna resonances can be

achieved in a numerically effective manner even starting

from poor initial designs where conventional local optimizers

are prone to failure. The major contributions of this paper

include: (i) incorporation of the response feature technol-

ogy into trust-region gradient-based optimization framework,

(ii) development of reduced-cost trust-region algorithm based

on Jacobian variability monitoring, (iii) comprehensively

demonstrated quasi-global search capabilities for multi-band

antennas, (iv) demonstrated computational efficiency of the

proposed framework, which is comparable to that of local

search procedures (thus, dramatically lower than for routinely

used population-based metaheuristics).

II. QUASI-GLOBALIZED FEATURE-BASED ANTENNA

OPTIMIZATION WITH JACOBIAN

CHANGE TRACKING

This section describes the two major components of the pro-

posed framework, i.e., the response feature technology and

the accelerated trust-region gradient algorithm with Jacobian

change monitoring. The combination of the two techniques

allows for a cost-efficient and quasi-global optimization of

multi-band antennas as demonstrated by the numerical stud-

ies of Section III.

A. FEATURE-BASED OPTIMIZATION OF

MULTI-BAND ANTENNAS

Fulfilling stringent specifications imposed on electrical and

field antenna characteristics requires careful tuning of its

geometry parameters. This process is referred to as the design

closure and its ultimate goal is to improve the performance

of the device at hand according to the selected quality metric,

typically being a scalar function of the parameters. In the case

of multiple performance figures, the objectives may be aggre-

gated or handled through explicit or implicit constraints [36]

(genuine multi-objective design, as in [37], is not considered

here). A design closure problem is formulated as

x
∗ = arg min

x
U (R(x)) , (1)

where R denotes the EM-simulated antenna response,

with x ∈ Rn being a vector of geometry parameters.

In antenna design, R(x) usually refers to antenna character-

istics (e.g., reflection coefficient, gain, axial ratio, or radia-

tion pattern) that are of interest in a given design context.

For multi-band antennas considered in this paper, a typical

design problem is a frequency allocation of the antenna res-

onances and/or maximization of the fractional bandwidth at

the desired operating frequencies. Here, the former case is

considered and the adopted scalar objective function U is
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formulated as follows

U (R(x)) = max
f ∈F

|S11(x, f )|, (2)

where S11(x, f ) denotes the antenna reflection being a func-

tion of x and frequency f , whereas F stands for the frequency

range of interest. Local optimization routines with the objec-

tive function U formulated as in (2), may or may not succeed

in finding the optimal solution depending on the quality of

the initial design. In particular, due to high nonlinearity of

antenna responses, especially for multi-band structures, the

allocation of resonances at the initial design is critical for the

success of the local search. Some typical scenarios have been

illustrated in Fig. 1.

FIGURE 1. Exemplary reflection characteristics of (a) dual- [39]) and
(b) triple-band antenna [40] at three different designs; characteristic
points corresponding to the coordinates of the antenna resonances
marked with (o); intended operating frequencies marked with vertical
lines. Local (gradient-based) optimization routines starting from the
designs (- - -) and (—) fail in the case of minimax formulation of the
objective function as in (2). Local optimization involving response
features finds satisfactory design starting from all the presented designs:
(- - -), (—) and (...).

Employing global optimization routines to solve the

antenna design closure task is associated with a high

computational cost that can be conveniently reduced with

the response feature approach [35]. Let us consider, for

the illustration purposes and without losing generality, the

feature points corresponding to the antenna resonances,

i.e., RF (x) = [f1(x) f2(x) . . . fp(x) l1(x) l2(x) . . . lp(x)]
T , where

fk and lk refer to the frequency and level coordinates of

the respective p antenna resonances. The dependence of the

feature point coordinates on the design variables is notably

less nonlinear than for the responses themselves [35].

This is the reason for which, in most cases, a local search

brings satisfactory designs even starting from poor initial

ones, where the routines solving the problem (1) and (2) may

fail. It should be emphasized that for the response-feature

approach towork, it is sufficient that the initial design exhibits

all the necessary features (i.e., clearly distinguished reso-

nances in the case of amulti-band antenna), regardless of their

specific frequency allocation or the levels.

The antenna design problem may be reformulated for

the objective function UF (RF (x)) defined in terms of the

response features RF (x) in the following manner

x
∗ = argmin

x
UF (RF (x)) . (3)

In the case of relocating the resonances to the target fre-

quencies of choice f0.k , k = 1, . . . , p, the objective function

UF is defined as

UF (RF (x)) = max{l1(x), . . . , lp(x)} +

+β||[f1(x) . . . fp(x)] − [f0.1 . . . f0.p]||
2, (4)

with β being the scalar penalty factor. In this paper, the

antenna reflection is considered as the system output of inter-

est and the level coordinates are lk (x) = S11(x,fk ), k = 1,

. . . , p. In (4), minimization of the antenna reflection is the

primary objective, whereas the second (penalty) term permits

the control of the resonant frequencies of the antenna. The

penalty factor β controls the ‘hardness’ of the constraint,

i.e., it allows us to balance the contribution of the penalty

term (measuring the discrepancies between the target and the

actual operating frequencies of the antenna) and the primary

objective. In the numerical experiments of Section III, we use

β = 100 (note that frequencies are in GHz). This means

that noticeable contribution from the penalty term can be

observed for frequency deviations larger than 0.05 GHz or so.

It should also be noted that the particular value of the penalty

factor is not critical and the values from the range 10 to

500 could be used as well. If the bandwidth maximization

is of interest, the design task can be formulated similarly,

however, the response features corresponding to −10 dB

levels of the reflection characteristic have to be used.

B. TRUST-REGION SEARCH EXPLOITING JACOBIAN

CHANGES TRACKING

Here, the optimization procedure of choice to solve the

problem (3) is the trust-region gradient search algorithm

(e.g., [38]) that iteratively yields approximations x(i), i = 0, 1,

. . . , to the optimum design x∗. The flow diagram of the TR

procedure is shown in Fig. 2. In each i-th iteration, a linear

expansion model R
(i)
lin of RF (x) is defined x

(i) as

R
(i)
lin(x, f ) = RF (x

(i)) + JF (x
(i)) · (x− x

(i)). (5)

FIGURE 2. Flow diagram of the trust region (TR) algorithm. The grey
boxes refer to the operations that are dissimilar for the conventional and
feature-based versions of the algorithm; both with and without Jacobian
change tracking.

Subsequently, the following sub-problem is solved

x
(i+1) = arg min

x; −d (i)≤x−x(i)≤d (i)
UF (R

(i)
lin(x)). (6)
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In (5), JF (x
(i)) = [∇f1(x

(i)) . . .∇fp(x
(i))∇l1(x

(i)) . . .∇lp(x
(i))]T

refers to the response feature vector Jacobian.

In addition, d(i) stands for the search region size

vector adjusted in conformance with the standard rules

(e.g., [38], based on the gain ratio ρ = (UF (RF (xtmp)) –

UF (RF (x
(i))))/(UF (R

(i)
lin(xtmp)) – UF (R

(i)
lin(x

(i)))), where xtmp
is the candidate design obtained in the (i + 1)th iteration.

The inequalities –d(i) ≤ x – x(i) ≤ d(i) in (6) are to be inter-

preted component-wise. This is to ensure similar handling of

the variables with significantly different ranges, commonly

occurring in the antenna design.

Unless adjoint sensitivities [13] are readily available,

the Jacobian JR has to be estimated through finite differenti-

ation (FD) at the expense of n additional antenna EM model

simulations. In this paper, in order to lessen this cost, an expe-

dited procedure is utilized where some of the FD-based

Jacobian updates are omitted for the variables that exhibit

stable sensitivity pattern. The variations of the Jacobian JF
columns J

(i)
k = [g

(i)
k.1 . . .g

(i)
k.n]

T , k = 1, . . . , p, between

iterations are assessed by the following metric:

1
(i+1)
k =

1

2p

2p
∑

j=1

(

2 ·
g
(i)
j.k − g

(i−1)
j.k

g
(i)
j.k + g

(i−1)
j.k

)

. (7)

In (7), averaging is performed over both the frequency and

level coordinates of all relevant feature points. Let us define

the following quantities:

• 1(i) = [1
(i)
1 . . .1

(i)
n ]T – a vector of Jacobian change

factors at the i-th iteration;

• 1
(i)
min = min{1

(i)
1 ,. . . , 1

(i)
n }, 1

(i)
max = max{1

(i)
1 ,. . . ,

1
(i)
n };

N(i) = [N
(i)
1 . . .N

(i)
n ]T – a vector of the numbers of upcom-

ing iterations without FD, calculated in the i-th iteration with

the use of the conversion function

N
(i)
k =

[[

Nmax + a(i)(1
(i)
k − 1

(i)
min)

]]

. (8)

with Nmin and Nmax being the algorithm control parameters

that refer to the minimum and the maximum number of

iterations without FD; and a(i) = (Nmax – Nmin)/(1
(i)
min –

1
(i)
max); where the nearest integer function is denoted as [[.]].

The flow diagram of the gradient update procedure has been

shown in Fig. 3.

In the proposed algorithm, the following rules apply:

1) Factors 1
(i)
k are preserved throughout all iterations

without FD and employed to establish 1
(i)
minand

1
(i)
max(i.e., they affect N

(i)
k for other parameters);

2) N
(i)
k is proportional to the magnitude of the gradi-

ent variation as assessed by the factors 1
(i)
k . For

the variables featuring the smallest Jacobian changes

between subsequent iterations (1
(i)
k = 1

(i)
min), the high-

est number of the suppressed updates is appointed

i.e.,N
(i)
k = Nmax. Furthermore, following the definition

of the conversion function (8), the FD-based updates

are performed at least once per Nmax iterations;

FIGURE 3. Flow diagram of the gradient update procedure utilized for
both the conventional and feature-based optimization.

3) For the variables with the FD update, the components

N
(i+1)
k of the vector N(i+1) are determined through the

conversion function (8); otherwise the previous number

of iterations is decremented, i.e., N
(i+1)
k = N

(i)
k – 1.

TABLE 1. Taxonomy of considered optimization procedures.

In Table 1, a comparison of the main properties of

the four algorithms considered in the paper is provided.

Algorithms 1 and 2 are the conventional (with full FD

Jacobian update) and the expedited TR routines, respectively,

both solving a conventionally formulated problem (1). Algo-

rithms 3 and 4 are, respectively, the conventional and the

expedited versions solving the design task formulated in

terms of the response features. Algorithms 1 through 3 are

used for benchmarking purposes. The principal differences

in operation of the fours algorithms include (see also Fig. 2):

1. Calculation of the Jacobian: either in terms of the entire

response (Algorithms 1 and 2) or the response features

(Algorithms 3 and 4);

2. Jacobian update procedure: either solely FD-based

(Algorithms 1 and 3) or performed according to the
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gradient change tracking procedure (Algorithms 2

and 4).
The proposed algorithm involving the gradient change con-

trol (this pertains to both Algorithm 2 and 4) operates as the

reference algorithm merely in the first two iterations, when

the Jacobian is estimated through FD. Full Jacobian data is

required to determine the initial values of the factors 1
(i)
k .

Subsequently, FD is only applied to the components Jk of JF
selected according to the sensitivity patternmeasure; for other

parameters, the former values of the factors 1
(i)
k are retained

(cf. Fig. 3). The numerical results gathered in Section III con-

firm that the proposed procedure secures considerable CPU

cost savings. At the same time, a global search capability is

maintained.

FIGURE 4. Benchmark uniplanar dipole antenna structures used for
verification of the proposed algorithm: (a) dual- [39] and
(b) triple-band [40] antenna.

III. VERIFICATION CASE STUDIES

This section provides a numerical verification of the proposed

optimization framework and comparisons with convention-

ally formulated (not feature-based) procedures. The perfor-

mance of the adopted approach is verified by analyzing the

results obtained formultiple independent algorithm runs from

random initial designs. Our benchmark set comprises two

antenna structures: dual- [39] and triple-band [40] uniplanar

dipoles shown in Fig. 4. Both structures are implemented

on the RO4350 substrate (εr = 3.48, h = 0.762 mm)

and fed by a coplanar waveguide. The geometry of the

dual-band antenna (Antenna I) is described by the parameters

x = [l1 l2l3w1w2 w3]
T , with the following variables fixed

l0 = 30, w0 = 3, s0 = 0.18 and o = 5 (all dimensions

in mm). The antenna is supposed to operate at the center

frequencies of 3 GHz and 5.5 GHz. The triple-band antenna

(Antenna II) is described by the design variable vector x =

[l1l2l3l4 l5w1w2w3 w4w5]
T ; with l0 = 30, w0 = 3, s0 =

0.15 and o = 5 being fixed (all dimensions in mm). The

antenna is supposed to operate at the center frequencies

of 2.45 GHz, 3.6 GHZ and 5.3 GHz. The EM antenna models

are implemented in CST Microwave Studio and simulated

TABLE 2. Optimization results for antenna I.

TABLE 3. Optimization results for antenna II.

using its time-domain solver. Here, both antennas have been

merely used for verification of the proposed framework, and

no novel topology is introduced. The experimental validation

of dual- and triple-band antenna structures can be found

in [41]–[44].

Both antennas have been optimized using the algorithms

of Table 1: conventional and expedited procedures solv-

ing a traditionally formulated problem (1) (Algorithms 1

and 2, respectively) and conventional and expedited proce-

dures solving problem (3) reformulated in terms of response

features (Algorithms 3 and 4, respectively). The expedited

Algorithms 2 and 4 were executed with the following values

of the control parameters: Nmin = 1, Nmax = 5. These

parameters refer to the minimum and the maximum number

of iterations without FD, respectively. They decide upon the

frequency of performing FD-based sensitivity updates: not

more than once per Nmin iterations and at least once per

Nmax iterations. The adopted values allow us to achieve a

substantial acceleration of the optimization process without

compromising the solution quality in a significant manner.

In order to verify the robustness of the optimization pro-

cess, each of the algorithms were executed twenty times from

the same set of random initial designs. In Tables 2 and 3,

the averaged performance measures for Antennas I and II

across the set have been presented, and the antenna

responses for the representative algorithm runs are shown in

Figs. 5 and 6.

It should be emphasized that the values of the objec-

tive functions for the algorithms using conventional

(Algorithms 1 and 2) and feature-based formulation
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FIGURE 5. Operation of conventional routines for a dual-band
antenna [39] (Algorithms 1 and 2), as well as their feature-based
counterparts (Algorithms 3 and 4) for the representative algorithm runs
starting from various initial designs: (1) reference TR algorithm with full
FD Jacobian update, (2) expedited TR routine with Jacobian variability
tracking, (3) basic version of the feature-based algorithm, and
(4) expedited feature-based routine with Jacobian variability tracking.
In each panel, the initial design (. . . ) and the designs optimized with the
use of conventional Algorithms 1 (- - -) and 2 (-.-.) are marked gray.
Whereas the designs found within the response feature frameworks
Algorithms 3 (—-) and 4 (- - -) are marked black. Vertical lines mark the
target operating frequencies. The conventional routines
(Algorithms 1 and 2) fail to find satisfactory designs in most cases.

(Algorithms 3 and 4) of the problem cannot be compared

directly. Therefore, the comparison is carried out based

on the feature point coordinates, which, for Algorithms 1

and 2, are extracted from the optimum responses obtained

with these procedures.

As a measure of the results quality, Tables 2 and 3 report

the standard deviation of the resonant frequencies obtained

for the twenty algorithm runs executed. The computational

cost in the form of total number of EM simulations required

by the procedure to converge is also given in Tables 2 and 3.

The presented results (Tables 2 and 3, Figs. 5 and 6)

allow us to draw certain conclusions concerning the

algorithm performance. It can be observed that the

feature-based algorithms (Algorithms 3 and 4) are superior

over those solving a conventionally formulated design prob-

lem (Algorithms 1 and 2), both in terms of reliability and

design quality.

For Antenna I, the reference conventional TR algorithm

(Algorithm 1) fails to find satisfactory designs for a majority

(14 out of 20) of the initial designs (cf. Fig. 5(a) through (h)).

This is consistent with the results obtained for Antenna II,

where Algorithm 1 fails to adequately allocate the antenna

resonances for 18 out of 20 the considered starting points.

In the response features setup, however, Algorithm 3 accu-

rately allocates the resonances for Antenna I and II in all

cases (see Fig. 6). As far as the accelerated Algorithm 4 is

concerned, for Antenna I, inadequate allocation of the res-

onant frequencies only occurs in four cases. For Antenna II,

the designs satisfying the specifications are found in all cases.

Detailed scrutiny of the gathered results indicates that in

the response feature framework, satisfactory designs can be

found for a wide range of initial allocation of the antenna

resonances. This is also the case for Antenna II, where for all

the initial designs the feature-based algorithm yields excellent

solutions.

In fact, as illustrated in Fig. 6, for Antenna II, the resonant

frequencies of the initial design have to be close to the target

ones (cf. Fig. 6(j)), for the conventional procedure to find

an acceptable solution. The aforementioned variety of initial

resonant frequency configurations as well as a comprehensive

validation using a large number of random starting points

demonstrates the quasi-global capabilities of both feature-

based algorithms. The accelerated feature-based procedure

(Algorithm 4) also exhibits a considerably improved compu-

tational efficiency.

The resonance depths in the conventional optimization

setup for both antennas are poor. For Antenna I and Algo-

rithm 1, the value −9 dB on average (for two resonances) is

obtained; it is even worse for Antenna II (around −5.5 dB

for three resonances). This is partially related to inadequate

allocation of the resonant frequencies. It should be empha-

sized that the maximum acceptable level of antenna reflection

at its operating frequencies is −10 dB. On the other hand,

in the feature-based setup, the design quality is significantly

better. For Antenna I, the reflection level is around −40 dB

for the non-accelerated routine (Algorithm 3), and −27.5 dB

on average for the accelerated one (Algorithm 4). Whereas

for Antenna II, the obtained average values are −30 dB and

−27 dB for Algorithms 3 and 4, respectively.
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FIGURE 6. Operation of conventional routines for a triple-band
antenna [40] (Algorithms 1 and 2), as well as their feature-based
counterparts (Algorithms 3 and 4) for the representative algorithm runs
starting from various initial designs: (1) reference TR algorithm with full
FD Jacobian update, (2) expedited TR routine with Jacobian variability
tracking, (3) basic version of the feature-based algorithm, and
(4) expedited feature-based routine with Jacobian variability tracking.
In each panel, the initial design (. . . ) and the designs optimized with the
use of conventional Algorithms 1 (- - -) and 2 (-.-.) are marked gray.
Whereas the designs found within the response feature frameworks
Algorithms 3 (—-) and 4 (- - -) are marked black. Vertical lines mark the
target operating frequencies. The conventional routines (Algorithms 1
and 2) fail to find satisfactory designs in most cases. The conventional
routines (Algorithms 1 and 2) fail to find satisfactory designs in most
cases. Furthermore, the accelerated version of the feature-based
optimization procedure finds satisfactory designs as effectively as its
conventional, non-accelerated version.

The most important aspect of the optimization process for

multi-band antennas is a proper allocation of the resonant

frequencies. As indicated in Tables 2 and 3, the feature-based

algorithms (Algorithms 3 and 4) are far superior over the

conventional ones with this respect.

In particular, the frequencies obtained in the proposed

approach are almost equal to the target frequencies (within

the resolution important for practical purposes) for both

considered antenna structures. This is not the case for the

conventional frameworks.

In order to assess the computational speedup provided by

the procedures involving smart Jacobian updates, one has

to compare the conventional procedures with their accel-

erated counterparts, i.e., Algorithm 1 versus 2 (formulated

in the entire response sense), as well as Algorithm 3 ver-

sus 4 (feature-based ones). For Antenna I, the savings of

around 32 and 37 percent are obtained, respectively. As for

Antenna II, the savings are even more pronounced: 49%

(Algorithm 2 w.r.t. Algorithm 1), and 45% (Algorithm 4 w.r.t.

Algorithm 1). At this point it should become clear that the

computational cost of the proposed approach is dramati-

cally lower than the cost of population-based metaheuristics,

routinely used for global search purposes, e.g., [45]–[48].

The latter, given any imaginable setup (population size and

the number of iterations) would well exceed 1,000 antenna

evaluations, which is one of the reasons why these meth-

ods are most often applied to handle analytical representa-

tions (e.g., array factor models [49]–[51], etc.). It is also

well known that metaheuristics require careful tuning of

control parameters and exhibit poor solution repeatability.

Therefore, these sort of methods were not included in the

benchmark pool.

IV. CONCLUSION

The paper proposed a computationally efficient algorithm for

quasi-global optimization of input characteristics of multi-

band antennas. In the presented framework, the antenna

design closure task is handled by employing the response

feature technique in conjunction with the Jacobian change

monitoring procedure. The reliability of the framework has

been comprehensively validated using uniplanar dual- and

triple-band dipole antennas. It has been demonstrated to be

significantly more reliable than the conventional gradient-

based algorithms. In particular, the proposed algorithm yields

satisfactory designs for a wide range of initial designs,

where the local routines fail. Another advantage of the

approach is a high precision of allocating the resonant fre-

quencies of the antenna. Apart from reliability, exploitation

of the Jacobian variability tracking technique permits sig-

nificant computational savings, which are as high as forty

percent (on average) as compared to the standard (non-

accelerated) algorithm. The optimization cost is therefore

comparable to that of local search routines. At the same

time, nearly global search capabilities are secured. In sum-

mary, the relevance of the incorporated algorithmic solutions

in the proposed framework has been verified, along with

suitability of the approach for solving real-world antenna

design problems. In the future work, antenna optimiza-

tion for other performance figures, including, among others,
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bandwidth maximization and realized gain improvement will

be considered.
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