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ABSTRACT

While GPS-based outdoor localization has become a norm, very

few indoor localization systems have been deployed and used. In

this paper, we share our 5-year experience on the design, devel-

opment and evaluation of a large-scale WiFi indoor localization

system. We address practical challenges encountered to bridge the

gap between indoor localization research in the laboratory and

system deployment in the wild. The system is currently used in

1469 shopping malls, 393 office buildings and 35 hospitals across 35

cities to provide location service to millions of users on a daily basis.

We hope the shared experience can benefit the design of real-world

indoor localization systems and the practical problems identified

can change the focus of indoor localization research. We released

our dataset that contains fingerprints collected from 1469 shopping

malls and one office building.

CCS CONCEPTS

• Information systems → Location based services; Global

positioning systems; • Networks → Location based services.

KEYWORDS

indoor localization, WiFi-based localization, labor-free fingerprint

collection, WiFi access point name-location matching, large-scale
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1 INTRODUCTION

Outdoor localization has become an indispensable part of our

daily lives. GPS-based location service is widely used for navi-

gation and tracking. On the other hand, even with a tremendous

amount of effort from both academia and industry in the last two

decades, there is still no indoor localization system that can be

widely adopted like GPS in outdoors [25, 40]. Different wireless

technologies have been exploited for indoor localization includ-

ing WiFi [8, 9, 20, 36, 51, 59, 60], Bluetooth [16, 23, 28, 34, 55] and

UWB [10, 45, 63]. Bluetooth and UWB localization systems require
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dedicated hardware deployment. These systems can be deployed in

one room or even in one building [24, 63] but they are not scalable

for city-scale deployment. Based on our empirical studies, deploy-

ing a Bluetooth-based localization system in a large office building

with a size of 31, 695𝑚2 requires more than 10,000 Bluetooth bea-
cons and the whole system costs more than $200,000. The deployed

system also needs to be maintained on a weekly basis to replace

those beacons that stopped working. After a thorough study, we

find that to achieve scalable indoor localization, the most practical

approach is to utilize existing infrastructure and this makesWiFi the

most promising candidate for indoor localization. In most shopping

malls, enterprise and university buildings, WiFi infrastructure has

been deployed and we do not need to deploy dedicated hardware if

existing WiFi infrastructure can be utilized for localization.

In this paper, we share our 5-year experience on the design,

deployment, and evaluation of a large-scale WiFi-based indoor lo-

calization system currently used by more than 20 million users

across 35 cities. Besides our own App, there are more than 50 other

Apps using our localization service to support their services such as

food delivery and ride hailing. Among the 50+ Apps, 12 Apps have

more than 10 million downloads. Our localization system utilizes

4.03 million WiFi access points (APs) deployed by the third parties

to provide individual users and companies a large range of services

including indoor localization, store navigation, and location-based

advertising. During the 5-year process, we faced many practical

challenges which were not paid attention to in the research com-

munity. In this paper, we share our experience in bridging the gap

between indoor localization research in the laboratory and system

deployment in real-world settings. We believe the shared experi-

ence can benefit the design and deployment of real-world indoor

localization systems and the practical problems identified may also

change the focus and methodology of indoor localization research.

To make large-scale WiFi localization happen in real-world set-

tings, the first question we ask is what technique should be

used? WiFi localization techniques can be broadly grouped into

three categories, i.e., angle-based [31, 37, 56], time-based [22, 32,

57, 62] and fingerprint-based [21, 29, 47, 53, 54]. After a thorough

investigation of these three techniques, we find that angle-based

and time-based methods impose requirements on WiFi AP. Angle-

based technique requires accurate signal phase measurements for

angle calculation. However, only signal strength information can

be extracted from commodity WiFi APs deployed in real-world set-

tings. The Channel State Information (CSI) which contains phase

readings is only available on few commodity WiFi cards (i.e., Intel

5300 [5] and Atheros AR series cards [1]). These WiFi cards are not
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used in any of the 4.03 million actually deployed WiFi APs. On the

other hand, time-based technique requires highly-accurate time

measurements. The latest WiFi protocol 802.11mc [6, 42] supports

exporting time information for localization. We explore the com-

modity WiFi APs on the market and find few models (e.g., Google

WiFi AP [2] and Compulab WILD WiFi RTT router [3]) support

802.11mc. These APs supporting 802.11mc only account for 5% of

WiFi APs on the market.

For fingerprint-based technique, both CSI [15, 38, 50, 54] and

RSSI (Received Signal Strength Indicator) [14, 17, 18, 48, 59] fin-

gerprints were used. We adopt the RSSI reading which is the only

information available on the vast majority of WiFi-equipped de-

vices for localization. Among the 4.03 million APs, 98.7% of them

support reporting the RSSI readings. At the user side, almost all

Android smartphones and windows-based laptops can report WiFi

RSSI readings.

However, it is well known that fingerprint collection is labor-

intensive [52, 58]. For a six-story shopping mall with a size of

36, 582𝑚2, it takes three persons ten days to collect RSSI readings
at a granularity of 5 m × 5 m. This is not scalable for large-scale

deployment and therefore our second question is how to build

the RSSI fingerprint database without requiring any manual

collection? To address this issue, we adopt a crowdsourcing-based

method to collect fingerprints. The challenging part here is that the

crowdsourced fingerprints do not have groundtruth locations. We

propose a solution to estimate WiFi APs’ coarse locations and then

use the APs’ locations to estimate the groundtruth locations for the

crowdsourced fingerprints. Although the estimated “groundtruth

locations” are not accurate initially, they are refined constantly

leveraging the crowdsourced user feedback.

However, obtaining the locations of millions of APs deployed by

the third parties is non-trivial. To tackle this challenge, we adopt a

name-based matching scheme to obtain some of the APs’ locations

based on a key observation, i.e., in buildings such as shopping

malls, a lot of WiFi APs have a name (SSID) related to the store.

For example, the WiFi AP deployed in Starbucks can have the

name STARBUCKS_WiFi. Based on our data containing 4.03 million

indoor APs, we find that 19.63% of the APs have a name which can

present us with the physical location of the APs in the building.

For the rest APs, we infer their locations based on the proximity

relationship with respect to those APs whose locations have been

obtained from the AP names. We observe several other interesting

real-world challenges such as power diversity across APs and the

physical location change of the APs over time.

After we obtain the fingerprints, the next question is how to

process crowdsourced fingerprint data for localization? Tradi-

tional fingerprint-based indoor localization systems only use the

RSSI readings for localization. For a large-scale localization system,

the large number of users bring unique opportunities to adopt the

number of requests as a fingerprint to further improve system per-

formance. Besides, we also discover interesting challenges such as

indoor-outdoor boundary detection and large floor identification

errors due to hollow-regions.

Our system has been used in several typical indoor environments,

i.e., 1469 shopping malls, 393 office buildings and 35 hospitals in 35

cities. We receive an average of 8.81 million location requests from
these shopping malls per day. For real-life localization services, we

are not able to obtain groundtruths to calculate the localization

error. From January 2020 to March 2022, our localization service

received an overall rating of 4.56 on a scale of 5.0. To show the

detailed performance, we manually collect the groundtruths in four

shopping malls, one office building and one hospital to evaluate

the localization performance. The first shopping mall picked is the

third largest shopping mall in the world with an area of 449, 393𝑚2

and the other three have an area of 81, 600 𝑚2, 26, 650 𝑚2, and
36, 582𝑚2, respectively. We show that our system can achieve a
median localization accuracy of 6.82 m without any manual fin-

gerprint collection using only APs deployed by third parties. In

the office building, we demonstrate the capability of combining

WiFi with IMU data to provide even higher location accuracy. In

the hospital building, although the WiFi AP deployment is sparser,

reasonably accurate results can still be achieved, demonstrating the

wide applicability of our system.

2 FINGERPRINT COLLECTION

RSSI fingerprint-based indoor localization has been extensively

studied [27, 43, 61]. It is well known that fingerprint collection

is labor-intensive and time-consuming [52, 58]. Manual collec-

tion is not scalable for large-scale deployment and we propose

a crowdsourcing-based method to collect fingerprints. The basic

idea is to collect fingerprints by crowdsourcing information from

millions of end users. However, as there is no groundtruth loca-

tion information, large-scale fingerprint collection is challenging.

We propose a two-stage method to enable large-scale fingerprint

collection without requiring any manual effort. The first stage is

to obtain the coarse location information of WiFi APs to serve

as anchor points to initialize the process of fingerprint collection.

Then we iterate the process by leveraging user feedback to obtain

more accurate fingerprints. We detail the process of AP location

estimation, fingerprint initialization and update in the following

sections.

2.1 WiFi AP location estimation

To obtain the locations of millions of WiFi APs in a scalable manner,

we adopt a name-matching method to first obtain some of the APs’

locations and then use the obtained locations to infer the rest APs’

locations. The name-matching method is based on an interesting

observation that lots of Point of Interests (PoIs) such as stores,

restaurants and coffee shops deploy their own WiFi APs and the

names of the APs are related to the stores. We can therefore use the

AP names to infer the physical locations of the APs with the help

of the building floor plan. Also almost all the shopping malls would

like to share the floor plan data with us to enable localization-related

services inside the building.

2.1.1 Estimating APs’ locations using name information. Before we

estimate the APs’ locations in a building, we first extract the AP list

and the information of each AP (i.e., MAC address, SSID, and RSSI)

through crowdsourcing. Specifically, we crowdsource information

from millions of end user devices (e.g., smartphones). Whenever

a user requests a location service, the request is sent through an

App to our server. The request contains all the WiFi APs that can

be overheard by the device and the information of each AP.
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To match the WiFi AP name with a PoI to obtain the location of

the AP, we adopt a natural language processing (NLP) model [7] to

interpret the AP name. The adopted NLP model supports English,

Spanish, Chinese and special characters such as @, *, - and &. To

improve the matching accuracy, we also take abbreviation and

similarity of words into consideration. For example, 𝑆𝐵_𝑊𝑖𝐹𝑖 can
be used as the WiFi AP name and 𝑆𝐵 represents Starbucks.
Then we adopt an information retrieval model proposed by

Google, i.e., deep & wide model [19] to match the WiFi AP name

with the PoI name. Note that during the matching process, we

only match the PoI names and AP names from the same building.

For a total of 301,216 PoIs and 4.03 million APs, we can complete

the matching in around three minutes on a distributed server sys-

tem with ten servers. Each server is equipped with two Intel Xeon

14-core E5-2680v4 CPUs and 256 GB of memory. Among the 4.03

million WiFi APs, 791,893 APs (i.e., 19.63%) can be matched with

PoIs. Among them, 38.23%, 13.50% and 7.65% of APs at shopping

malls, office buildings and hospitals can be matched respectively. To

evaluate the accuracy of the name-matching method, we manually

collect the groundtruth of 8,000 APs in 1469 shopping malls. The

achieved name matching accuracy is 98.4%.

ℝ ∪ ℝ( )

ℝ ∩ ℝ( )

ℝ ℝ
AP List

AP

APx
APk

Figure 1: Each device reports a list of APs overheard. Two

WiFi APs are overheard by different user devices.

2.1.2 Estimating the remaining APs’ locations. The name-matching

scheme can help obtain part of the APs’ locations. For the rest APs,

we propose a novel scheme which utilizes the crowdsourced data

to obtain the proximity information between APs to obtain their

locations.

Let us take one AP from the rest unknown-location APs and

denote it as 𝐴𝑃𝑥 to illustrate how to estimate its location. If 𝐴𝑃𝑥
and another AP (𝐴𝑃𝑘 ) whose location has been obtained in the
name-matching phase can be overheard by the same device, these

two APs are not too far away from each other. To quantify how

close these two APs are, we employ the AP lists crowdsourced from

the end users. Every time a user sends a service request, an AP list

is also sent to our server and recorded. As shown in Figure 1, the AP

lists containing𝐴𝑃𝑥 are denoted as R(𝐴𝑃𝑥 ) and the lists containing
𝐴𝑃𝑘 are denoted as R(𝐴𝑃𝑘 ). Those AP lists contain both 𝐴𝑃𝑥 and
𝐴𝑃𝑘 are denoted as R(𝐴𝑃𝑥 )

⋂
R(𝐴𝑃𝑘 ). The AP lists containing

𝐴𝑃𝑥 or 𝐴𝑃𝑘 can be denoted as R(𝐴𝑃𝑥 )
⋃
R(𝐴𝑃𝑘 ). If we use 𝑁 and

𝑀 to indicate the number of AP lists in R(𝐴𝑃𝑥 )
⋂
R(𝐴𝑃𝑘 ) and

R(𝐴𝑃𝑥 )
⋃
R(𝐴𝑃𝑘 ), respectively, we can leverage the crowdsourced

data to quantify the two APs’ proximity as

𝑃𝑟𝑜𝑥 (𝐴𝑃𝑥 , 𝐴𝑃𝑘 ) =
𝑁

𝑀
. (1)

The value of 𝑃𝑟𝑜𝑥 (𝐴𝑃𝑥 , 𝐴𝑃𝑘 ) is in the range of 0∼1. Value 1 indi-
cates 𝐴𝑃𝑥 and 𝐴𝑃𝑘 always appear together on a list.
In real-world settings, Equation (1) is still coarse. A lot of AP pairs

can achieve a proximity value higher than 0.95 because whether

two APs on the same list (heard by the same device) is a low bar

for proximity measurement. To obtain more fine-grained proximity

information, after the two APs appear on the same list, we further

calculate the RSSI difference of the two APs, i.e., 𝑅𝑆𝑆𝐼𝑥 − 𝑅𝑆𝑆𝐼𝑘 . A
smaller RSSI difference means two APs have a chance to be closer

to each other. We include this term in the denominator. Also if

the APs’ RSSI readings are larger, they are more accurate readings.

So we include another term𝑀𝑒𝑎𝑛(𝑅𝑆𝑆𝐼𝑥 , 𝑅𝑆𝑆𝐼𝑘 ) in the numerator
to characterize this effect.1 By taking these two measures into

consideration, Equation (1) can be rewritten as below

𝑃𝑟𝑜𝑥 (𝐴𝑃𝑥 , 𝐴𝑃𝑘 ) =

∑𝑁
𝑖=1

𝑀𝑒𝑎𝑛 (𝑅𝑆𝑆𝐼𝑥𝑖 , 𝑅𝑆𝑆𝐼𝑘𝑖 )
|𝑅𝑆𝑆𝐼𝑥𝑖−𝑅𝑆𝑆𝐼𝑘𝑖 |

𝑀
. (2)

Note that for the two cases in Figure 2, the obtained values from
𝑀𝑒𝑎𝑛 (𝑅𝑆𝑆𝐼𝑥𝑖 , 𝑅𝑆𝑆𝐼𝑘𝑖 )

|𝑅𝑆𝑆𝐼𝑥𝑖−𝑅𝑆𝑆𝐼𝑘𝑖 |
are both large. The beauty of Equation (2) is

that it takes the number of AP lists (i.e., 𝑁 ) which have both APs
into consideration. For case B in Figure 2, the 𝑁 value would be
small and therefore the final value of Equation (2) is still small.

Figure 2: Two typical cases in AP proximity estimation.

For 𝐴𝑃𝑥 , we apply Equation (2) to rank those APs whose loca-
tions have been obtained. A larger value indicates a higher chance

of being closer to 𝐴𝑃𝑥 . Before we determine the location of 𝐴𝑃𝑥 ,
we first infer the floor information of 𝐴𝑃𝑥 . Floor information is
very important in many real-life scenarios [26, 39]. An interesting

observation is that users can usually tolerate a large localization

error but not a floor error and this observation was also verified

in another recent study [34]. Among the APs (e.g., 𝐴𝑃𝑘 ) whose
locations have been obtained in the name-matching stage, we take

the top 𝑁𝑓 APs with the largest proximity values with respect to

𝐴𝑃𝑥 . If the top 𝑁𝑓 closest known-location APs are all on the same

floor, we determine the same floor as 𝐴𝑃𝑥 ’s floor. If the top 𝑁𝑓
closest APs are not on the same floor, we defer the determination

to future rounds. The rationale is that in this round, we are not able

to get enough number of known-location APs on the same floor

close to𝐴𝑃𝑥 so we better defer the determination to later rounds as
in each round, some APs’ locations can be estimated and become

known-location APs in the next round. We set the value of 𝑁𝑓 as

three considering the trade-off between accuracy and number of

estimation rounds.

After the floor information of an AP is determined, we continue

to calculate the AP’s location P(𝐴𝑃𝑥 ) using the location informa-
tion of the known-location APs on the same floor and weight the

1Note that RSSI difference and mean value need to be normalized to the range of 0∼1.
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contribution based on the proximity value calculated in Equation (2)

P(𝐴𝑃𝑥 ) =
𝑇∑

𝑘=1

𝑊 (𝐴𝑃𝑥 , 𝐴𝑃𝑘 ) × P(𝐴𝑃𝑘 ). (3)

Here,𝑊 (𝐴𝑃𝑥 , 𝐴𝑃𝑘 ) is the weight by normalizing the sum of the
proximity value 𝑃𝑟𝑜𝑥 (𝐴𝑃𝑥 , 𝐴𝑃𝑘 ) as 1, and𝑇 is the number of known-
location APs on the same floor. After the APs’ locations are obtained,

the APs are added to the known-location AP group to start a new

round. We stop the process when no new APs’ locations can be

estimated. Based on the data from 1469 shopping malls, 393 of-

fice buildings, and 35 hospitals, after an average of 4.1 rounds,

7.3 rounds, and 8.7 rounds, respectively, the number of APs whose

locations can be estimated saturates. For shopping malls with a

higher percentage of name-matching APs (38.23%), less rounds are

needed. In the three environments, eventually 91.10%, 91.40%, and

86.87% APs’ locations can be estimated. Note that for fingerprint-

based localization, we do not require to know all the AP’s locations.

We also study the AP location estimation accuracy. To evaluate

the performance of AP location accuracy, we manually collect the

groundtruth locations of 8,000 APs. The experiment results show

that in shopping malls, office buildings and hospitals, the median

errors are 5.16 m, 8.65 m and 23.61 m, respectively. We want to em-

phasize that the APs’ locations are only used for the initialization

of fingerprint collection. More accurate AP locations lead to more

accurate initial fingerprints and accordingly a faster convergence.

Less accurate AP locations do not necessarily mean less accurate

localization performance.

2.2 Fingerprint collection

After the APs’ locations are estimated, we now introduce how to

build the fingerprint database without any manual effort. As shown

in Figure 3, this approach consists of two modules, i.e., initialization

module and user feedback-based update module.

Figure 3: Fingerprint initialization and update.

2.2.1 Fingerprint composition. The fundamental two components

of a fingerprint are (i) a location (i.e., a square grid), and (ii) unique

features associated with this location. Traditional WiFi-based fin-

gerprint only uses the RSSI readings overheard from multiple APs

as the unique feature to form a fingerprint. In our work, we add one

more feature, i.e., the number of requests (NoR) at a location which

is available only when we have a large amount of data and we term

this new feature data-driven feature. This data-driven feature can

be utilized to further improve localization accuracy.

2.2.2 Fingerprint initialization. Based on the APs’ location infor-

mation obtained in Section 2.1, we start fingerprint initialization at

each grid. The key difference between our large-scale automated

fingerprint collection and traditional manual collection is that we

do not have any groundtruth locations. The critical part is to obtain

accurate location information to link it with the features (i.e., RSSI

and NoR) to form the fingerprint.

We adopt an iteration-based scheme leveraging data crowd-

sourced from users to initiate the process and employ user feedbacks

to remove inaccurate fingerprints. Whenever a location service re-

quest is sent to our server, a list of overheard APs and the RSSI

information of each AP are also sent to our server. Based on the

APs’ locations and the RSSI values, we can coarsely estimate the

user’s location 𝑳𝒐𝒄𝒖𝒔𝒆𝒓 = (𝑥𝑢𝑠𝑒𝑟 , 𝑦𝑢𝑠𝑒𝑟 ) by applying the following
equation

𝑳𝒐𝒄𝒖𝒔𝒆𝒓 =

∑𝑁
𝑖=1 𝑅𝑆𝑆𝐼𝑖 · 𝑳𝒐𝒄 𝒊∑𝑁

𝑖=1 𝑅𝑆𝑆𝐼𝑖
, (4)

where 𝑅𝑆𝑆𝐼𝑖 is the normalized signal strength in the range of 0∼1
to quantify the weight of each AP’s contribution. 𝑳𝒐𝒄 𝒊 = (𝑥𝑖 , 𝑦𝑖 )
is the location of the 𝑖th AP and 𝑁 is the number of overheard
APs. The weights of all the APs add to 1. Larger RSSI means larger

weights. The rationale is that if the RSSI value is larger, the AP

has a higher chance to be close to the user location. Note that

due to multipath, larger RSSI does not always indicate a closer

location. With a large number of APs, the effect of multipath is

mitigated. Also the feedback mechanism (Section 2.2.3) can further

refine the estimates. Once the location where the user sends the

request is estimated, the initial fingerprint at the grid where the

user is located can be obtained. With lots of users, we can quickly

obtain fingerprints at most locations. Based on our data from 1469

shopping malls, after an average of 6.6 days, the fingerprints at

87.4% locations can be collected. The remaining 12.6% locations are

rarely visited by users and therefore they have little effect on our

localization service. For the number of requests (NoR), the initial

value is set to zero and each time a request is sent from a grid, the

value for that grid is increased by one.

2.2.3 Fingerprint update. The initial fingerprints obtained in Sec-

tion 2.2.2 may not be accurate. We further utilize a large amount of

user feedback to refine the fingerprints. Based on our experience,

with some incentive programs such as “win a coupon by giving us

feedback”, we can receive feedbacks from around 5% of the users.

The feedback can be as simple as “Please rate our service on a

scale of 1∼5”. To make sure the update is effective, we keep the

fingerprints used in services rated “5” (very satisfied). For those

services scored 1∼4, we label the fingerprints involved as “need to

be updated”. Then we use the latest AP information and the method

described in the initialization phase to obtain new fingerprints at

those locations. We will only replace the original fingerprint with

the new fingerprint if we receive an equal or higher feedback score

in later services involving the new fingerprint. This process con-

tinues until all the fingerprints receive a score of 5. Note that a

fingerprint with a score of 5 can receive a lower score later (e.g., 3).

Our system will update it when a new score of 5 is received. This

process can take 1-5 weeks. In shopping malls, it takes an average

of 6.3 days for the fingerprints to become stable. It is worth men-

tioning that such an update scheme also makes the system robust
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against the changes of WiFi APs. Over the time, some APs disap-

pear and new APs come in. It is interesting that the APs’ location

changes can be used to infer the migration of shops and tenants.

In three typical cities (i.e., big, medium and small), we observe a

23.1%, 18.2% and 15.5% AP location change during one year.

3 DATA PROCESSING

In this section, we describe how to process the crowdsourced data

for localization in real world.

3.1 Multi-feature based localization

Traditional fingerprint-based indoor localization systems rely on

RSSI readings. The basic idea is to find the grid in the database

which can present the highest RSSI similarity with the online RSSI

measurements. In our system, we adopt features from traditional

RSSI readings as well as the number of requests for localization.

The processing pipeline of our approach is shown in Figure 4.

LambdaRank Model

Fingerprint Database

Localization Request

Fingerprint 1

Online 
fingerprint

Fingerprint n

Location

…

1) Learn weights;

2) Rank grids; 

Fingerprint n

Figure 4: The processing pipeline of localization service.

RSSI feature. RSSI readings are unique at different locations.

RSSI reading from just oneAP is not enough to differentiate between

locations and multiple APs are required. To calculate the similarity

between the online RSSI readings and the RSSI readings in the

database, we need to first identify the common APs on the two

lists, i.e., the AP list sent through the service request and the AP list

associated with the grid stored in the database. We then calculate

the similarity of RSSI readings between the common APs on the

two lists using four different metrics, i.e., Euclidean distance, rank

distance, distribute distance and reverse-pair rate [30, 33, 49]. For

all the four metrics, a smaller value means the two RSSIs are more

similar. Note that if the number of common APs between two lists

is less than 3, the grid will be excluded from consideration. This is

because too few APs cannot guarantee the uniqueness of the RSSI

fingerprint.

Number of requests (NoR) feature. The number of historical

service requests is another feature used in our system. We find that

the number of requests queried at different locations (i.e., grids)

presents meaningful information to help differentiate two grids.

The NoR feature tells which location is more popular when users

request a location service. We observe a much higher NoR near

the entrance of a PoI (e.g., a restaurant) compared to the area deep

inside the PoI. A higher NoR value indicates a higher probability

the request is from this grid. We consider the number of requests

in the previous 30 days to obtain the NoR feature.

To effectively combine the two features, we adopt the well-

known LambdaRank model [13] to learn the appropriate weight

for each feature using the large amount of data crowdsourced. The

LambdaRank model takes the features of all the grids as input and

ranks the grids. The top grid is the estimated location. As our sys-

tem does not require manually collecting any groundtruths for

model training, we leverage the user feedback to identify more

accurate fingerprints to be used for training. If a user rates the

service high (e.g., very satisfied), the fingerprints involved in this

localization service will be used as the training data to update the

model.

3.2 Practical challenges in real world

In this section, we discuss two real-world challenges we encoun-

tered during the process of design and deployment.

3.2.1 Indoor-outdoor boundary detection. Boundary detection is

critical for accurate localization. For example, when a user enters

a shopping mall, if GPS service is still used, a large error would

occur. Existing works [64, 65] usually employ sensor data extracted

from smartphones such as luminance and atmospheric pressure

to achieve accurate indoor-outdoor boundary detection. The lumi-

nance information can be obtained from the light sensor and the

atmospheric pressure can be extracted from the barometer. How-

ever, not all smartphones have these two sensors. The barometer is

usually only available in high-end smartphones. On the other hand,

the performance of light sensor can be affected by weather and time

of day. In our system, we use just the GPS and WiFi signal strength

distribution for indoor-outdoor detection. Figure 5a and Figure 5b

show one measured example of WiFi RSSI distribution and the GPS

SNR distribution in indoor and outdoor environments. The higher

the WiFi RSSI and the lower the GPS SNR, the more likely it is

indoor. We collect the WiFi and GPS signal strength distribution at

various locations and train a model for indoor-outdoor differentia-

tion. We can achieve an accuracy of 98.7% which is comparable to

that achieved with expensive high-end sensors.
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Figure 5: The distributions utilized for boundary detection.

3.2.2 Hollow region in a building. We observe large floor identifi-

cation errors when there are hollow regions in a building as shown

in Figure 6. This is because floor identification is based on RSSI

difference between APs on different floors. Due to the attenuation

of the floor ground, the RSSI strengths from the APs on the same

floor are higher than those on different floors. However, the hollow

regions make this invalid because the floor attenuation disappears.

We present a novel method to handle this issue in real world.

We observe that the RSSI distribution of APs at the edge of hollow
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(a) Escalator (b) Indoor bridge

Figure 6: Two example hollow regions in shopping malls.
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Figure 7: Dramatically different RSSI distributions can be

observed in shoppingmalls with andwithout hollow regions.

region is different from that of other APs. As shown in Figure 7, the

WiFi RSSI distribution of APs at the edge of a hollow region shows

two peaks in the Gaussian distribution while that of other APs

shows just one peak. This is a very interesting result. In the hollow

regions, the first peak corresponds to those RSSI readings measured

at locations on the other floors. The peak is higher because the

number of readings from multiple other floors is more than that

from the same floor. The second peak corresponds to those RSSI

readings measured at locations on the same floor. The RSSI values

are larger (stronger signal) but the number is smaller. Based on

this observation, we use the number of RSSI distribution peaks to

determine if one AP is located at the edge of a hollow region. For

floor identification, we exclude those APs located at the edge of

hollow regions because they can cause large errors.

4 LARGE-SCALE SYSTEM EVALUATION

In this section, we evaluate the system performance in real-world

environments, i.e., shopping malls, office buildings, and hospitals.

4.1 Localization in shopping malls

Localization in large shopping malls plays a critical role in navigat-

ing users to locations of interest. Our system is used in 1469 shop-

ping malls. All theWiFi APs are deployed by third parties and we do

not have any control over them. The fingerprint dataset is available

at: https://github.com/IndoorFingerprint/IndoorFingerprintData.

The dataset2 includes the RSSI fingerprints at a granularity of 5 m

2Due to the space limit of github (1 GB), we can only upload part of the dataset. The
full dataset (150 GB) is available upon request.

× 5 m in the 1469 shopping malls and the anonymous store infor-

mation (mall ID, shop ID, and location).

Overall performance.We receive an average of 8.81 million

location requests per day in shipping malls. For localization services

in real world, we are not able to obtain groundtruths to calculate

the location error in meters. What we receive is the user rating.

From January 2020 to March 2022, our localization service received

an overall rating of 4.56 on a scale of 5.0 based on 41,500 ratings.

To show the detailed errors, we pick four shopping malls, includ-

ing one large, one medium, one small, and one special shape mall.

The groundtruths are manually collected. To reduce human labor

cost, we select those areas from where we received most service

requests and collect groundtruth measurements in those areas. For

example, we collect groundtruth near the elevators and stairs, in

front of shops/stores and at the corridor corners. Note that this is

different from the routine operation adopted in lab evaluation that

usually selects locations evenly distributed inside the area of inter-

est. Then, we use a laser meter to measure the distance with respect

to the reference such as walls which can be easily identified on the

floor plan. After the groundtruth location is selected, the volunteer

stops at the location and sends out location service requests.

Figure 8 shows the floor plans of the first floor of the selected

shopping malls with all the APs marked. The first 6-story large

shopping mall is the third largest shopping mall in the world with a

total area of 449, 393𝑚2. There are 3012WiFi APs deployed by third
parties. The rest three shopping malls have a total area of 81, 600𝑚2,
26, 650𝑚2, and 36, 582𝑚2 with 561, 212, and 442 APs deployed, re-
spectively. We choose the large and the medium shopping malls

for evaluation because we would like to compare our localization

service with iPhone’s localization service. iPhone does not report

RSSI readings to third parties and Apple provides its own localiza-

tion service [4]. In these two large shopping malls, Apple actually

collaborates with a company to manually collect fingerprints for

localization. We compare the performance of our system without

any manual fingerprint collection to Apple’s localization service

with manual collection. In the small and special shape shopping

malls, Apple does not perform any manual fingerprint collection.

We pick a total of 31,140 locations in the four shopping malls,

i.e., 20,300 in the large one, 5,230 in the medium one, 2,510 in

the small one, and 3,100 in the special shape one, to evaluate the

accuracy of localization services provided by our system and by

Apple. For iPhone, we use iPhone 8 Plus, iPhone XS MAX and

iPhone 13. For Android smartphones, we include Google Pixel 6,

Samsung Galaxy S9, Xiaomi 8 and Huawei Mate 9. The overall

performance (localization error) is shown in Figure 9. We can see

that in the large and medium shopping malls, our system without

any manual collection can achieve a median error of 6.12 m and

6.43 m, which is comparable to Apple’s service (i.e., 6.48 m and

6.50 m) with manual fingerprint collection. In the small and special

shape shopping malls, without manual collection, the performance

of Apple’s localization service (i.e., 17.24 m and 12.36 m) degrades

significantly while our system still achieves a high accuracy (i.e.,

8.74 m and 6.92 m). We also compare the system performance when

users use different brands of Android smartphones. The results are

shown in Figure 10 and we do not see a clear difference between

smartphone brands.
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(a) First floor floorplan of the large shopping mall

115m
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Name-matching AP

Remaining AP

(b) First floor floorplan of the medium shopping mall

(c) First floor floorplan of the small shopping mall (d) First floor of the special shape shopping mall

Figure 8: AP deployment in four different shopping malls. The name-matching APs, the further estimated APs and the

remaining APs are marked in green, red and gray, respectively.
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Figure 9: The performance comparison between our system

and Apple’s location service in the four shopping malls.
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Figure 10: The localization performance comparison among

different smartphone brands in the four shopping malls.
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Figure 11: Confusion matrix of floor detection.

AP location estimation. As illustrated in Section 2.1, we do

not manually measure the AP locations, but localize APs using

the proposed name-matching scheme and proximity information

between APs. In the four shopping malls, we can use the name-

matching scheme to obtain the locations of 1592, 288, 101, and 176

APs, accounting for 52.86%, 51.33%, 47.64%, and 39.82% of all APs,

respectively. As shown in Figure 8, we highlight the name-matched

APs in green. The proximity-based scheme is then used to infer the

location of another 1251, 237, 84, and 230 APs, respectively. These

APs are highlighted in red. The total percentages of APs whose

locations can be estimated by our system are 94.38%, 93.58%, 87.26%

and 91.86% in the four shopping malls, respectively. The very few

remaining APs are marked in gray.

Dealing with hollow region. In this experiment, we evaluate

the performance of identifying the floor information for the 31,140

locations selected. By applying the proposed method to deal with
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Figure 12: Fingerprint update

addresses the issue of AP lo-

cation change over time.
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Figure 13: The effect of

time of day with different

amounts of multipath.

hollow-region induced errors, we improve the floor identification

accuracy from 55.63% , 56.12%, 56.75%, and 53.82% to 98.92%, 99.31%,

99.53%, and 98.25% in the four malls. Figure 11 shows the confusion

matrix of floor identification with the proposed method.

APs’ physical location change. In our long-term evaluation

in the two bigger shopping malls, we discover 19.1% of the WiFi

APs are moved to different locations during one year. Larger errors

would occur if fingerprints are not updated. The proposed method

in Section 2.2.3 can address this issue by updating the fingerprint

without any manual collection. Figure 12 shows the median local-

ization errors on a monthly basis over a period of 18 months in

the two shopping malls with and without fingerprint updates. The

errors without fingerprint update increase with time. In the 18th

month, the error without fingerprint update is 15.1 m while the

error remains around 6.5 m with fingerprint update.

Multipath effect.Multipath is a key issue affecting the local-

ization performance. More users can cause richer multipath and

it is often evaluated in the laboratory environment to study the

effect of multipath. In this experiment, we would like to see if it is

a problem in real-world settings. We pick three time periods with

different amount of customer flows in both weekdays and week-

ends. The time periods are 8:00 am∼10:00 am, 11:00 am∼1:00 pm,

and 5:00 pm∼7:00 pm. The average numbers of localization service

requests in the two bigger shopping malls are 2697, 3959 and 2171

per day during the three time periods respectively in the weekdays.

The numbers are changed to 2288, 4375 and 3522 in the weekends.

We notice that the shopping malls located in the central business

district have smaller number of customers during the weekend. The

number of service requests can coarsely reflect the customer flow

in the two shopping malls. Figure 13 shows the median localization

errors in different time periods. We can see that the error slightly

increases when the number of users increases. However, the perfor-

mance degradation is very limited, demonstrating the robustness

of the performance in real world.

Dealing with large-scale uneven service requests over time.

We observe that the number of location service requests varies

dramatically between weekdays and weekends/holidays. In some

shopping malls, the number of service requests can increase by five

times during holidays. This can cause larger service latency and

even degraded service accuracy if not properly handled. To address

this issue, we predict the number of service requests based on his-

torical data and adapt our cloud server to ensure service quality

(i.e., latency and accuracy). Specifically, we establish a LightGBM

model [35] to predict the future changes in the number of service

requests. It uses the historical service request data together with

additional information such as the location of the shopping mall,

weather, and temperature for prediction. This model can also be

used to estimate the peak value of service requests to ensure suffi-

cient server resources are reserved.

4.2 Localization in office buildings

Our system is able to achieve a median localization accuracy of

6.82 m in the four shopping malls. In office buildings, the achieved

accuracy is lower. This is because in office buildings, the AP de-

ployment is sparser due to optimized deployment strategy and the

APs are usually deployed by the same operator, while in shopping

malls, different shops/stores usually deploy their own APs without

taking other PoI’s AP deployment into consideration. However, in

office buildings, higher localization accuracy is usually expected

because office rooms are smaller than stores/shops. To improve

the localization accuracy, we integrate the proposed localization

method with the IMU sensor data widely available on smartphones.

Compared to the low RSSI sample rate (0.0167 Hz ∼ 0.5 Hz), the

sample rate of IMU sensors can be up to 100 Hz [41, 46]. The sensor

data from accelerometer, gyroscope, and magnetometer can pro-

vide the walking speed, direction and displacement information by

applying Pedestrian Dead Reckoning (PDR) algorithm [11, 44]. As

shown in Figure 14, we conduct experiments in an 11-story office

building with a size of 160, 120𝑚2 and a total of 312 APs.

Figure 14: First floor floorplan of the office building.

Overall Performance.We compare the performance of real-

time navigation with and without IMU sensor data. To get the

groundtruths, we mark the trajectories on the ground and ask the

volunteers to walk following the pre-defined trajectories. We test

10 different trajectories in the building with the length in the range

of 50 to 150 m. 50 volunteers are asked to walk along these 10

trajectories with a phone in the hand. The overall performance is

reported in Figure 15a. We can see that by applying the IMU data,

we can reduce the median error from 9.13 m to 3.79 m.

The sample rate ofRSSI readings.Meanwhile, we observe that

in order to save battery power, the RSSI readings on smartphones

are reported at a rate of 0.0167 Hz∼0.5 Hz [12]. This is another

parameter affecting the localization performance. Different Android

OS versions support different RSSI sample rates. We thus evaluate

the performance under different RSSI sample rates. As shown in

Figure 15b, when both IMU and WiFi data are used, the median

errors are 7.37 m, 4.76 m, 3.79 m, 3.26 m, and 2.55 m for the five
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different RSSI (i.e., 0.0167 Hz, 0.0667 Hz, 0.125 Hz, 0.25 Hz, and

0.5 Hz) sample rates, respectively.
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Figure 15: Localization performance in an office building by

combing WiFi fingerprinting with IMU data.

4.3 Localization in hospitals

We pick a large 11-story hospital with a total area of 59, 400𝑚2 and
223 WiFi APs for our experiment. The floor plan of the first floor is

shown in Figure 16. The hospital environment is very different from

shoppingmalls. FewerWiFi APs are deployed, and a lot of AP names

are not related to the Point of Interests (PoIs). However, we do

observe something unique and interesting in hospital environment

which can be leveraged for localization. We find that there are

usually cashier counters in a hospital.3 There are also self-service

printer kiosks deployed for users to print inspection reports. To

ensure a stable WiFi connection for payment and service, usually

there are WiFi APs deployed nearby.

For other parts of the hospital, the name-matched APs are sparser

but we do find matched APs with names such as “ICU” and “OAG”.

OAG is the abbreviation for Obstetrics and Gynecology Depart-

ment. In this hospital, a median localization error of 11.85 m can be

achieved. The slight accuracy decrease is mainly due to sparser AP

deployment and fewer name-matched APs. However, the achieved

performance is still reasonably good. We believe this is because

fingerprint-based localization actually does not require a lot of APs

to be overheard. 4–6 APs are usually enough for fingerprint-based

location scheme to work reasonably well.

5 DISCUSSION

• Applications and services. Our localization system has

been used to provide other services such as location-based

advertising, ride hailing and food delivery. Each of these ser-

vices poses unique new real-world challenges. For example,

for ride hailing, the initial starting point is usually not the

user’s current location but the building’s entrance. Another

very interesting scenario which often requires localization

service is the underground parking lot. However, the num-

ber of WiFi APs in parking lot is very limited, imposing

challenges to enable service there.

• Operation mode.We provide three different ways to use

the provided indoor location services, i.e., App, SDK (soft-

ware development kit), and web RESTful API. We provide

App download through web link (https://map.qq.com/) and

3We note that in some Asian countries, cashier counters are common in hospitals.

Figure 16: First floor floorplan of the hospital.

App Store (https://apps.apple.com/us/app/id481623196) for

end-users. We also offer localization SDK, mainly for third-

party Apps, including ride hailing and food delivery services.

RESTful API is primarily used to localize IoT devices such

as smartwatches.

• System bootstrapping. As our company owns one of the

most popular map Apps in China, i.e., the Tencent Map,

which is used by millions of users, we had WiFi data (e.g.,

AP names, and building names) and GPS data before we

launch this fine-grained indoor localization service. These

data can help us bootstrap our indoor localization system by

providing users with coarse localization service in the initial

stage. Based on our experience, in a busy shopping mall, it

takes just 1-2 weeks for our system to update the fingerprints

based on user crowdsourcing. However, we believe this quick

bootstrapping process benefits from a large number of users

already using our company’s other services. This process can

take longer if a new company wants to provide this service.

In this case, we recommend recruiting some volunteers to

use the App deliberately to accelerate the bootstrapping

process.

• Server deployment.We have cloud servers distributed in

three different cities. The servers are not per-building based

but are used to take care of all the localization services na-

tionwide. For data processing in this paper, we utilize 10

distributed servers located in three cities, and each server is

equipped with two Intel Xeon 14-core E5-2680v4 CPUs and

256 GB of memory.

6 CONCLUSION

To conclude, in this paper, we share our insights and experience

utilizing pervasive third-party WiFi infrastructure to provide scal-

able localization service to millions of users. We focus on those

practical issues we encountered and present our solutions. We hope

this work can help people rethink indoor localization and trigger

more indoor localization systems deployed in real world.
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