
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 2014 1st Software Evolution Week - IEEE
Conference on Software Maintenance, Reengineering, and Reverse Engineering, CSMR-
WCRE 2014; Antwerp; Belgium; 3 February 2014 through 6 February 2014.

Citation for the original published paper:

Zhang, X., Persson, M., Nyberg, M., Mokhtari, B., Einarson, A. et al. (2014)
Experience on applying software architecture recovery to automotive embedded
systems
In: 2014 Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering, CSMR-WCRE 2014 - Proceedings (pp.
379-382). IEEE Computer Society
https://doi.org/10.1109/CSMR-WCRE.2014.6747199

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145509

Experience on Applying Software Architecture
Recovery on Automotive Embedded Systems

Xinhai Zhang1, Magnus Persson1, Mattias Nyberg2,1, Behrooz Mokhtari2,1, Anton Einarson2,
Henrik Linder2,3, Jonas Westman1,2, DeJiu Chen1, Martin Törngren1

1 Kungliga Tekniska Högskolan
Stockholm, Sweden

{xinhai, magnper}@kth.se

2 Scania CV AB
Södertälje, Sweden

mattias.nyberg@scania.com

3 HiQ AB
Stockholm, Sweden

Abstract— The importance and potential advantages with a

comprehensive product architecture description are well described
in the literature. However, developing such a description takes
additional resources, and it is difficult to maintain consistency with
evolving implementations. This paper presents an approach and
industrial experience which is based on architecture recovery from
source code at truck manufacturer Scania CV AB. The extracted
representation of the architecture is presented in several views and
verified on CAN signal level. Lessons learned are discussed.

Keywords—architecture recovery; distributed embedded
systems; automotive industry; software engineering

I. INTRODUCTION
In software engineering, legacy code, which is previously

developed and successful software components, systems or
platforms, evolves over time. During this evolution, the
architecture of the legacy code tends to “drift”, which means
that relevant documentation gradually becomes incomplete or
inconsistent as the code changes[1].

The same problem is also suffered in the automotive
industry, which has become increasingly software-intensive
during the past 30 years [2]. The accelerated system evolution
accelerates the architectural drift. At the same time, the
introduction of ISO 26262 [3] implies an increasing emphasis
on safety requirements in the automotive industry. In order to
guarantee safety in terms of software, a comprehensive safety
and impact analysis of new functions is needed. This is a
challenge with drifted legacy code, which makes it hard to
achieve an overall understanding of the whole system.

Architectural drift happens not only because keeping
documentations synchronized with implemented changes is not
of the highest priority of developers, or that it is error-prone
and time consuming, but also because there is no proper tool to
support or verify the synchronization [1]. Therefore, principles
on solving the drift should not merely be addressed through
allocating more effort on documenting changes, but also the
tools bridging the gap between design and implementation.
One feasible approach to bridge the gap is software architecture
recovery [4]. Therefore, we have implemented a domain-
specific toolset in an automotive company to recover the
software architecture of a truck from its implementation and to
check the consistency between implementation and design in
CAN communication level.

In the rest of the paper, we describe as follows: A brief state
of practice survey is made on how software architecture

recovery is used on distributed embedded systems. (Section II).
We present a case study describing how we recovered software
architecture from Scania Electronic Control Unit (ECU) source
files (Section III). The extracted representation of the
architecture is presented in several views and verified on CAN
signal level (Section IV). We also discuss the lessons learnt
from this case study as well as unsolved challenges (Section
V). We finally conclude and suggest future work. (Section VI).

II. BACKGROUND
Software architecture recovery (similar works also refer to

the method as architecture reconstruction [5] or reverse
architecting [6]) is a process to extract high level architectural
models with a specific level of abstraction from available
artifacts of the system implementation [4]. Results from
architecture recovery can be used for system understanding,
consistency checking [7], impact analysis [8], and other
processes related to verification, maintenance and design. Most
published works regarding architecture recovery cover general
purpose software. After the proposal of the reflexion model [1],
combining architecture recovery and consistency checking has
become a common approach to detect architecture drift [7].

The concept of recovering software architecture for
embedded systems was proposed nearly 15 years ago by the
project ARES [9]. However, at that time, the complexity of
embedded systems was much lower than it is now, and
knowledge related to software architecture was also deficient.
Few later works of architecture recovery on embedded systems
can be found, especially for the automotive industry.
Mendonca and Kramer [10] developed an approach for the
recovery of distributed software architectures, however, real-
time features were not taken into account. Baloh, Raghav, and
Sivashankar [11] provided a method to extract a model-based
executable specification from legacy embedded control
software in Simulink. However, their work focused on the
execution model inside a single module rather than the
interactions between modules or system distribution.

III. EMPIRICAL STUDY
Our work is a part of ESPRESSO project, which is

collaboration between KTH and Scania CV AB. The project
aims at providing an efficient development methodology to
achieve functional safety regarding ISO 26262. The work
presented here is the final outcome of a longer process and was
preceded by initial separate proof-of-concept prototypes [12],
[13]. We reorganized, improved and consolidated these

The work presented in this paper was funded by the Swedish national
Vinnova project ESPRESSO.

mailto:mattias.nyberg@scania.com

proofed concepts and implemented them into a consistent
toolset.

A. Context of the Study
On a Scania truck, most of the ECUs are distributed on

three main CAN [14] buses: red, yellow and green bus. Fig. 1
provides an example of this network topology. Some of the
ECUs are allocated on sub buses of their parent ECUs. The
communication on the CAN buses is based on the standard
J1939 protocol [15]. Of the ECUs, three were the focus of the
work presented in this paper: the coordinator (COO), the
engine management system (EMS), and the gearbox
management system (GMS). They were chosen both since they
are key ECUs and have been developed separately in different
parts of Scania, hence having potential mismatch.

Fig. 1. Example of network topology in vehicle from Scania

AUTOSAR [16] is not used in Scania. Instead, they use
their own software platform. Parts of the architectural
principles related to our work are abstracted from the software
architecture used in Scania and illustrated in Fig. 2.

Fig. 2. Graphical illustration of software architecture in Scania. This
architecture is abstracted in a way that is particular enough for the description
in this paper. The one in actual use is slightly different.

An Application Component encapsulates part of one
function. Each application component contains and only
contains one real-time task which can be ether periodic or
event triggered. Normally, an application component is
managed as a .c file associated with related header file and
calibration file. All these files are named as the application
component acronym followed by the extension (.c, .h, etc). In
some ECUs, application components are organized in different
Layers and Managers which are represented only by the
folder structure.

The Real-Time DataBase (RTDB) is a repository, on the
running ECU, of all the information that is shared between

Application Components. The RTDB at Scania can be seen as
the equivalent to the RTE in AUTOSAR. It is used to handle
the communication between both application components and
ECUs. Variables stored in RTDB are called RTDB variables,
which in implementation are micro-defined pointers pointing to
a pre-allocated memory block. Application components can
read from and write to RTDB variables via interfaces provided
by RTDB. As restricted by the architecture, the RTDB is the
only allowed way for application components to interact.

A Signal refers to a pointer pointing to one RTDB variable
which is to be sent to or received from another ECU over CAN
bus. RTDB variables are updated over time by application
components, data read from hardware and signals received
from CAN buses.

A Message, which is a collection of signals together with a
header, is the unit for CAN communication according to the
J1939 standard.

B. Approach and Tool Chain

Fig. 3. Overview of the developed tool chain

The developed tool-chain, as illustrated in Fig. 3, largely
consists of four main parts: A back-end with parsers and a
parser coordinator, a standard Neo4J [17] database, and two
front-end applications: Architecture Browser and CAN Verifier.

Fig. 4. Meta-model of information that need to be extracted from source code

1) Parser and Coodinator
The main work of the parser and coordinator is to retrieve

architectural information from the source files (source code and
calibration files) and store it into the database. Fig. 4 illustrates
the meta-model used for all the retrieved information. Both the
parser and the coordinator are built in Java.

To directly parse the c files is difficult and error-prone.
Therefore, we use srcML toolkit [18] to transform all the
source files into XML files in which c code is wrapped with
information from the Abstract Syntax Tree (AST). Those XML
files together with their positions in the folder structure form
the inputs of the parser. The parser only focuses on source files

in the application layer and CAN communication layer.
Information related to managers and application components
can be retrieved from the folder structure of the source files in
each ECU. Other information illustrated in the meta-model is
extracted from the generated XML files using xPath [19].

The parsers locate architectural information in the source
files by looking for specific patterns. For example RTDB
interfaces are used to locate interactions between application
components and RTDB variables. Specified data structures
according to J1939 standard are used to parse associations of
RTDB variables to signals, as well as the affiliations of signals
to messages. The retrieved information is stored in temporary
data structures before the coordinator uploads them to the
graph database.

2) Database
The recovered information is stored in a more convenient

way using a standard graph database, Neo4J. The choice of a
graph database was motivated by the fact that its structure is
explicitly built to support the kind of model data that is
expected to be generated from architecture recovery, making
queries and development easier to perform.

3) Architecture Browser
The first front-end tool in the toolset is the Architecture

Browser. It is a purpose-built tool implemented to interactively
visualize the implemented software architecture as-is. The
development environment is C#/.NET, with yFiles WPF [20]
being one of the main components. It currently can present two
different views:

• Network diagram, presenting the ECUs and the main
networks only.

• SW/HW view, additionally showing the internal
structure of each ECU including RTDB variables and
communication at a CAN signal level between ECUs.

Fig. 5. A screenshot of the Architecture Browser, showing the three ECUs
and signal flow from the ESTA (engine start) application component both
internally within the COO and over CAN to the other ECUs.

The Architecture Browser uses an advanced filtering
system in order such that only the relevant part of the
architecture is made visible. Filtering can be done on all
relevant model entities, and filters can be successively added

onto each other to give the wanted result. Filters can be used to
both add and remove content, and are also available in negated
variants. Finally, filtering based on dataflow is possible, i.e.
traversing the dataflow chain from a specific application
module. Together these make for precise targeting of the
architecture elements that are most relevant for the user.

The information is presented both in a tree view and in a
hierarchical graph built with yFiles WPF. The latter can be
layouted automatically and several options for display detail
are given, depending on how large the depicted portion of the
architecture is. For example, the visibility of labels giving the
RTDB variable names can be toggled on and off.

The tool gives superior overall understanding of the
architecture, enabling efficient real-time browsing of the
architecture. For example, signal flow can very easily be
followed by interactively and successively querying for signal
chains. Hence, it is easy to use for improving understanding of
the system architecture and even to trace the actual signal flow.

4) CAN Verifier
The second front-end tool of the tool set is the CAN

Verifier, also built in C#. The purpose of the tool is to verify
the content of the CAN communication layer, ECU by ECU,
against the external design databases (SESAMMtool) at
Scania. Inconsistencies such as absent buses, messages, signals
and signals that have divergent definitions are detected and
presented to the user, which may then use the information to
improve either the code or the design database and make them
more consistent.

Fig. 6. A screenshot of the results window of CAN Verifier, showing a
message with a mismatching period.

IV. RESULTS
The approach has been demonstrated to be feasible and

practical. The toolset was validated through demonstration for
the relevant system developers at Scania. A recurring comment
was that the tool will help with system overview,
understanding and impact analysis.

In the Architecture Browser, the architecture description is
visualized in a proper way that developers can easily
understand. The filter function also helps developers to focus
on an expected part of the architecture or trace a certain signal.
In the CAN Verifier, a number of inconsistent signals and
messages were found between implementation and
specification that were not previously known.

The execution time of the toolset is reasonable. The parsers
and coordinator only need to be run after the source files are
changed. The parser execution time is approximately three
minutes per ECU. All the operations in Architecture Browser
and CAN Verifier are within seconds, enabling interactive
browsing. The cost of the development is also deemed
acceptable. By the demonstration we made at Scania, the total
workload was approximately 16 man months excluding the
proof-of-concept prototypes, which were not directly reused for
this phase of the project.

V. DISCUSSION
Unlike most automotive companies, which outsource much

development to subcontractors, Scania performs a large part of
their development in-house. In this setting, the toolset may
benefit many stages within software development lifecycle
such as design, verification and maintenance. The approach
inherently relies on having access to the source code of the
entire distributed system, which is not always the case for all
automotive Original equipment manufacturers (OEMs). Still,
the ideas behind this work may still be applicable for tier-1
software suppliers who provide complete subsystems and other
kinds of software-intensive distributed embedded systems
manufacturers.

The architectural information stored in the database can
also be queried for other kinds of analysis, such as
conformance checking between design model and
implementation model or fault tree generation.

There were three main challenges during the work. Firstly,
different parsers have to be implemented for ECUs from
different departments, since they use different coding
conventions and even different code structure. Secondly, no
solution has yet been created for parsing the source files
generated by third-party code generator, e.g. Simulink-
generated code. Finally, variability related to end-of-line
parameters that are configuring the ECUs at the truck assembly
line is hard to resolve – it is both difficult to parse and difficult
to visualize in an easily understandable way and has not yet
been covered.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have reported our findings in a four-month

long empirical study on recovering software architecture from
three representative ECUs out of an automotive embedded
system. Architecture Browser presents the recovered
architecture in several views and CAN Verifier checks the
consistency between specification and implementation on CAN
communication level. This work was demonstrated inside
Scania. Feedbacks from the demonstration together with the
efficiency and development cost of the toolset have also been
summarized. Our work proved that this bottom-up approach
can be treated as an alternative way to get one step closer to
functional safety regarding ISO 26262, as compared to a more
top-down one such as e.g. the AUTOSAR methodology. Future
extension of this work can be addressed on the following
aspects.

• Enlarging the coverage of Architecture Browser by
taking variability, additional software versions, intra-

component model structure and generated code into
account.

• There are also plans to connect the design requirements
to the recovered architecture, to enable better testing,
traceability, and also combating the problem of
architectural erosion of the requirements.

• Reflexion modeling can be introduced to check
consistency between design and implementation under
expected coverage.

• Architecture recovery can also be integrated with
forward engineering to support development. One of the
examples is continuous architectural supervision during
software development.

REFERENCES
[1] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software reflexion

models: bridging the gap between design and implementation,” IEEE
Transactions on Software Engineering, vol. 27, no. 4, pp. 364–380, Apr.
2001.

[2] M. Broy, “Challenges in automotive software engineering,” Proceeding
of the 28th international conference on Software engineering -
ICSE ’06, p. 33, 2006.

[3] ISO, CD. ‘26262, Road vehicles–Functional safety.’ International
Standard ISO/FDIS 26262 (2011).

[4] G. Rasool and N. Asif, “Software Architecture Recovery,” International
Journal of Computer, Information, and …, vol. 1.1, pp. 421–426, 2007.

[5] [5] S. Ducasse and D. Pollet, “Software Architecture Reconstruction:
A Process-Oriented Taxonomy,” IEEE Transactions on Software
Engineering, vol. 35, no. 4, pp. 573–591, Jul. 2009.

[6] R. L. Krikhaar, “Reverse architecting approach for complex systems,”
Proceedings International Conference on Software Maintenance, pp. 4–
11, 1997.

[7] N. Ali, J. Rosik, and J. Buckley, “Characterizing real-time reflexion-
based architecture recovery: An In-vivo Multi-Case Study,” in
Proceedings of the 8th international ACM SIGSOFT conference on
Quality of Software Architectures - QoSA ’12, 2012, p. 23.

[8] G. Antoniol, G. Canfora, G. Casazza, a. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering, vol. 28, no. 10, pp. 970–983,
Oct. 2002.

[9] E. Wolfgang, L. Warholm, R. Klösch, and H. Gall, “Software
architecture recovery of embedded software,” in 19th International
Conference on Software Engineering (ICSE’97), 1997, no. 20477

[10] N. C. Mendonca and J. Kramer, “Developing an approach for the
recovery of distributed software architectures,” in Proceedings. 6th
International Workshop on Program Comprehension. IWPC’98 (Cat.
No.98TB100242), pp. 28–36.

[11] M. Baloh, G. Raghav, and S. Sivashankar, “Key considerations in the
translation of legacy embedded control software to Model Based
Executable Specifications,” in 2006 IEEE Conference on Computer
Aided Control System Design, pp. 539–544.

[12] O. Chammam and A. Zamouche, “Towares Automated Recovery of
Embedded System Functional Architecture,” Master Thesis, KTH, 2013.

[13] J. Greco and B. Mokhtari, “Network Architecture Recovery in the
context of Automotive CAN Communication Juan Greco,” Master
Thesis, KTH, 2013.

[14] Bosch, “CAN Specification Version 2.0,” 1991.
[15] Standard, S. A. E. ‘SAE J1939 Standards Collection.’.
[16] AUTOSAR, ‘AUTOSAR–Technical Overview V2. 2.1.’ (2008).
[17] “Neo4j.” [Online]. Available: http://www.neo4j.org/.
[18] “srcML.” [Online]. Available: http://www.srcml.org/.
[19] “xPath.” [Online]. Available: http://www.w3.org/TR/xpath/.
[20] “yWorks.” [Online]. Available: http://www.yworks.com/en/index.html.

	I. Introduction
	II. Background
	III. Empirical Study
	A. Context of the Study
	B. Approach and Tool Chain
	1) Parser and Coodinator
	2) Database
	3) Architecture Browser
	4) CAN Verifier

	IV. RESULTS
	V. Discussion
	VI. Conclusion and Future Work
	References

