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______________________________________________________________________ 

Abstract:Complexity metrics have been intensively studied in predicting fault-prone software modules. 
However, little work is done in studying how to effectively use the complexity metrics and the prediction 
models under realistic conditions. In this paper, we present a study showing how to utilize the prediction 
models generated from existing projects to improve the fault detection on other projects. The binary logistic 
regression method is used in studying publicly available data of five commercial products. Our study shows 
(1) models generated using more datasets can improve the prediction accuracy but not the recall rate; (2) 
lowering the cut-off value can improve the recall rate, but the number of false positives will be increased, 
which will result in higher maintenance effort. We further suggest that in order to improve model 
prediction efficiency, the selection of source datasets and the determination of cut-off values should be 
based on specific properties of a project. So far, there are no general rules that have been found and reported 
to follow. 
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1. Introduction 

oftware quality analysis and prediction focuses on detecting high-risk fault prone 
program modules, allowing practitioners to allocate project resources strategically [9, 

34].Through allocating more testing resources on fault-prone modules, we can effectively and 
extensively test the product. Therefore, predicting fault-prone software modules is an 
important technique used in reducing test time and test effort and is becoming an important 
research topic in recent years [7, 15-16, 20, 28-31, 36]. 

In practice, software engineers employ various methods to identify and revise high-risk 
or low-quality program modules [6, 9]. Effectiveness of detecting such modules is affected by 
the software measurements used. In these predictive models, source code metrics could be 
used as input variables [32, 34]. One of the most commonly used methods in this area is 
binary logistic regression [2-3, 12-13, 19, 23, 37], which is proven to be a powerful technique 
in software development and maintenance. 

However, most of the previous studies using binary regression analysis focused on 
identifying candidate complexity metrics and building relation models that are capable of 
identifying fault-prone software modules. Few efforts are spent on investigating the 
applicability and usability of prediction models. More specifically, the accuracy of the 
reported models is usually evaluated using goodness of fit of the model predictions to the 
same fault data generating the model. Few studies are performed to build cross-project 
prediction models that are evaluated on different projects with a similar development 
environment. 
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The idea of building a cross-project prediction model might seem promising. On the one 
hand, as the fundamental structures, management, and measurement of two projects could be 
different, it might not be feasible to build these models. On the other hand, software projects 
always share some common properties: they are building similar products, targeting similar 
problems, using similar methods, or following similar development processes. It is reasonable 
to believe that such cross-project models could be built under certain circumstances, 
especially if the two projects are within the same application domain. The objective of this 
study is to build cross-project prediction models and evaluate their predictability. The 
findings of this study will be helpful to understand if a universal cross project mode could be 
built. 

In this paper, we present a case study of using complexity metrics to build binary 
regression models to predict fault-prone software modules. Comparing with previous studies, 
this paper makes the following contributions: (1) we build fault-proneness prediction models 
based on available projects and assess them on different projects; and (2) we investigate how 
to efficiently adjust prediction models to detect more fault-prone software modules. The 
study is performed using publicly available software fault data, which makes the study easy to 
be reproduced and improved.  

The rest of this paper is organized as follows. Section 2 reviews related work of using 
software complexity metrics to build binary logistic regression models in order to predict 
fault-prone software modules. Section 3 describes the data source and the mathematical 
method. Section 4 presents the results and the analysis of this study. Conclusions are 
presented in Section 5. 

2. Related Work 

Binary logistic regression analysis has been intensively studied in software engineering 
field, especially in predicting fault-prone modules. For example, using Mozilla project, 
Gyimothy et al. [8] studied how to build a prediction model for error-prone software classes in 
open-source projects. Vokac [35] found some design patterns can be used to identify 
fault-prone classes. Subramanyam and Krishnan [25] performed a study that supports using 
object-oriented design complexity metrics (Chidamber and Kemerer’s CK metrics) in 
determining software defects.  

Most recent studies in this area are reported by Olague’s group and Zhou’s group. For 
example, Olague et al. [21-22] found that object-oriented complexity metrics, such as 
Chidamber and Kemerer’s CK metrics, Michura’s standard deviation method complexity 
metrics, Bansiya and Davis’ quality metrics, and Etzkorn’s average method complexity are 
good candidate predictors of fault-prone classes. Zhou and Leung [38] investigated the 
usefulness of object-oriented design metrics in predicting fault-proneness. Their study found 
that the prediction capabilities of the investigated metrics greatly depend on the severity of 
faults. In another study, Zhou et al. [39] described how to correctly interpret the performance 
of a prediction model based on odds ratio. In particular, they found that odds ratio associated 
with one standard deviation increase should be used to represent model effectiveness.  

The studies close to our work are those intended to improve the applicability of the 
prediction models. For example, based on cost-effectiveness analysis, Arisholm and Briand 
[1] proposed a simple and pragmatic method for assessing the effort of using the prediction 
models. Shatnawi and Li [26] applied prediction models to the Eclipse project and found that 
although some complexity metrics can predict fault-prone classes, the accuracy of the 
prediction decreased from release to release, which prevented them from building a model to 



identify evolving error-prone classes. Briand et al. [2] studied the applicability of using 
prediction models generated from one Java project to predict fault-prone classes in another 
Java project. Their study showed that a model built on one system can be accurately used to 
evaluate classes in another system according to their fault-proneness. Menzies et al. [17] 
studied the performance ceiling of prediction models, i.e., some inherent upper bound on the 
amount of information offered by complexity metrics in identifying fault-prone modules. 
They proposed using case-based reasoning when applying prediction models. 

As described before, none of the reported research has focused on evaluating predicting 
models across projects. However, in reality, a software practitioner is interested in knowing, 
among a given set of software metrics, which ones to use and how to get optimal defect 
prediction results. This is the objective of the present study. 

3. Data Description and Mathematical Method 

The data used in this study is retrieved from online public repository PROMISE [4]. The 
original data is donated by Software Research Laboratory of Bogazici University, Istanbul, 
Turkey [27]. Five data sets are utilized (AR1, AR3, AR4, AR5, and AR6). These are 
embedded software products implemented in C. Each dataset contains the measurements of 
29 static code attributes (complexity metrics) and 1 defect information (false/true) of tens to 
hundreds of modules. Module attributes were collected using Prest Metrics Extraction and 
Analysis Tool [24, 33]. 

Some of the 29 metrics, such as number of lines of blank code and number of lines of 
comment code, have no apparent relation with module faults. They are not included in this 
study. Accordingly, 24 metrics are initially chosen to be used in this study. They are described 
in Table 1. The detailed descriptions of these metrics can be found in [18]. 

 

Table 1. Software module attributes (complexity metrics) used in this study [18]. 

Line of Code 
(LOC) Metrics 

Halstead 
Metrics 

McCabe 
Metrics 

Miscellaneous 
Metrics 

Total LOC 
Executable 
LOC 

Length 
Volume 
Level 
Difficulty 
Programming effort 
Error estimate 
Programming time 

Cyclomatic 
complexity 
Cyclomatic density 
Decision density 
Design complexity 
Design density 
Normalized 
cyclomatic complexity 

Unique operands 
Unique operators 
Total operands 
Total operators 
Branch count 
Call pairs 
Condition count 
Multiple condition count 
Formal parameters 

 

Logistic regression analysis is a method to predicting a categorical variable from a set of 
predictor variables. In this study, it is used to analyze the relations between software module 
attributes (complexity metrics) and module defect information. More specifically, the 
predicted dependent variable has a binary value, true or false, where true indicates faults and 
false indicates no faults. The independent variables are module attributes (complexity metrics) 
which have continuous numerical values, such as those listed in Table 1. 

Assume  is the dependent variable and value 1 represents the corresponding module 
has fault and value 0 representing the corresponding module has no fault. Also assume 

 are independent variables and 

Y

1 2, ,,nX X X 1 2Pr( 1 , , , )nY xx x  represents the 



probability that 1Y 1 1 2  2,  ,  ,  n nX x X x X x when . Accordingly, binary logistic 
regression analysis can generate the following model [39]. 
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The right side expression of Equation (1) will generate a real number. If its value is 
greater than or equal to 0.5, ; If its value is less than 0.5, ˆ 0Y

Ŷ
Ŷ

1 2, , ,  ,ab b nb

. Here, 0.5 is called the 
cut-off value. Using different cut-off values can give us different prediction results. It can be 
seen that lowing the cut-off value can result in high value of , increasing the cut-off value can 
result in low value of . It has been a common practice to adjust cut-off values in order to 
achieve different prediction results [14]. 

In Equation (1),  and  are coefficients of the independent variables. In 
statistics, the odds are expressed as the ratio of the probability an event that will happen over 
the probability the event won’t happen. Therefore, we can derive the following odds model. 
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Our regression model will be predicting the logit, that is, the natural log of the odds a 
module having faults or not. That is, 

11ln( ) n nODDS a b x b x

1 1ln( )ODDS a b x

.                               (3) 

4. Analysis and Results 

Twenty-four module attributes (complexity metrics) are used in this study. Not all of 
them are necessary to yield acceptable predictability. Therefore, our analysis is divided into 
two steps. The first step is to determine the module attributes (complexity metrics) that can 
yield acceptable predictability. The second step is using the selected module attributes 
(complexity metrics) to build prediction models. These two steps are presented in the 
following two subsections. 

4.1. Selecting Independent Variables 

For each data set (RA1, RA3, RA4, RA5, and RA6), we performed score tests to 
determine whether each of the 24 attributes would be significant predictors in the binary 
regression model. In these tests, a single attribute model (which includes intercept of course), 

, is compared with a null model, ln( )ODDS a, which has no predictors 
but just the intercept. The result of the score tests can tell if adding a predictor (attribute, 
independent variable) to a null model can significantly change the fitness of the prediction 
model. The results of the score tests are summarized in Table 2, where it shows the 
significance of the predicator in a single attribute model in each data set.  

In Table 2, the significance values that are at the 0.01 level are highlighted. In these 24 
attributes, 4 attributes (branch_count, condition_count, multiple_condition_count, and 
cyclomatic_complexity) are significant predicators in all five datasets. They are from two 
categories in Table 1 (McCabe Metrics and Miscellaneous Metrics) and accordingly chosen 
as the independent variables. To make the dependent variables represent different properties 
of a software product, two other attributes from categories Line of Code Metrics and Halstead 
Metrics are determined to be chosen as the independent variables. Physical line of code 
(executable_loc) is one of the most commonly used metrics to measure software complexity, 
and estimated number of delivered bugs (halstead_error) reflects the combined effects of other 
Halstead metrics. Accordingly, they are also chosen as the additional independent variables. 



Therefore, in this study, 6 module attributes (complexity metrics) are used as the independent 
variables, 1 2  6,  ,  ,  X X X . They are bolded in Table 2. Function (3) can accordingly be 
modified as the following, where 1 2, ,  ,x x  and 6x are the measurements of the attributes 
of six metrics: 1 2  6,  ,  ,  X X X  (branch_count, condition_count, multiple_condition_count, 
cyclomatic_complexity, executable_loc, and halstead_error). 

1 1 2 2 6 6ln( )ODDS a bx bx bx                          (4) 

Equation (4) is the specific binary logistic model we are going to build in this study. It 
shows the relation between the odds a module having faults and the six measurements of a 
module’s properties. In the following of this section, we will use existing data to build the 
models represented in Equation (4), i.e., to determine the model coefficients 1 2 6( , , ,  ,  )ab b b  

and evaluate model predictability. 
 

Table 2. Summary of score tests. 

Metrics  AR1  AR3  AR4  AR5  AR6  
total_loc  .034  .000 .000 .000  .059  

executable_loc .021 .000 .000 .000  .029  
unique_operands  .103  .000 .000 .000 .004 
unique_operators .000 .001 .000 .000  .013  
total_operands .010 .000 .000 .000  .211  
total_operators .010 .000 .000 .000  .016  
halstead_length .010 .000 .000 .000  .110  
halstead_volume  .011  .000 .000 .000  .081  
halstead_level  .028  .066  .002  .022  .001 
halstead_difficulty .000 .000 .000 .007  .809  
halstead_effort .001 .000 .000 .003  .304  
halstead_error .013 .000 .000 .000 .001 
halstead_time .001 .000 .000 .003  .305  
branch_count .003 .000 .000 .000 .000 
call_pairs  .191  .459  .001  .119  .018  
condition_count .003 .000 .000 .000 .001 

multiple_condition_count .002 .000 .001 .000 .000 

cyclomatic_complexity .003 .000 .000 .000 .001 
cyclomatic_density  .388  .854  .714  .185  .000 
decision_density  .038  .405  .026  .334  .392  
design_complexity  .191  .459  .001  .119  .207  
design_density  .959  .475  .638  .161  .219  
normalized_cyclomatic_complexity  .820   .879   .329   .591   .900  
formal_parameters  .988  .220  .515  .181  .126  

4.2. Building and Assessing Prediction Models 

There are two ways to build and evaluate fault prediction models: self-assessment and 
forward assessment. There are five datasets (AR1, AR3, AR4, AR5, and AR6) in this study. 
Figure 1(a) illustrates the self-assessment model, where one prediction model is built on each 
dataset and is evaluated on the same dataset. For example, the prediction model based on 
dataset AR1 is evaluated on dataset AR1; the prediction model based on dataset AR3 is 
evaluated on dataset AR3, and so on. Figure 1(b) illustrates the forward assessment model, 
where prediction models are built based on one or more datasets and evaluated on a different 
dataset. For example, the prediction model based on dataset AR1 is evaluated on dataset 
AR3; the prediction model based on datasets AR1 and AR3 is evaluated on dataset AR4, and 
so forth. 



 
Figure 1. (a) Self-assessment model and (b) forward assessment model. 

4.2.1. Self-Assessment 

In self-assessment, each dataset (AR1, AR3, AR4, AR5, and AR6) is used as the source 
data to build a prediction model. Accordingly, five logistic models represented in Equation (4) 
are built. Table 3 summarizes the model parameters, where parameters 1 2, , ,  ,ab b  and 

6 b are constant, branch_count, condition_count, multiple_condition_count, cyclomatic_complexity, 
executable_loc, and halstead_error, respectively. 
 

Table 3. The parameters of logistic self-assessment models. 

Model parameters Model 
number 

Data 
source a  b1 b2 b3 b4 b5 b6 

S1  AR1  -4.027  -0.726  0.380  1.162  1.458  -0.182  21.111  
S2  AR3  -3.245  0.367  -0.134  -0.643  -0.580  -0.028  6.530  
S3  AR4  -3.913  0.557  -1.306  0.091  0.015  0.062  3.892  
S4  AR5  -10.602  -2.890  0.255  5.574  5.631  0.027  5.788  
S5  AR6  -2.383  -0.268 1.108 -0.902 -0.013 -0.050  0.016 

 

These five modes are then evaluated using the same dataset generating the model. Using 
a model to evaluate each module, we can obtain two measurements of dependent variable Y: 
predicted and observed. In binary logistic regression, dependent variable Y has two values 
(in both observation and prediction): positive (1), which indicates defect, and negative (0), 
which indicates defect-free. The cross-analysis of predictions against observations can divide 
data into four categories, as shown in Table 4 [10]. 

Table 4. Evaluation of prediction against observation [10]. 

   Predicted  

  Positive  (1)  Negative (0)  

Positive (1) 
tp 

(true positive) 
fn 

(false negative) 
Observed 

Negative (0) 
fp 

(false positive) 
tn 

(true negative) 
 



Predication accuracy, prediction precision, and recall rate are commonly used metrics to 
evaluate the binary prediction models. They are defined in Equations (5), (6), and (7) [10]. 
Prediction accuracy describes the general prediction power of a model; prediction precision is 
used to evaluate the correctness of positive signal predictions; and recall rate is used to evaluate 
the prediction power for positive signals. In software engineering field, detecting fault is 
considered most important, therefore, recall rate has been considered to be the most important 
metric. 

 
tp tn

Prediction accuracy
tp tn fn fp

.                             (5) 

 
tp

Prediction accuracy
tp fp

.                                       (6) 

 
tp

Recall rate
tp fn

.                                        (7) 

Table 5 summarizes the results of self-assessment of the prediction models. It can be seen, 
except AR1, the other four models yield near 50% recall rate. However, as we discussed in 
Section 1, these models are built and evaluated using the same dataset. They might not be 
feasible for real applications. Therefore, there is a need to perform forward assessment of the 
prediction models. 

 

Table 5. Self-assessment of prediction models. 

Model number  S1  S2  S3   S4   S5  
Dataset (source and evaluating) AR1 AR3 AR4 AR5 AR6 
Number of datasets  121 63  107 36  101  

Prediction accuracy  93% 95% 88% 94% 90%  
Prediction precision  50% 86% 77% 100% 77%  
Recall rate  11% 75% 50% 75% 47%  

 

4.2.2. Forward Assessment 

Following the scheme described in Figure 1(b), we build four forward-assessment 
models. Accordingly, four logistic models represented in Equation (4) are built. Table 6 
summarizes the model parameters, where parameters 1 2  and  are constant, 
branch_count, condition_count, multiple_condition_count, cyclomatic_complexity, executable_loc, 
and halstead_error, respectively. It should be noted that Model F1 is same as model S1, 
because they are generated from the same dataset (AR1). Different from self-assessment 
models (S1 to S5), forward-assessment models (F1 through F4) are generated using aggregate 
datasets.  

, , ,  ,ab b 6 b

 

Table 6. The parameters of  logistic forward-assessment models. 

Model parameters Model 
number 

Data 
source a  b1 b2 b3 b4 b5 b6 

F1  AR1  -4.027 -0.726 0.380 1.162 1.458 -0.182  21.111  
F2  AR1, AR3  -2.857 0.159 -0.001 -0.376 -0.226 -0.013  1.846  
F3  AR1, AR3, AR4  -3.497 -0.154 -0.191 0.449 0.487 0.025  1.418  
F4  AR1, AR3, AR4, AR5 -3.687 -0.268 -0.107 0.601 0.642 0.022  1.958 

 



These four forward-assessment models are then evaluated on Datasets AR3, AR4, and 
AR5, and AR6, respectively. Table 7 summarizes the evaluation of four prediction models. In 
Table 7, each latest model is supposed to outperform the previous models, because of the 
increase of the size of source dataset. From Table 7, we can see that the prediction accuracy 
increases from Model F1 to Model F4. However the prediction precision and the recall rate are 
not in increasing trend. 

 

Table 7. Forward assessment of prediction models (cut-off value is 0.5). 

Model number  F1 (S1)  F2   F3   F4  
Source dataset  AR1  AR1, AR3  AR1, AR3, AR4  AR1, AR3, AR4, AR5 
Evaluating dataset  AR3   AR4   AR5  AR6  

Prediction accuracy 76%  82%   83%   87%  
Prediction precision 32%  100%   75%   100%  
Recall rate  75%  5%  38%   13%  

It should be noted here that as more data are included in the source dataset, we should 
expect the models yield better predictions. However, in Table 7, only the prediction accuracy is 
improved through adding more data; the prediction precision and the recall rate show no clear 
trend. The reason for this behavior of these forward-assessment models could be due to the 
differences among these projects. These differences could be design difference, measurement 
difference, management difference, or something else. On the other hand, these projects must 
share some common properties, as the prediction accuracy improves with more datasets being 
added. 

Furthermore, if we compare Table 6 and Table 7, we can see that if models are 
self-evaluated on the source dataset generating the model, the model performance (prediction 
accuracy, prediction precision, and recall rate) is better than forward-evaluation. However in 
practice, self-assessment is less useful than forward assessment. Therefore, our goal is to 
improve the performance of forward prediction models. Specifically, we would like to 
improve the recall rate, which can help us identify more error-prone modules. 

As described before, in Equation (1),    has a value between 0 and 1 and represents 
the probability a fault can occur. When this model is used, a cut-off value should be assigned. 
If   is less than the cut-off value, it will be considered as 0; if  is greater than the cut-off 
value, it will be considered as 1. Conventionally, the cut-off value is set to be 0.5, which 
means, if    is less than 0.5, we will predict no fault in the software module and if    is 
greater than 0.5, we will predict fault in the software module. 

Ŷ

Ŷ Ŷ

Ŷ Ŷ

If we would like to identify more true positive modules, we need to use a lower cut-off 
value. Following this scheme, cut-off values of 0.2 and 0.1 are utilized to evaluate models F1 
through F4. The results are summarized in Table 8 and Table 9.  

 

Table 8. Forward assessment of prediction models (cut-off value is 0.2). 

Model number  F1   F2   F3   F4  
Source dataset  AR1  AR1, AR3  AR1, AR3, AR4  AR1, AR3, AR4, AR5 
Evaluating dataset AR3  AR4   AR5   AR6  

Accuracy  73%  83%  81%   87%  
Precision  30%  75%  54%   100%  
Recall  88%  15%  88%   13%  



Table 9. Forward assessment of prediction models (cut-off value is 0.1). 

Model number  F1  F2   F3   F4  
Source dataset  AR1  AR1, AR3  AR1, AR3, AR4  AR1, AR3, AR4, AR5 
Evaluating dataset  AR3   AR4   AR5  AR6  

Prediction accuracy  65%   84%   72%  78%  
Prediction precision  25%   62%   43%  23%  
Recall rate  88%  40%  88%   20%  

 

From Table 8 and Table 9, we can see that through lowering the cut-off value, we can 
improve the recall rate. For example, in Model F2, the recall rate is improved from 5% to 15% 
and 40%, respectively when the cut-off value is lowered from 0.5 to 0.2 and 0.1. It should be 
noted that although lowering the cut-off value can improve the recall rate, it will reduce the 
prediction accuracy and the prediction precision, which will increase the testing effort. 
However in some fields, such as safety-critical applications and mission critical applications, 
detecting errors is more important than reducing the testing cost, it is therefore reasonable to 
use lower cut-off values in order to detect all error-prone modules. 

Based on previous analysis, we can see that balancing of prediction precision and recall 
rate is the balancing of effort and risk. A higher prediction precision means lower testing 
effort in software development and a higher recall rate means lower risk of faults in delivered 
products. Therefore, the selection of cut-off values is not just a technical issue, but a 
management issue. It depends on the budget, the available resource, and the quality 
requirement of the product. 

Another way to systematically evaluate the effect of different cut-off values is to draw 
receiver operating characteristic curves [11]. Accordingly, the metric fall out is defined. 

 
fp

Fall out
fptn

.                                           (8) 

In Equation (8), fp and tn are defined in Table 4. Fall out is also called false positive 
rate (FPR). Correspondingly, recall rate is also called true positive rate (TPR). A receiver 
operating characteristic (ROC) curve, or simply a ROC curve, is a graphical plot of true 
positive rate (TPR), vs. false positive rate (FPR), for a binary classifier system as its cut-off value is 
varied. 

Figure 2 shows the receiver operating characteristic (ROC) curves of Models F1 
through F4. It can be seen that these curves have a normal behavior: the true positive rate has 
a positive relation with the false positive rate. In other words, increasing of true positive rate 
could result in the increasing of false positive rate. An optimum cut-off value could be obtained 
by examining the precision accuracy, which balances the true positive rate and the false positive 
rate. Table 10 shows the optimum cut-off values of Models F1 through F4. 

In Table 10, the cut-off values are those that can generate the largest prediction 
accuracies. In all four models, through using different optimum cut-off values, we can 
achieve about 88% prediction accuracies. Also, it is interesting to see that the optimum cut-off 
values vary dramatically from one model to another model. Therefore, in real-world 
applications, the optimum cut-off values should be calibrated for each different project. 

 



Table 10. Optimum cut-off values of forward assessment models. 

Model number  F1  F2  F3  F4  
Optimum cut-off value 0.9999  0.1000   0.2500   0.2000  
False positive rate 0.0364  0.0574   0.1071   0.0  
True positive rate 0.3750  0.4000   0.8750   0.1333  
Largest prediction accuracy 0.8889  0.8411   0.8889   0.8713  

 

 

  

(a)  (b)  

  

(c)  (d)  

Figure 2. ROC curves of forward-assessment Model (a) F1; (b) F2; (c) F3; and (d) F4. 

 
4.3. Discussions 

As described in the Introduction, cross-project prediction models can improve software 
product quality and software process quality. Our study shows that it is possible to apply a 
model generated using the data from one project to predict faults in another project. This is 
reflected in the increasing of prediction accuracy of our models if more datasets are employed. 
However, our study also found prediction precision and recall rate are not improved under 
larger dataset. Although these observations might be specific to this study, the 



non-monotonicity of the prediction accuracy, prediction precision, and recall rate in these 
experiments seem to indicate a fundamental lack of universality of the cross-project 
prediction models. To further prove our observations, more studies are needed in the future. 

5. Conclusions 

In this paper, we presented our experience of using complexity metrics to predict 
error-prone software modules. We found (1) forward assessment of prediction models usually 
has low performance compared to self-assessment, although it is a more realistic measure of 
the prediction power of a binary logistic regression model; and (2) lowering cut-off values 
could be a practical technique in revealing more true positive modules, although it might 
generate additional false positive signals, which will result in lower prediction accuracy, 
lower prediction precision, and higher testing effort. 

Based on our study, we suggest that in order to improve the model prediction efficiencies, 
the selection of source dataset and the determination of cut-off values should be based on 
specific properties of a project. For example, if reducing cost of testing is the major objective 
of a project, a regular cut-off value (0.5) or a higher cut-off value could be used to improve the 
prediction accuracy; if uncovering the faulty modules is the major objective of the project, a 
lower cut-off value should be used to improve the recall rate. Currently, there exists no such a 
general rule that we can follow to guarantee detecting most of the fault-prone modules while 
reducing the test effort. 
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