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Abstract— The importance and potential advantages with a 

comprehensive product architecture description are well described 
in the literature. However, developing such a description takes 
additional resources, and it is difficult to maintain consistency with 
evolving implementations.  This paper presents an approach and 
industrial experience which is based on architecture recovery from 
source code at truck manufacturer Scania CV AB. The extracted 
representation of the architecture is presented in several views and 
verified on CAN signal level. Lessons learned are discussed. 
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I.  INTRODUCTION  
In software engineering, legacy code, which is previously 

developed and successful software components, systems or 
platforms, evolves over time. During this evolution, the 
architecture of the legacy code tends to “drift”, which means 
that relevant documentation gradually becomes incomplete or 
inconsistent as the code changes[1].  

The same problem is also suffered in the automotive 
industry, which has become increasingly software-intensive 
during the past 30 years [2]. The accelerated system evolution 
accelerates the architectural drift. At the same time, the 
introduction of ISO 26262 [3] implies an increasing emphasis 
on safety requirements in the automotive industry. In order to 
guarantee safety in terms of software, a comprehensive safety 
and impact analysis of new functions is needed. This is a 
challenge with drifted legacy code, which makes it hard to 
achieve an overall understanding of the whole system. 

Architectural drift happens not only because keeping 
documentations synchronized with implemented changes is not 
of the highest priority of developers, or that it is error-prone 
and time consuming, but also because there is no proper tool to 
support or verify the synchronization [1]. Therefore, principles 
on solving the drift should not merely be addressed through 
allocating more effort on documenting changes, but also the 
tools bridging the gap between design and implementation. 
One feasible approach to bridge the gap is software architecture 
recovery [4]. Therefore, we have implemented a domain-
specific toolset in an automotive company to recover the 
software architecture of a truck from its implementation and to 
check the consistency between implementation and design in 
CAN communication level.  

In the rest of the paper, we describe as follows: A brief state 
of practice survey is made on how software architecture 

recovery is used on distributed embedded systems. (Section II). 
We present a case study describing how we recovered software 
architecture from Scania Electronic Control Unit (ECU) source 
files (Section III). The extracted representation of the 
architecture is presented in several views and verified on CAN 
signal level (Section IV). We also discuss the lessons learnt 
from this case study as well as unsolved challenges (Section 
V). We finally conclude and suggest future work. (Section VI). 

II. BACKGROUND 
Software architecture recovery (similar works also refer to 

the method as architecture reconstruction [5] or reverse 
architecting [6]) is a process to extract high level architectural 
models with a specific level of abstraction from available 
artifacts of the system implementation [4]. Results from 
architecture recovery can be used for system understanding, 
consistency checking [7], impact analysis [8], and other 
processes related to verification, maintenance and design. Most 
published works regarding architecture recovery cover general 
purpose software. After the proposal of the reflexion model [1], 
combining architecture recovery and consistency checking has 
become a common approach to detect architecture drift [7].  

The concept of recovering software architecture for 
embedded systems was proposed nearly 15 years ago by the 
project ARES [9]. However, at that time, the complexity of 
embedded systems was much lower than it is now, and 
knowledge related to software architecture was also deficient. 
Few later works of architecture recovery on embedded systems 
can be found, especially for the automotive industry. 
Mendonca and Kramer [10] developed an approach for the 
recovery of distributed software architectures, however, real-
time features were not taken into account. Baloh, Raghav, and 
Sivashankar [11] provided a method to extract a model-based 
executable specification from legacy embedded control 
software in Simulink. However, their work focused on the 
execution model inside a single module rather than the 
interactions between modules or system distribution. 

III. EMPIRICAL STUDY 
Our work is a part of ESPRESSO project, which is 

collaboration between KTH and Scania CV AB. The project 
aims at providing an efficient development methodology to 
achieve functional safety regarding ISO 26262. The work 
presented here is the final outcome of a longer process and was 
preceded by initial separate proof-of-concept prototypes [12], 
[13]. We reorganized, improved and consolidated these 
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proofed concepts and implemented them into a consistent 
toolset. 

A. Context of the Study 
On a Scania truck, most of the ECUs are distributed on 

three main CAN [14] buses: red, yellow and green bus. Fig. 1 
provides an example of this network topology. Some of the 
ECUs are allocated on sub buses of their parent ECUs. The 
communication on the CAN buses is based on the standard 
J1939 protocol [15]. Of the ECUs, three were the focus of the 
work presented in this paper: the coordinator (COO), the 
engine management system (EMS), and the gearbox 
management system (GMS). They were chosen both since they 
are key ECUs and have been developed separately in different 
parts of Scania, hence having potential mismatch. 

 
Fig. 1. Example of network topology in vehicle from Scania 

AUTOSAR [16] is not used in Scania. Instead, they use 
their own software platform. Parts of the architectural 
principles related to our work are abstracted from the software 
architecture used in Scania and illustrated in Fig. 2. 

 
Fig. 2. Graphical illustration of software architecture in Scania. This 
architecture is abstracted in a way that is particular enough for the description 
in this paper. The one in actual use is slightly different. 

An Application Component encapsulates part of one 
function. Each application component contains and only 
contains one real-time task which can be ether periodic or 
event triggered. Normally, an application component is 
managed as a .c file associated with related header file and 
calibration file. All these files are named as the application 
component acronym followed by the extension (.c, .h, etc). In 
some ECUs, application components are organized in different 
Layers and Managers which are represented only by the 
folder structure. 

The Real-Time DataBase (RTDB) is a repository, on the 
running ECU, of all the information that is shared between 

Application Components. The RTDB at Scania can be seen as 
the equivalent to the RTE in AUTOSAR. It is used to handle 
the communication between both application components and 
ECUs. Variables stored in RTDB are called RTDB variables, 
which in implementation are micro-defined pointers pointing to 
a pre-allocated memory block. Application components can 
read from and write to RTDB variables via interfaces provided 
by RTDB. As restricted by the architecture, the RTDB is the 
only allowed way for application components to interact. 

A Signal refers to a pointer pointing to one RTDB variable 
which is to be sent to or received from another ECU over CAN 
bus. RTDB variables are updated over time by application 
components, data read from hardware and signals received 
from CAN buses. 

A Message, which is a collection of signals together with a 
header, is the unit for CAN communication according to the 
J1939 standard. 

B. Approach and Tool Chain 

 
Fig. 3. Overview of the developed tool chain 

The developed tool-chain, as illustrated in Fig. 3, largely 
consists of four main parts: A back-end with parsers and a 
parser coordinator, a standard Neo4J [17] database, and two 
front-end applications: Architecture Browser and CAN Verifier. 

 
Fig. 4. Meta-model of information that need to be extracted from source code 

1) Parser and Coodinator 
The main work of the parser and coordinator is to retrieve 

architectural information from the source files (source code and 
calibration files) and store it into the database. Fig. 4 illustrates 
the meta-model used for all the retrieved information. Both the 
parser and the coordinator are built in Java. 

To directly parse the c files is difficult and error-prone. 
Therefore, we use srcML toolkit [18] to transform all the 
source files into XML files in which c code is wrapped with 
information from the Abstract Syntax Tree (AST). Those XML 
files together with their positions in the folder structure form 
the inputs of the parser. The parser only focuses on source files 



in the application layer and CAN communication layer. 
Information related to managers and application components 
can be retrieved from the folder structure of the source files in 
each ECU. Other information illustrated in the meta-model is 
extracted from the generated XML files using xPath [19]. 

The parsers locate architectural information in the source 
files by looking for specific patterns. For example RTDB 
interfaces are used to locate interactions between application 
components and RTDB variables. Specified data structures 
according to J1939 standard are used to parse associations of 
RTDB variables to signals, as well as the affiliations of signals 
to messages. The retrieved information is stored in temporary 
data structures before the coordinator uploads them to the 
graph database. 

2) Database 
The recovered information is stored in a more convenient 

way using a standard graph database, Neo4J. The choice of a 
graph database was motivated by the fact that its structure is 
explicitly built to support the kind of model data that is 
expected to be generated from architecture recovery, making 
queries and development easier to perform. 

3) Architecture Browser 
The first front-end tool in the toolset is the Architecture 

Browser. It is a purpose-built tool implemented to interactively 
visualize the implemented software architecture as-is. The 
development environment is C#/.NET, with yFiles WPF [20] 
being one of the main components. It currently can present two 
different views:  

• Network diagram, presenting the ECUs and the main 
networks only. 

• SW/HW view, additionally showing the internal 
structure of each ECU including RTDB variables and 
communication at a CAN signal level between ECUs. 

 
Fig. 5. A screenshot of the Architecture Browser, showing the three ECUs 
and signal flow from the ESTA (engine start) application component both 
internally within the COO and over CAN to the other ECUs. 

The Architecture Browser uses an advanced filtering 
system in order such that only the relevant part of the 
architecture is made visible. Filtering can be done on all 
relevant model entities, and filters can be successively added 

onto each other to give the wanted result. Filters can be used to 
both add and remove content, and are also available in negated 
variants. Finally, filtering based on dataflow is possible, i.e. 
traversing the dataflow chain from a specific application 
module. Together these make for precise targeting of the 
architecture elements that are most relevant for the user. 

The information is presented both in a tree view and in a 
hierarchical graph built with yFiles WPF. The latter can be 
layouted automatically and several options for display detail 
are given, depending on how large the depicted portion of the 
architecture is. For example, the visibility of labels giving the 
RTDB variable names can be toggled on and off. 

The tool gives superior overall understanding of the 
architecture, enabling efficient real-time browsing of the 
architecture. For example, signal flow can very easily be 
followed by interactively and successively querying for signal 
chains. Hence, it is easy to use for improving understanding of 
the system architecture and even to trace the actual signal flow.  

4) CAN Verifier 
The second front-end tool of the tool set is the CAN 

Verifier, also built in C#. The purpose of the tool is to verify 
the content of the CAN communication layer, ECU by ECU, 
against the external design databases (SESAMMtool) at 
Scania. Inconsistencies such as absent buses, messages, signals 
and signals that have divergent definitions are detected and 
presented to the user, which may then use the information to 
improve either the code or the design database and make them 
more consistent. 

 
Fig. 6. A screenshot of the results window of CAN Verifier, showing a 
message with a mismatching period. 

IV. RESULTS 
The approach has been demonstrated to be feasible and 

practical. The toolset was validated through demonstration for 
the relevant system developers at Scania. A recurring comment 
was that the tool will help with system overview, 
understanding and impact analysis. 

In the Architecture Browser, the architecture description is 
visualized in a proper way that developers can easily 
understand. The filter function also helps developers to focus 
on an expected part of the architecture or trace a certain signal. 
In the CAN Verifier, a number of inconsistent signals and 
messages were found between implementation and 
specification that were not previously known. 

 



The execution time of the toolset is reasonable. The parsers 
and coordinator only need to be run after the source files are 
changed. The parser execution time is approximately three 
minutes per ECU. All the operations in Architecture Browser 
and CAN Verifier are within seconds, enabling interactive 
browsing. The cost of the development is also deemed 
acceptable. By the demonstration we made at Scania, the total 
workload was approximately 16 man months excluding the 
proof-of-concept prototypes, which were not directly reused for 
this phase of the project. 

V. DISCUSSION 
Unlike most automotive companies, which outsource much 

development to subcontractors, Scania performs a large part of 
their development in-house. In this setting, the toolset may 
benefit many stages within software development lifecycle 
such as design, verification and maintenance. The approach 
inherently relies on having access to the source code of the 
entire distributed system, which is not always the case for all 
automotive Original equipment manufacturers (OEMs). Still, 
the ideas behind this work may still be applicable for tier-1 
software suppliers who provide complete subsystems and other 
kinds of software-intensive distributed embedded systems 
manufacturers. 

The architectural information stored in the database can 
also be queried for other kinds of analysis, such as 
conformance checking between design model and 
implementation model or fault tree generation.  

There were three main challenges during the work. Firstly, 
different parsers have to be implemented for ECUs from 
different departments, since they use different coding 
conventions and even different code structure. Secondly, no 
solution has yet been created for parsing the source files 
generated by third-party code generator, e.g. Simulink-
generated code. Finally, variability related to end-of-line 
parameters that are configuring the ECUs at the truck assembly 
line is hard to resolve – it is both difficult to parse and difficult 
to visualize in an easily understandable way and has not yet 
been covered. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have reported our findings in a four-month 

long empirical study on recovering software architecture from 
three representative ECUs out of an automotive embedded 
system. Architecture Browser presents the recovered 
architecture in several views and CAN Verifier checks the 
consistency between specification and implementation on CAN 
communication level. This work was demonstrated inside 
Scania. Feedbacks from the demonstration together with the 
efficiency and development cost of the toolset have also been 
summarized. Our work proved that this bottom-up approach 
can be treated as an alternative way to get one step closer to 
functional safety regarding ISO 26262, as compared to a more 
top-down one such as e.g. the AUTOSAR methodology. Future 
extension of this work can be addressed on the following 
aspects. 

• Enlarging the coverage of Architecture Browser by 
taking variability, additional software versions, intra-

component model structure and generated code into 
account.  

• There are also plans to connect the design requirements 
to the recovered architecture, to enable better testing, 
traceability, and also combating the problem of 
architectural erosion of the requirements. 

• Reflexion modeling can be introduced to check 
consistency between design and implementation under 
expected coverage. 

• Architecture recovery can also be integrated with 
forward engineering to support development. One of the 
examples is continuous architectural supervision during 
software development. 
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