

Newcastle University ePrints

Pierce K, Ingram C, Bos B, Ribeiro A. Experience in Managing Requirements

Between Distributed Parties in a Research Project Context. In: IEEE 8th

International Conference on Global Software Engineering (ICGSE). 2013, Bari,

Italy: IEEE.

Copyright:

© © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

DOI link to article:

http://dx.doi.org/10.1109/ICGSE.2013.23

Date deposited: 24-07-2014

 ePrints – Newcastle University ePrints

http://eprint.ncl.ac.uk

javascript:ViewPublication(193620);
javascript:ViewPublication(193620);
http://dx.doi.org/10.1109/ICGSE.2013.23
http://eprint.ncl.ac.uk/

Experience in Managing Requirements Between
Distributed Parties in a Research Project Context

Ken Pierce, Claire Ingram
School of Computing Science,

Newcastle University, Newcastle upon Tyne,
United Kingdom, NE1 7RU

Email: kenneth.pierce@ncl.ac.uk,
claire.ingram@ncl.ac.uk

Bert Bos
Chess iX

Lichtfabriekplein 1
2031 TE HAARLEM

The Netherlands
Email: bert.bos@chess-ix.com

Augusto Ribeiro
Department of Engineering,

Aarhus University
Finlandsgade 22, 8200, Aarhus N

Denmark
Email: ari@iha.dk

Abstract—This paper describes the experience of managing a
requirements process between distributed parties with diverse
interests in a research project context. We present some key
‘lessons learned’ from a new case study, the DESTECS project,
and summarise lessons learned from previous experience reports.
Key risks include obstacles imposed by the geographic distance;
the different domain knowledge and working contexts of part-
ners; and a risk that autonomous partners’ goals do not always
coincide. Our observations on a new case study broadly support
a previous study, but we also propose some new lessons to learn,
including the creation of a small, representative ‘requirements au-
thority’ (RA); investing time in studying common concepts early
in the project; and ensuring that expectations for requirements
and for deliveries are made explicit.

Keywords-Requirements, distributed software development,
global software development, research consortium.

I. INTRODUCTION

Requirements engineering has long been acknowledged to
be a key element of a successful project (e.g. see Brooks [1]).
Many innovative techniques have been proposed to improve
the results of the requirements process, and of these many
have demonstrated their effectiveness in a conventional setting,
where requirements engineering (RE) and development is han-
dled by a single, co-located organisation. However, RE can be
more challenging in a project without centralised control, co-
located teams, and a shared knowledge and working culture.

In this paper we present our experiences of RE activities in a
European Commission funded research project (STReP) called
DESTECS. Such projects explicitly require partners to come
from multiple countries and consist of both academic and
industrial partners. This setting challenges the assumptions of
conventional RE techniques, because tasks are shared between
multiple autonomous partners, subteams are geographically
distant and partners have different goals, cultures and expecta-
tions. In addition, proposals for these projects are often created
over short timescales and up against deadlines. Partners are
mainly selected for their technical expertise, so RE may not
receive sufficient attention during the proposal phase. It is
unrealistic to expect that there will always be RE experts
within such consortia.

While many of these are individual risks and problems that
the RE community has long recognised, we believe that few

case studies have been published of projects that experience all
of these problems simultaneously in a research project setting.
We hope to build on the small number of previous experience
reports from similar projects and start the road towards a ‘best
practice’ set of guidelines for future projects. In the remainder
of this paper, related work is summarised in Section II. The
case study is described in Section III. Lessons learned are
described in Section IV, with reference to previous experience
reports. Concluding remarks are made in Section V.

II. RELATED WORK

There has not been much attention yet focused on the
specific collection of challenges posed by the type of project
we describe here. One exception is an experience report by
Gürses et al. on RE from the Trusted Architecture for Securely
Shared Services (TAS3†) European research project, which is
also a cross-border consortium of independent partners. We
refer to this study in Section IV.

Although few researchers have concentrated on the specific
collection of challenges described above, some attention has
been paid to them individually. For example, in the past few
years, Distributed Software Development (DSD) or Global
Software Development (GSD) [2] has been the subject of
much study. Introducing a physical distance between project
members has been found to affect productivity negatively in
the past [3], partly because activities such as co-ordinating
delivery or updating partners becomes a challenge that must
be actively worked on. RE activities in particular benefit from
informal communications or ‘corridor talk’ — the ability to
chat over coffee with users or developers; to get quick answers
to simple questions; and to pick up on informal cues such
as intonation of voice [4], [2]. Herbsleb also emphasises
the importance of losing informal communication channels,
which undermines awareness of how a team is progressing and
makes it difficult to track small problems as they propagate
throughout the project [5]. Verner et al. point out that geo-
graphic separation introduces significant complexity and risk,
suggesting ‘a 50% failure rate for distributed projects is not

†See http://vds1628.sivit.org/tas3/ for details. Note that the superscript ‘3’
is part of the project’s designation.

uncommon’ [6]. A systematic review on collaborative software
development identified the following challenges specific to
requirements engineering that could be attributed to geograph-
ical distribution of stakeholders [4], [3]: diversity in customer
culture and business; achieving appropriate participation of
system users; lack of informal communication and diminished
awareness of local working context; reduced level of trust;
difficulty in managing conflict and achieving common under-
standings; ineffective decision-making meetings; and delays.
A separate systematic review [3] found that there is currently
a lack of successful approaches to overcome the problems of
collaboration and social aspects of RE in distributed teams.

There are some indications that distributed work practices
are improving however, and some recent studies suggest that
‘distance does not have as strong of an effect on distributed
communication delay and task completion as seen in past
research’ [3]. Damian and Zowghi even suggest that locating
the development team far from the requirements engineers
and end users helps to remove them from distractions, which
may prove beneficial [4]. Some studies have suggested that
the presence of high quality collaborative tools may outweigh
the disadvantages presented by distance. For example, an RE
experiment using graduate students found that groups required
to interact remotely using video conferencing tools produced
more creative solutions than their peers who met face-to-
face [7]. A similar experiment however found that face-to-face
meetings were significantly more productive [8].

Treude et al. [3] cite a study which recommended that
distributed teams focus on communicating the work that has
to be done; ensuring there is active project management;
using direct communication channels; and employing a single
development environment; and conclude participants should
accept some travelling. Treude et al. also cite a separate study
based on three distributed projects from RTI International [3],
with similar recommendations: communications tools should
be easy to learn and use; teams should choose their own
communication tools; and there should be shared file storage.
They also concluded that travel is not always strictly necessary,
however our experiences suggest that plenary meetings were
helpful and that those involved in requirements validation
benefited from working in the same location during intensive
analysis sessions (see Sections III and IV).

It is worth noting here that previous research on distributed
RE concentrates heavily on (a) organisations that outsource
tasks to a team in another country where expert skills are
cheaper, or more readily available; or (b) large multi-national
corporations which owns sites in multiple countries. These
scenarios differ from a research consortium. Departments from
within a single organisation are likely to have similar training
and tools as well as communication, decision-making and
reporting structures. In scenarios where some tasks have been
outsourced, we tend to see a client and vendor relationship,
with the client relying on outsourced expertise still able to
exercise preferences in communications, tools and processes.
These common structures are not available in research consor-
tia comprising academic and industrial partners.

Figure 1. Map showing the distribution of DESTECS partners and their main
roles in the project.

III. CASE STUDY: THE DESTECS PROJECT

We present a case study of the DESTECS project1. This was
a three-year project (2010–2012) that created tools and meth-
ods for designing fault-tolerant embedded systems, funded by
the European Commission (STReP). Tools took the form of
software to help in the design of such systems, and methods
comprised guidance to help engineers using the approach.
The creation of tools and methods was driven by the needs
of three industrial partners, who provided case studies. The
seven partners in DESTECS were spread across Europe, with
work on tools, methods and industry case studies centered in
different locations (see Fig. 1).

As is typical for a multi-partner European research project,
the work in DESTECS was divided into work packages (WP1–
5), laid down in a Description of Work (DoW) based on the
proposal, which also detailed the expected contributions of
each partner. Plenary ‘all-hands’ meetings were held every
six months, with all partners presenting their progress, current
state and upcoming plans. The approach adopted by DESTECS
included an element of continuous process improvement, so
steps were taken at various times to improve the way in which
RE activities were conducted.

A. Initial ad-hoc eliciatation

While RE activities were considered during the proposal
writing and therefore included in the DoW, responsibility was
placed with the industry partners, who were not responsible
for developing the tool or methodology. Some RE activities
were also carried out by the methods work package, in the
form of structured questionnaires. This led to a plethora of
requirements-related material being produced in the first few
months of the projects from two work packages (and points
of view), but very few partners with a global oversight of the
project. As found by Gürses et al. [9], due to differing levels
of experience and expectations, these materials were incon-
sistent. Some requirements were too detailed or unrealistic,
others were too vague, and some were duplicates. This initial
approach is illustrated in Fig. 2 (left).

1Design Support and Tooling for Embedded Control Software. See
http://destecs.org/ for details.

Figure 2. Diagram showing the initial, ad-hoc approach taken to requirements
(left) and the introduction of the Requirements Authority (right). Dashed
arrows are outputs and solid arrows are RE activities.

To rectify these problems, a ‘requirements authority’ (RA)
group was created, which consisted of three members— one
representative from each of the three work packages with a
stake in the requirements process. The requirements authority
was tasked with validation activities and subsequent manage-
ment of all requirements for the duration of the project, as well
as defining processes for proposing or amending requirements.
The authority was empowered to make many RE decisions.
This improved approach is illustrated in Fig. 2 (right).

The first task of the authority was to meet in person and
validate the initial RE material, which involved checking
for completeness, consistency, valid acceptance criteria, and
duplication. Each requirement was marked as accepted or
rejected by the authority. This first validation exercise was
done face-to-face, which was felt to be a key part in its success.
While the exercise was time-consuming, it was shortened by
having a small, focused group that represented all stakeholders,
meaning that discussions could be controlled and decisions
reached more quickly. Gürses et al. [9] provides some insights
for validation in projects larger than DESTECS.

Accepted requirements were then assigned a priority and
an initial target delivery date (milestone). The ‘MoSCoW’
categorisation was chosen (Must, Should, Could, Won’t [10]),
which is relatively intuitive and easier to apply consistently.
Requirements which represented a valid statement of industry
need but which fell outside the project scope were designated
as possible future work (using the Won’t category).

Most requirements focus on features of the tools. However,
as a research project, DESTECS has many other types of
deliverables (e.g. on methodology). The RA therefore added
requirements for other deliverables, to ensure they were visible
to all partners and received appropriate planning attention.

B. Requirements driven development

After initial validation the RA presented the requirements
to the whole consortium at the plenary meeting at the end of
the first year. While this did achieve a consensus and ensured
visibility of the RE process to the project as a whole, it was
suboptimal. It led to time-consuming discussions over small
details, which are best left to other communication media. In
the later project plenary meetings, RE sessions focused on
reporting progress towards completion of requirements and as

a means to elaborate outstanding requirements. When input
was required from the project as a whole, the most successful
approach was to divide the consortium into smaller groups
to consider a clearly scoped problem. For example, taking a
vague or high-level requirement and discussing what concrete
subrequirements would be required to fulfil it.

As an example of a requirements problem, one requirement
stated that design space exploration should be supported by
the DESTECS tool, but it was not clear how it would translate
into actual tool features. It proved to be a question that could
not be solved using email or chat. Instead it was solved at a
plenary meeting, where concrete ideas could be brainstormed
and commented by all partners on very quickly. In this case
the project’s wide geographic distribution introduced a delay
in reaching a solution.

Partners were also asked to contribute towards prioritising
outstanding requirements at plenary meetings. Some releases
of the tool missed their deadlines, which revealed an important
difference between academic and industrial partners. Industrial
partners needed to schedule time in advance, and late delivery
of releases would cause them to miss their allotted ‘window’
of time. Academic contributors were not required to allocate
their time between projects in advance and could afford to
be flexible. Therefore the requirements were employed as a
tool for managing deliveries, with partners asked to agree
on prioritising the next set of outstanding requirements. This
approach was successful in marrying the different circum-
stances and needs of the academic and industrial partners.
It was particularly effective for a decentralised consortium,
as it allowed all parties to have their say and to ‘buy into’
development plans.

C. Requirements data and visibility

Requirements were stored throughout the life of DESTECS
in an online tool bundled as part of the gforge2 manage-
ment tool. Elements stored for requirements included an
identifier and descriptive name; a responsible work package;
a ‘MoSCoW’ priority; and a target month for completion.
Progress was also estimated at regular intervals (from 0% to
100%). In addition, each requirement had a list of ‘updates’
showing where it had changed. These messages gave rationale
for changes and justified progress estimates. This provided
some traceability over the history of each requirement and to
actual deliverables. Our experience agrees with Herbsleb that
GSD projects need to to preserve “project memory” [5].

Whilst the online requirements base was a useful, customis-
able tool, it was not an ideal way to present an overall picture
of the project requirements or how they were progressing
towards completion. To improve RE visibility, a ‘living doc-
ument’ was created which could be automatically generated
from the online data, but which presented the RE materials in
a much more accessible way. For instance, coloured cells were
used to indicate requirement completeness (from bright green
for 100%, to white indicating no progress). Versions of this

2See http://gforge.org/gf/ for details.

living document were frozen and stored as progress updates
every two months (coinciding with tool releases). An up-to-
date copy of the document was presented to external reviewers
for year-end reviews.

D. Common concepts

The DESTECS project brought together programmers, en-
gineers, and formal methods experts. Whilst there is some
overlap in these fields, there are some concepts and terms
which have different meanings in each field (e.g. ‘param-
eter’ has different meanings for a programmer and for an
engineer). This caused some confusion initially, with many
partners unaware of the potential for misinterpretation. To
tackle this problem, a ‘concepts base’ —a glossary of technical
terms drawn from the relevant problem domains, providing
definitions and meanings in a user-friendly narrative— was
developed and updated throughout the project, and included
in a deliverable. It served as a helpful reference for project
partners and also as an accompaniment to user manuals and
training materials. The development of a concepts base is also
a useful tool during requirements elicitation and elaboration. If
technical terms that are not yet fully understood by all groups
are discovered, this suggests that more requirements elicitation
is needed.

E. Communication media

Communication is clearly of crucial importance on a
project like this. Because all partners are autonomous but co-
dependent, it is important for political and practical reasons
that everyone is informed of current issues and progress.
DESTECS used the following tools:
• Teleconferences are difficult with more than a small

number of people. However, teleconferences do have
the advantage of speed; it is typically faster to update
colleagues verbally than to write the information down.

• Instant chat was very successful in cases where more
people needed to collaborate. Many work packages with
distributed teams scheduled weekly ‘net meetings’ on an
instant chat client. This is a relatively slow way to hold
a discussion; there are frequent pauses whilst someone is
typing a reply. However, if participants have different first
languages, written discussions can be easier to follow.
Also, it is possible to archive the text of the conversation
and store it for future reference (e.g. as a reminder of
exactly who agreed to complete specific work, and the
dates that were agreed). Some previous studies of GSD
where chat client usage yielded some positive results are
summarised by Herbsleb [5].

• Subversion was used for managing code deployment.
Many previous papers have indicated the importance of
version control on a collaborative project (e.g. [2]).

• An online planning tool (gforge) was used that provided
online document versioning, mailing lists, forums, blogs,
and a wiki. The forums and blogs were not used by
DESTECS, but a tracker tool packaged with the gforge
environment was used to track requirements as well as

bugs. The online wiki was used to help plan and manage
face-to-face meetings collaboratively.

IV. LESSONS LEARNED

This section lists lessons learned in DESTECS and sum-
marises lessons learned from previous projects.

A. Lessons learned in DESTECS

The following techniques worked well in the DESTECS and
have not been suggested in previous literature.
• Spend time on concepts work as soon as possible, both as

part of an elicitation exercise and to ensure that finished
requirements are unambiguous to all partners.

• Create a cross-work-package requirements authority, con-
sisting of one person per stakeholding work package to
make requirements decisions.

• Define a process for submitting new requirements or
making changes.

• Restrict access to the requirements themselves to require-
ments authority members only.

• Employ a ‘living’ document which is updated frequently
to reflect current progress and/or issues. Frequent frozen
‘releases’ or snapshots of this document form a useful
regular update to the partners and an up-to-date frozen
version may be submitted to the for external review.

• Use online tracking tools where possible. Scripts can
easily be created to collect data from a requirements
database and produce a formatted snapshot document
minimize production effort for the authority.

• Record update messages or change history on the require-
ment each time a change is made to it. This provides
useful traceability and accountability.

• Determine explicit expectations regarding features for the
tools, frequency of deliveries and acceptability of beta
versions with bugs, particularly for partners whose staff
may be scheduling time in advance.

• Employ iterative, agile development techniques and use
requirements to drive development. Ensure all partners
collaborate in prioritising outstanding requirements, en-
suring that all parties have a say in the project’s direction
and an awareness of future plans.

• Ensure that effort estimates are sufficient to ‘guarantee’
that promised features can be delivered on time.

• If necessary, create requirements for all major deliverable
themes, to ensure that they remain visible and receive
sufficient attention.

• Be prepared for the requirements authority to perform
validation activities in the same geographical location—-
face-to-face meeting time can be invaluable here for the
authority to build trust.

B. Lessons learned from previous projects

DESTECS is not the only project with these characteristics
to develop some lessons or guidelines based on experience.
Gürses et al. also published a selection of lessons learned [9],
based on the European research project TAS3. DESTECS

broadly corroborates observations from TAS3. In particular we
agree that the RE process should drive the research and that
scope and importance of RE activities must be realised from
the onset of the project. The ability of partners to participate
in RE activities should be assessed, appropriate methodologies
selected and templates created that are tailored to the needs
of the project. A common format for requirements should be
defined and a collaborative environment should be employed
to facilitate the communication among partners. Validation
activities should be carried our regularly, checking consistency,
completeness, and fulfillment of individual requirements.

Relevant lessons and guidelines can also be drawn from
wider literature, including experiences of requirements engi-
neers from systems of systems and distributed requirements
engineering projects. Jiménez et al. [2], for example, present
lessons learned based on a systematic review of literature
on DSD. From their observations we agree that continuous
process improvement is important. We identified problems
in DESTECS and took measures to improve processes. In
particular, we agree that “activities [should be] registered
with information on pending issues, errors and people in
charge” and that “provision [exists] for awareness in software
development activities” [2]. We improved our approach in both
these areas in response to problems with positive results. We
also agree with their recommendation to use version control,
and in hindsight we agree that training in RE activities should
have had a higher priority early on.

V. CONCLUSIONS

Projects funded by the European Commission bring together
autonomous academic and industrial partners, with wide ge-
ographic distributions, varying domains, and different experi-
ences. Groups like this experience a particular set of problems
for RE, exacerbated by the fact that proposals are often written
over a short timescale, with partners selected for their technical
expertise, and not necessarily for their experience with RE.
In general, our experiences of this type of project have been
very positive. Although a wide geographical distribution can
present obvious obstacles, it is our experience that the learning
and training opportunities created by collaborations between
parties with very different backgrounds and skillsets more than
outweigh this.

We present here a case study of a three-year European
research project (STReP) called DESTECS, which supports
the findings of a previous case study we know of [9].
We contribute our own lessons learned, with the view to
contributing to a ‘best practice’ set of guidelines for future
projects. We recommend that future projects carefully consider
RE activities upfront, to ensure that there are no mismatched
expectations. We also recommend that a small, representative
group —a requirements authority (RA)— is created to validate
requirements and control access to requirements data. Face-
to-face contact between this group as they conduct initial
validation activities is highly recommended. Larger numbers
of people contribute most usefully when a specific, detailed
elaboration task with a clear scope is presented for discussion

(e.g. “suggest concrete sub-requirements for this high-level
requirement” or “place these outstanding requirements in order
of priority”).

There are some factors that could affect the validity of our
recommendations. First, our case study project was relatively
small (7 partners). Larger projects may need to adapt our
approach; e.g., a focused requirements authority may not
feasible with a larger number of work packages (e.g. 10 or
more). Forming a hierarchy within the requirements authority
could mitigate such a problem. Second, the case study used
an agile development methodology and a project using a
different approach may not benefit from our observations.
However the adoption of such an approach proved beneficial
in our experience. Finally, while we believe our findings
are generalisable to other projects in domain of computing
science and engineering, conclusions drawn may not be valid
in other domains. Despite these factors, we believe that our
findings can contribute to the discourse on best practice for
collaborative, distributed research projects.

ACKNOWLEDGMENTS

The authors would like to thank their colleagues from the
DESTECS project. The research leading to these results has
received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ments no. 248134 (DESTECS) and no. 287829 (COMPASS).
Additionally the work of Pierce is supported by the UK
EPSRC Platform Grant on Trustworthy Ambient Systems.

REFERENCES

[1] F. P. Brooks, Jr., “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, no. 4, pp. 10–19, Apr. 1987. [Online].
Available: http://dx.doi.org/10.1109/MC.1987.1663532

[2] M. Jiménez, M. Piattini, and A. Vizcaı́no, “Challenges and improve-
ments in distributed software development: A systematic review,” Ad-
vances in Software Engineering, pp. 1–14, 2009.

[3] C. Treude, M.-A. Storey, and J. Weber, “Empirical studies on collabora-
tion in softare development: A systematic literature review,” Department
of Computer Science, University of Victoria, Technical report, Dec 2009.

[4] D. E. Damian and D. Zowghi, “The impact of stakeholders’ geographical
distribution on managing requirements in a multi-site organization,” in
Proceedings of the IEEE Joint International Conference on Require-
ments Engineering (RE’02), 2002.

[5] J. D. Herbsleb, “Global software engineering: The future of socio-
technical coordination,” in 2007 Future of Software Engineering,
ser. FOSE ’07, 2007, pp. 188–198. [Online]. Available: http:
//dx.doi.org/10.1109/FOSE.2007.11

[6] J. M. Verner, O. P. Bereton, B. A. Kitchenham, and M. Turner,
“Systematic literature reviews in global software development: A tertiary
study,” in Proceedings of the International Conference on Evaluation
and Assessment in Software Engineering (EASE) 2012, 2012.

[7] R. Ocker, S. R. Hiltz, M. Turoff, and J. Fjermestad, “Computer support
for distributed asynchronous software design teams: Experimental results
on creativity and quality,” in Proceedings of the 28th Annual Hawaii
International Conference on System Sciences, ser. HICSS, 1995.

[8] H. P. Andres, “A comparison of face-to-face and virtual software
development teams,” Team Performance Management: An International
Journal, vol. 8, pp. 39–48, 2002.

[9] S. Gürses, M. Seguran, and N. Zannone, “Requirements engineering
within a large-scale security-oriented research project: lessons learned,”
Requirements Engineering, vol. 16, pp. 1–24, 2011.

[10] D. Clegg and R. Barker, Case Method Fast-Track: A Rad Approach.
Boston, MA: Addison-Wesley Longman Publishing Co., Inc., 1994.

