
Vol. 9, No. 4, pp. 421-433, 2012
QQTTQQMM
© ICAQM 2012

Experience in Predicting Fault-Prone
Software Modules Using Complexity Metrics

Liguo Yu1 and Alok Mishra2
1Computer Science and Informatics, Indiana University South Bend, IN, USA

2Department of Computer & Software Engineering, Atilim University, Ankara, Turkey
 (Received November 2011, accepted May 2012)

__

Abstract:Complexity metrics have been intensively studied in predicting fault-prone software modules.
However, little work is done in studying how to effectively use the complexity metrics and the prediction
models under realistic conditions. In this paper, we present a study showing how to utilize the prediction
models generated from existing projects to improve the fault detection on other projects. The binary logistic
regression method is used in studying publicly available data of five commercial products. Our study shows
(1) models generated using more datasets can improve the prediction accuracy but not the recall rate; (2)
lowering the cut-off value can improve the recall rate, but the number of false positives will be increased,
which will result in higher maintenance effort. We further suggest that in order to improve model
prediction efficiency, the selection of source datasets and the determination of cut-off values should be
based on specific properties of a project. So far, there are no general rules that have been found and reported
to follow.

Keywords: Binary logistic regression, complexity metrics, fault-prone software module.
__

1. Introduction

oftware quality analysis and prediction focuses on detecting high-risk fault prone
program modules, allowing practitioners to allocate project resources strategically [9,

34].Through allocating more testing resources on fault-prone modules, we can effectively and
extensively test the product. Therefore, predicting fault-prone software modules is an
important technique used in reducing test time and test effort and is becoming an important
research topic in recent years [7, 15-16, 20, 28-31, 36].

In practice, software engineers employ various methods to identify and revise high-risk
or low-quality program modules [6, 9]. Effectiveness of detecting such modules is affected by
the software measurements used. In these predictive models, source code metrics could be
used as input variables [32, 34]. One of the most commonly used methods in this area is
binary logistic regression [2-3, 12-13, 19, 23, 37], which is proven to be a powerful technique
in software development and maintenance.

However, most of the previous studies using binary regression analysis focused on
identifying candidate complexity metrics and building relation models that are capable of
identifying fault-prone software modules. Few efforts are spent on investigating the
applicability and usability of prediction models. More specifically, the accuracy of the
reported models is usually evaluated using goodness of fit of the model predictions to the
same fault data generating the model. Few studies are performed to build cross-project
prediction models that are evaluated on different projects with a similar development
environment.

S

The idea of building a cross-project prediction model might seem promising. On the one
hand, as the fundamental structures, management, and measurement of two projects could be
different, it might not be feasible to build these models. On the other hand, software projects
always share some common properties: they are building similar products, targeting similar
problems, using similar methods, or following similar development processes. It is reasonable
to believe that such cross-project models could be built under certain circumstances,
especially if the two projects are within the same application domain. The objective of this
study is to build cross-project prediction models and evaluate their predictability. The
findings of this study will be helpful to understand if a universal cross project mode could be
built.

In this paper, we present a case study of using complexity metrics to build binary
regression models to predict fault-prone software modules. Comparing with previous studies,
this paper makes the following contributions: (1) we build fault-proneness prediction models
based on available projects and assess them on different projects; and (2) we investigate how
to efficiently adjust prediction models to detect more fault-prone software modules. The
study is performed using publicly available software fault data, which makes the study easy to
be reproduced and improved.

The rest of this paper is organized as follows. Section 2 reviews related work of using
software complexity metrics to build binary logistic regression models in order to predict
fault-prone software modules. Section 3 describes the data source and the mathematical
method. Section 4 presents the results and the analysis of this study. Conclusions are
presented in Section 5.

2. Related Work

Binary logistic regression analysis has been intensively studied in software engineering
field, especially in predicting fault-prone modules. For example, using Mozilla project,
Gyimothy et al. [8] studied how to build a prediction model for error-prone software classes in
open-source projects. Vokac [35] found some design patterns can be used to identify
fault-prone classes. Subramanyam and Krishnan [25] performed a study that supports using
object-oriented design complexity metrics (Chidamber and Kemerer’s CK metrics) in
determining software defects.

Most recent studies in this area are reported by Olague’s group and Zhou’s group. For
example, Olague et al. [21-22] found that object-oriented complexity metrics, such as
Chidamber and Kemerer’s CK metrics, Michura’s standard deviation method complexity
metrics, Bansiya and Davis’ quality metrics, and Etzkorn’s average method complexity are
good candidate predictors of fault-prone classes. Zhou and Leung [38] investigated the
usefulness of object-oriented design metrics in predicting fault-proneness. Their study found
that the prediction capabilities of the investigated metrics greatly depend on the severity of
faults. In another study, Zhou et al. [39] described how to correctly interpret the performance
of a prediction model based on odds ratio. In particular, they found that odds ratio associated
with one standard deviation increase should be used to represent model effectiveness.

The studies close to our work are those intended to improve the applicability of the
prediction models. For example, based on cost-effectiveness analysis, Arisholm and Briand
[1] proposed a simple and pragmatic method for assessing the effort of using the prediction
models. Shatnawi and Li [26] applied prediction models to the Eclipse project and found that
although some complexity metrics can predict fault-prone classes, the accuracy of the
prediction decreased from release to release, which prevented them from building a model to

identify evolving error-prone classes. Briand et al. [2] studied the applicability of using
prediction models generated from one Java project to predict fault-prone classes in another
Java project. Their study showed that a model built on one system can be accurately used to
evaluate classes in another system according to their fault-proneness. Menzies et al. [17]
studied the performance ceiling of prediction models, i.e., some inherent upper bound on the
amount of information offered by complexity metrics in identifying fault-prone modules.
They proposed using case-based reasoning when applying prediction models.

As described before, none of the reported research has focused on evaluating predicting
models across projects. However, in reality, a software practitioner is interested in knowing,
among a given set of software metrics, which ones to use and how to get optimal defect
prediction results. This is the objective of the present study.

3. Data Description and Mathematical Method

The data used in this study is retrieved from online public repository PROMISE [4]. The
original data is donated by Software Research Laboratory of Bogazici University, Istanbul,
Turkey [27]. Five data sets are utilized (AR1, AR3, AR4, AR5, and AR6). These are
embedded software products implemented in C. Each dataset contains the measurements of
29 static code attributes (complexity metrics) and 1 defect information (false/true) of tens to
hundreds of modules. Module attributes were collected using Prest Metrics Extraction and
Analysis Tool [24, 33].

Some of the 29 metrics, such as number of lines of blank code and number of lines of
comment code, have no apparent relation with module faults. They are not included in this
study. Accordingly, 24 metrics are initially chosen to be used in this study. They are described
in Table 1. The detailed descriptions of these metrics can be found in [18].

Table 1. Software module attributes (complexity metrics) used in this study [18].

Line of Code
(LOC) Metrics

Halstead
Metrics

McCabe
Metrics

Miscellaneous
Metrics

Total LOC
Executable
LOC

Length
Volume
Level
Difficulty
Programming effort
Error estimate
Programming time

Cyclomatic
complexity
Cyclomatic density
Decision density
Design complexity
Design density
Normalized
cyclomatic complexity

Unique operands
Unique operators
Total operands
Total operators
Branch count
Call pairs
Condition count
Multiple condition count
Formal parameters

Logistic regression analysis is a method to predicting a categorical variable from a set of
predictor variables. In this study, it is used to analyze the relations between software module
attributes (complexity metrics) and module defect information. More specifically, the
predicted dependent variable has a binary value, true or false, where true indicates faults and
false indicates no faults. The independent variables are module attributes (complexity metrics)
which have continuous numerical values, such as those listed in Table 1.

Assume is the dependent variable and value 1 represents the corresponding module
has fault and value 0 representing the corresponding module has no fault. Also assume

 are independent variables and

Y

1 2, ,,nX X X 1 2Pr(1 , , ,)nY xx x represents the

probability that 1Y 1 1 2 2, , , n nX x X x X x when . Accordingly, binary logistic
regression analysis can generate the following model [39].

11

11
1 2

ˆ Pr(1 , , ,)
1

n n

n n

abx bx

n abx bx

e
Y Y xx x

e

ˆ 1Y

. (1)

The right side expression of Equation (1) will generate a real number. If its value is
greater than or equal to 0.5, ; If its value is less than 0.5, ˆ 0Y

Ŷ
Ŷ

1 2, , , ,ab b nb

. Here, 0.5 is called the
cut-off value. Using different cut-off values can give us different prediction results. It can be
seen that lowing the cut-off value can result in high value of , increasing the cut-off value can
result in low value of . It has been a common practice to adjust cut-off values in order to
achieve different prediction results [14].

In Equation (1), and are coefficients of the independent variables. In
statistics, the odds are expressed as the ratio of the probability an event that will happen over
the probability the event won’t happen. Therefore, we can derive the following odds model.

11
1 2

ˆ
(1 , ,,)

ˆ1
n nabx bx

n

Y
ODDS Y x x x e

Y
. (2)

Our regression model will be predicting the logit, that is, the natural log of the odds a
module having faults or not. That is,

11ln() n nODDS a b x b x

1 1ln()ODDS a b x

. (3)

4. Analysis and Results

Twenty-four module attributes (complexity metrics) are used in this study. Not all of
them are necessary to yield acceptable predictability. Therefore, our analysis is divided into
two steps. The first step is to determine the module attributes (complexity metrics) that can
yield acceptable predictability. The second step is using the selected module attributes
(complexity metrics) to build prediction models. These two steps are presented in the
following two subsections.

4.1. Selecting Independent Variables

For each data set (RA1, RA3, RA4, RA5, and RA6), we performed score tests to
determine whether each of the 24 attributes would be significant predictors in the binary
regression model. In these tests, a single attribute model (which includes intercept of course),

, is compared with a null model, ln()ODDS a, which has no predictors
but just the intercept. The result of the score tests can tell if adding a predictor (attribute,
independent variable) to a null model can significantly change the fitness of the prediction
model. The results of the score tests are summarized in Table 2, where it shows the
significance of the predicator in a single attribute model in each data set.

In Table 2, the significance values that are at the 0.01 level are highlighted. In these 24
attributes, 4 attributes (branch_count, condition_count, multiple_condition_count, and
cyclomatic_complexity) are significant predicators in all five datasets. They are from two
categories in Table 1 (McCabe Metrics and Miscellaneous Metrics) and accordingly chosen
as the independent variables. To make the dependent variables represent different properties
of a software product, two other attributes from categories Line of Code Metrics and Halstead
Metrics are determined to be chosen as the independent variables. Physical line of code
(executable_loc) is one of the most commonly used metrics to measure software complexity,
and estimated number of delivered bugs (halstead_error) reflects the combined effects of other
Halstead metrics. Accordingly, they are also chosen as the additional independent variables.

Therefore, in this study, 6 module attributes (complexity metrics) are used as the independent
variables, 1 2 6, , , X X X . They are bolded in Table 2. Function (3) can accordingly be
modified as the following, where 1 2, , ,x x and 6x are the measurements of the attributes
of six metrics: 1 2 6, , , X X X (branch_count, condition_count, multiple_condition_count,
cyclomatic_complexity, executable_loc, and halstead_error).

1 1 2 2 6 6ln()ODDS a bx bx bx (4)

Equation (4) is the specific binary logistic model we are going to build in this study. It
shows the relation between the odds a module having faults and the six measurements of a
module’s properties. In the following of this section, we will use existing data to build the
models represented in Equation (4), i.e., to determine the model coefficients 1 2 6(, , , ,)ab b b

and evaluate model predictability.

Table 2. Summary of score tests.

Metrics AR1 AR3 AR4 AR5 AR6
total_loc .034 .000 .000 .000 .059

executable_loc .021 .000 .000 .000 .029
unique_operands .103 .000 .000 .000 .004
unique_operators .000 .001 .000 .000 .013
total_operands .010 .000 .000 .000 .211
total_operators .010 .000 .000 .000 .016
halstead_length .010 .000 .000 .000 .110
halstead_volume .011 .000 .000 .000 .081
halstead_level .028 .066 .002 .022 .001
halstead_difficulty .000 .000 .000 .007 .809
halstead_effort .001 .000 .000 .003 .304
halstead_error .013 .000 .000 .000 .001
halstead_time .001 .000 .000 .003 .305
branch_count .003 .000 .000 .000 .000
call_pairs .191 .459 .001 .119 .018
condition_count .003 .000 .000 .000 .001

multiple_condition_count .002 .000 .001 .000 .000

cyclomatic_complexity .003 .000 .000 .000 .001
cyclomatic_density .388 .854 .714 .185 .000
decision_density .038 .405 .026 .334 .392
design_complexity .191 .459 .001 .119 .207
design_density .959 .475 .638 .161 .219
normalized_cyclomatic_complexity .820 .879 .329 .591 .900
formal_parameters .988 .220 .515 .181 .126

4.2. Building and Assessing Prediction Models

There are two ways to build and evaluate fault prediction models: self-assessment and
forward assessment. There are five datasets (AR1, AR3, AR4, AR5, and AR6) in this study.
Figure 1(a) illustrates the self-assessment model, where one prediction model is built on each
dataset and is evaluated on the same dataset. For example, the prediction model based on
dataset AR1 is evaluated on dataset AR1; the prediction model based on dataset AR3 is
evaluated on dataset AR3, and so on. Figure 1(b) illustrates the forward assessment model,
where prediction models are built based on one or more datasets and evaluated on a different
dataset. For example, the prediction model based on dataset AR1 is evaluated on dataset
AR3; the prediction model based on datasets AR1 and AR3 is evaluated on dataset AR4, and
so forth.

Figure 1. (a) Self-assessment model and (b) forward assessment model.

4.2.1. Self-Assessment

In self-assessment, each dataset (AR1, AR3, AR4, AR5, and AR6) is used as the source
data to build a prediction model. Accordingly, five logistic models represented in Equation (4)
are built. Table 3 summarizes the model parameters, where parameters 1 2, , , ,ab b and

6 b are constant, branch_count, condition_count, multiple_condition_count, cyclomatic_complexity,
executable_loc, and halstead_error, respectively.

Table 3. The parameters of logistic self-assessment models.

Model parameters Model
number

Data
source a b1 b2 b3 b4 b5 b6

S1 AR1 -4.027 -0.726 0.380 1.162 1.458 -0.182 21.111
S2 AR3 -3.245 0.367 -0.134 -0.643 -0.580 -0.028 6.530
S3 AR4 -3.913 0.557 -1.306 0.091 0.015 0.062 3.892
S4 AR5 -10.602 -2.890 0.255 5.574 5.631 0.027 5.788
S5 AR6 -2.383 -0.268 1.108 -0.902 -0.013 -0.050 0.016

These five modes are then evaluated using the same dataset generating the model. Using
a model to evaluate each module, we can obtain two measurements of dependent variable Y:
predicted and observed. In binary logistic regression, dependent variable Y has two values
(in both observation and prediction): positive (1), which indicates defect, and negative (0),
which indicates defect-free. The cross-analysis of predictions against observations can divide
data into four categories, as shown in Table 4 [10].

Table 4. Evaluation of prediction against observation [10].

 Predicted

 Positive (1) Negative (0)

Positive (1)
tp

(true positive)
fn

(false negative)
Observed

Negative (0)
fp

(false positive)
tn

(true negative)

Predication accuracy, prediction precision, and recall rate are commonly used metrics to
evaluate the binary prediction models. They are defined in Equations (5), (6), and (7) [10].
Prediction accuracy describes the general prediction power of a model; prediction precision is
used to evaluate the correctness of positive signal predictions; and recall rate is used to evaluate
the prediction power for positive signals. In software engineering field, detecting fault is
considered most important, therefore, recall rate has been considered to be the most important
metric.

tp tn

Prediction accuracy
tp tn fn fp

. (5)

tp

Prediction accuracy
tp fp

. (6)

tp

Recall rate
tp fn

. (7)

Table 5 summarizes the results of self-assessment of the prediction models. It can be seen,
except AR1, the other four models yield near 50% recall rate. However, as we discussed in
Section 1, these models are built and evaluated using the same dataset. They might not be
feasible for real applications. Therefore, there is a need to perform forward assessment of the
prediction models.

Table 5. Self-assessment of prediction models.

Model number S1 S2 S3 S4 S5
Dataset (source and evaluating) AR1 AR3 AR4 AR5 AR6
Number of datasets 121 63 107 36 101

Prediction accuracy 93% 95% 88% 94% 90%
Prediction precision 50% 86% 77% 100% 77%
Recall rate 11% 75% 50% 75% 47%

4.2.2. Forward Assessment

Following the scheme described in Figure 1(b), we build four forward-assessment
models. Accordingly, four logistic models represented in Equation (4) are built. Table 6
summarizes the model parameters, where parameters 1 2 and are constant,
branch_count, condition_count, multiple_condition_count, cyclomatic_complexity, executable_loc,
and halstead_error, respectively. It should be noted that Model F1 is same as model S1,
because they are generated from the same dataset (AR1). Different from self-assessment
models (S1 to S5), forward-assessment models (F1 through F4) are generated using aggregate
datasets.

, , , ,ab b 6 b

Table 6. The parameters of logistic forward-assessment models.

Model parameters Model
number

Data
source a b1 b2 b3 b4 b5 b6

F1 AR1 -4.027 -0.726 0.380 1.162 1.458 -0.182 21.111
F2 AR1, AR3 -2.857 0.159 -0.001 -0.376 -0.226 -0.013 1.846
F3 AR1, AR3, AR4 -3.497 -0.154 -0.191 0.449 0.487 0.025 1.418
F4 AR1, AR3, AR4, AR5 -3.687 -0.268 -0.107 0.601 0.642 0.022 1.958

These four forward-assessment models are then evaluated on Datasets AR3, AR4, and
AR5, and AR6, respectively. Table 7 summarizes the evaluation of four prediction models. In
Table 7, each latest model is supposed to outperform the previous models, because of the
increase of the size of source dataset. From Table 7, we can see that the prediction accuracy
increases from Model F1 to Model F4. However the prediction precision and the recall rate are
not in increasing trend.

Table 7. Forward assessment of prediction models (cut-off value is 0.5).

Model number F1 (S1) F2 F3 F4
Source dataset AR1 AR1, AR3 AR1, AR3, AR4 AR1, AR3, AR4, AR5
Evaluating dataset AR3 AR4 AR5 AR6

Prediction accuracy 76% 82% 83% 87%
Prediction precision 32% 100% 75% 100%
Recall rate 75% 5% 38% 13%

It should be noted here that as more data are included in the source dataset, we should
expect the models yield better predictions. However, in Table 7, only the prediction accuracy is
improved through adding more data; the prediction precision and the recall rate show no clear
trend. The reason for this behavior of these forward-assessment models could be due to the
differences among these projects. These differences could be design difference, measurement
difference, management difference, or something else. On the other hand, these projects must
share some common properties, as the prediction accuracy improves with more datasets being
added.

Furthermore, if we compare Table 6 and Table 7, we can see that if models are
self-evaluated on the source dataset generating the model, the model performance (prediction
accuracy, prediction precision, and recall rate) is better than forward-evaluation. However in
practice, self-assessment is less useful than forward assessment. Therefore, our goal is to
improve the performance of forward prediction models. Specifically, we would like to
improve the recall rate, which can help us identify more error-prone modules.

As described before, in Equation (1), has a value between 0 and 1 and represents
the probability a fault can occur. When this model is used, a cut-off value should be assigned.
If is less than the cut-off value, it will be considered as 0; if is greater than the cut-off
value, it will be considered as 1. Conventionally, the cut-off value is set to be 0.5, which
means, if is less than 0.5, we will predict no fault in the software module and if is
greater than 0.5, we will predict fault in the software module.

Ŷ

Ŷ Ŷ

Ŷ Ŷ

If we would like to identify more true positive modules, we need to use a lower cut-off
value. Following this scheme, cut-off values of 0.2 and 0.1 are utilized to evaluate models F1
through F4. The results are summarized in Table 8 and Table 9.

Table 8. Forward assessment of prediction models (cut-off value is 0.2).

Model number F1 F2 F3 F4
Source dataset AR1 AR1, AR3 AR1, AR3, AR4 AR1, AR3, AR4, AR5
Evaluating dataset AR3 AR4 AR5 AR6

Accuracy 73% 83% 81% 87%
Precision 30% 75% 54% 100%
Recall 88% 15% 88% 13%

Table 9. Forward assessment of prediction models (cut-off value is 0.1).

Model number F1 F2 F3 F4
Source dataset AR1 AR1, AR3 AR1, AR3, AR4 AR1, AR3, AR4, AR5
Evaluating dataset AR3 AR4 AR5 AR6

Prediction accuracy 65% 84% 72% 78%
Prediction precision 25% 62% 43% 23%
Recall rate 88% 40% 88% 20%

From Table 8 and Table 9, we can see that through lowering the cut-off value, we can
improve the recall rate. For example, in Model F2, the recall rate is improved from 5% to 15%
and 40%, respectively when the cut-off value is lowered from 0.5 to 0.2 and 0.1. It should be
noted that although lowering the cut-off value can improve the recall rate, it will reduce the
prediction accuracy and the prediction precision, which will increase the testing effort.
However in some fields, such as safety-critical applications and mission critical applications,
detecting errors is more important than reducing the testing cost, it is therefore reasonable to
use lower cut-off values in order to detect all error-prone modules.

Based on previous analysis, we can see that balancing of prediction precision and recall
rate is the balancing of effort and risk. A higher prediction precision means lower testing
effort in software development and a higher recall rate means lower risk of faults in delivered
products. Therefore, the selection of cut-off values is not just a technical issue, but a
management issue. It depends on the budget, the available resource, and the quality
requirement of the product.

Another way to systematically evaluate the effect of different cut-off values is to draw
receiver operating characteristic curves [11]. Accordingly, the metric fall out is defined.

fp

Fall out
fptn

. (8)

In Equation (8), fp and tn are defined in Table 4. Fall out is also called false positive
rate (FPR). Correspondingly, recall rate is also called true positive rate (TPR). A receiver
operating characteristic (ROC) curve, or simply a ROC curve, is a graphical plot of true
positive rate (TPR), vs. false positive rate (FPR), for a binary classifier system as its cut-off value is
varied.

Figure 2 shows the receiver operating characteristic (ROC) curves of Models F1
through F4. It can be seen that these curves have a normal behavior: the true positive rate has
a positive relation with the false positive rate. In other words, increasing of true positive rate
could result in the increasing of false positive rate. An optimum cut-off value could be obtained
by examining the precision accuracy, which balances the true positive rate and the false positive
rate. Table 10 shows the optimum cut-off values of Models F1 through F4.

In Table 10, the cut-off values are those that can generate the largest prediction
accuracies. In all four models, through using different optimum cut-off values, we can
achieve about 88% prediction accuracies. Also, it is interesting to see that the optimum cut-off
values vary dramatically from one model to another model. Therefore, in real-world
applications, the optimum cut-off values should be calibrated for each different project.

Table 10. Optimum cut-off values of forward assessment models.

Model number F1 F2 F3 F4
Optimum cut-off value 0.9999 0.1000 0.2500 0.2000
False positive rate 0.0364 0.0574 0.1071 0.0
True positive rate 0.3750 0.4000 0.8750 0.1333
Largest prediction accuracy 0.8889 0.8411 0.8889 0.8713

(a) (b)

(c) (d)

Figure 2. ROC curves of forward-assessment Model (a) F1; (b) F2; (c) F3; and (d) F4.

4.3. Discussions

As described in the Introduction, cross-project prediction models can improve software
product quality and software process quality. Our study shows that it is possible to apply a
model generated using the data from one project to predict faults in another project. This is
reflected in the increasing of prediction accuracy of our models if more datasets are employed.
However, our study also found prediction precision and recall rate are not improved under
larger dataset. Although these observations might be specific to this study, the

non-monotonicity of the prediction accuracy, prediction precision, and recall rate in these
experiments seem to indicate a fundamental lack of universality of the cross-project
prediction models. To further prove our observations, more studies are needed in the future.

5. Conclusions

In this paper, we presented our experience of using complexity metrics to predict
error-prone software modules. We found (1) forward assessment of prediction models usually
has low performance compared to self-assessment, although it is a more realistic measure of
the prediction power of a binary logistic regression model; and (2) lowering cut-off values
could be a practical technique in revealing more true positive modules, although it might
generate additional false positive signals, which will result in lower prediction accuracy,
lower prediction precision, and higher testing effort.

Based on our study, we suggest that in order to improve the model prediction efficiencies,
the selection of source dataset and the determination of cut-off values should be based on
specific properties of a project. For example, if reducing cost of testing is the major objective
of a project, a regular cut-off value (0.5) or a higher cut-off value could be used to improve the
prediction accuracy; if uncovering the faulty modules is the major objective of the project, a
lower cut-off value should be used to improve the recall rate. Currently, there exists no such a
general rule that we can follow to guarantee detecting most of the fault-prone modules while
reducing the test effort.

Acknowledgements

This study is partially supported by the Faculty Research Grant of Indiana University
South Bend.

References

1. Arisholm, E. and Briand, L. C. (2006). Predicting fault-prone components in a Java
legacy system. Proceedings of the 5thACM-IEEE International Symposium on Empirical
Software Engineering, 8-17. Rio de Janeiro, Brazil.

2. Briand, L. C., Wust, J. and Lounis, H. (2001). Replicated case studies for
investigating quality factors in object-oriented designs. Empirical Software Engineering,
6(1), 11-58.

3. Basili, V. R., Briand, L. C. and Melo, W. L. (1996). A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software Engineering, 22(10),
751–761.

4. Boetticher, G., Menzies, T. and Ostrand, T. (2007). PROMISE Repository of empirical
software engineering data, http://promisedata.org/ repository, Department of
Computer Science, West Virginia University.

5. Briand, L. C., Melo, W. L. and Wust, J. (2002). Assessing the applicability of
fault-proneness models across object-oriented software projects. IEEE Transactions on
Software Engineering, 28 (7), 706-720.

6. D’Ambros, M., Lanza, M. and Robbes, R. (2011). Evaluating defect prediction
approaches: a benchmark and an extensive comparison. Empirical Software Engineering,
17(4-5), 531-577.

7. Graves, T. L., Karr, A. F., Marron, J. S. and Siy, H. (2000). Predicting fault incidence
using software change history. IEEE Transactions on Software Engineering, 26(7),
653-661.

8. Gyimothy, T., Ferenc, R. and Siket, L. (2005). Empirical validation of object-oriented
metrics on open source software for fault prediction. IEEE Transactions on Software
Engineering, 31(10), 897-910.

9. Gao, K., Khoshgoftaar, T. M. and Seliya, N. (2011). Predicting high-risk program
modules by selecting the right software measurements. Software Quality Journal, 20(1),
3-42.

10. http://en.wikipedia.org/wiki/Precision_and_recall

11. http://en.wikipedia.org/wiki/Receiver_operating_characteristic

12. Janes, A., Scotto, M., Pedrycz, W., Russo, B., Stefanovic, M. and Succi, G. (2006).
Identification of defect-prone classes in telecommunication software systems using
design metrics. Information Sciences, 176(24), 3711-3734.

13. Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V. and Thambidurai, P. (2007).
Object oriented software fault prediction using neural networks. Information and
Software Technology, 49(5), 483-492.

14. Kleinbaum, D. and Klein, M. (2002). Logistic Regression-A Self-Learning Text, Second
Edition, Springer-Verlag New York, Inc.

15. Kastro, Y. and Bener, A. (2008). A defect prediction method for software versioning.
Software Quality Journal, 16 (4), 543-562.

16. Livshits, B. and Zimmermann, T. (2005). DynaMine: finding common error patterns
by mining software revision histories. ACM SIGSOFT Software Engineering Notes, 30(5),
296-305.

17. Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B. and Jiang, Y. (2008).
Implications of ceiling effects in defect predictors. Proceedings of the 4thInternational
Workshop on Predictor Models in Software Engineering, 47-54. Leipzig, Germany.

18. Metrics Data program, NASA IV&V Facility, http://mdp.ivv.nasa.gov/repository.html

19. Nagappan, N., Ball, T. and Zeller, A. (2006). Mining metrics to predict component
failures. Proceedings of the 28th International Conference on Software Engineering, 452-461.
Shanghai, China.

20. Ostrand, T. J., Weyuker, E. J. and Bell, R. M. (2005). Predicting the location and
number of faults in large software systems. IEEE Transactions on Software Engineering,
31(4), 340-355.

21. Olague, H. M., Etzkorn, L. H., Messimer, S. L. and Delugach, H. S. (2008). An
empirical validation of object-oriented class complexity metrics and their ability to
predict error-prone classes in highly iterative, or agile, software: a case study. Journal of
Software Maintenance and Evolution: Research and Practice, 20(3), 171-197.

22. Olague, H. M., Etzkorn, L. H., Gholston, S. and Quattlebaum, S. (2007). Empirical
validation of three software metrics suites to predict fault-proneness of object-oriented
classes developed using highly iterative or agile software development processes. IEEE
Transactions on Software Engineering, 33(6), 402-419.

23. Pai, G. J. and Dugan, J. B. (2007). Empirical analysis of software fault content and
fault proneness using Bayesian methods. IEEE Transactions on Software Engineering,
33(10), 675-686.

24. Prest Metrics Extraction and Analysis Tool, http://softlab.boun.edu.tr/?q=resources&i=tools.

25. Subramanyam, R. and Krishnan, M.S. (2003). Empirical analysis of CK metrics for
object oriented design complexity: implications for software defects. IEEE Transactions
on Software Engineering, 29(4), 297-310.

26. Shatnawi, R. and Li, W. (2008). The effectiveness of software metrics in identifying

error-prone classes in post-release software evolution process. Journal of Systems and
Software, 81(11), 1868-1882.

27. Software Research Laboratory, Bogazici University, http://softlab.boun.edu.tr.

28. Turhan, B. and Bener, A. (2009). Analysis of Naive Bayes’ assumptions on software
fault data: an empirical study. Data and Knowledge Engineering Journal, 68 (2), 278-290.

29. Turhan, B., Bener, A. and Kocak, G. (2009). Data mining source code for locating
software bugs: a case study in telecommunication industry. Expert Systems with
Applications, 36 (6), 9986-9990.

30. Tosun, A., Turhan, B. and Bener, A. (2010). Ensemble of software defect predictors: a
case study. Proceedings of the 2nd International Symposium on Empirical Software
Engineering and Measurement, 318-320. Bolzano/Bozen, Italy.

31. Turhan, B. and Bener, A. (2007). A multivariate analysis of static code attributes for
defect prediction. Proceedings of the 7thInternational Conference on Quality Software,
231-237. Portland, Oregon, USA.

32. Turhan, B. (2011). On the dataset shift problem in software engineering prediction
models. Empirical Software Engineering, 2011.

33. Tosun, A., Bener, A., Turhan, B. and Menzies, T. (2010). Practical considerations in
deploying statistical methods for defect prediction: A case study within the Turkish
telecommunications industry. Information and Software Technology, 52(11), 1242-1257.

34. Vivanco, R., Kamei, Y., Monden, A., Matsumoto, K. and Jin, D. (2010). Using
Search-Based Metric Selection and Oversampling to Predict Fault Prone Modules. The
23rd Canadian Conference Electrical and Computer Engineering, 1-6.

35. Vokac, M. (2004). Defect frequency and design patterns: an empirical study of
industrial code. IEEE Transactions on Software Engineering, 30(12), 904-917.

36. Williams, C. C. and Hollingsworth, J. K. (2005). Automatic mining of source code
repositories to improve bug finding techniques. IEEE Transactions on Software
Engineering, 31(6), 466-480.

37. Yu, P., Systa, T. and Muller, H. (2002). Predicting fault-proneness using OO metrics:
an industrial case study. Proceedings of the 6thEuropean Conference on Software Maintenance
and Reengineering, 99-107. Budapest, Hungary.

38. Zhou, Y and Leung, H. (2006). Empirical analysis of object-oriented design metrics
for predicting high and low severity faults. IEEE Transactions on Software Engineering,
32(10), 771-789.

39. Zhou, Y., Xu, B. and Leung, H. (2010). On the ability of complexity metrics to predict
fault-prone classes in object-oriented systems. Journal of Systems and Software, 83 (4),
660-674.

Author’s Biographies:

Liguo Yu received the PhD degree in computer science from Vanderbilt University. He is an
Associate Professor of computer science at Indiana University South Bend. His research
concentrates on software measurement, software dependency, and open-source software
development.

Alok Mishra is a Professor of Department of Computer & Software Engineering, Atilim
University, Turkey. His research area includes Software Process, Software Quality
Assurance, Agile Methodologies, and Software Engineering Education.

