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Abstract  

To make effective decisions we need to consider the relationship between actions and 
outcomes. These are often separated by time and space. The mechanisms spanning these gaps 
remain unknown. One promising hypothesis involves neural replay of non-local experience. 
Using a task segregating direct from indirect value learning, combined with 5 
magnetoencephalography, we examined the role of neural replay in human non-local learning. 
Following reward receipt, we found significant backward replay of non-local experience, with 
a 160 msec state-to-state time lag, this was linked to efficient learning of action values. 
Backward replay, and also behavioural evidence of non-local learning, was more pronounced 
for experiences of greater benefit for future behaviour. These findings support non-local replay 10 
as a neural mechanism for solving complex credit assignment problems during learning. 
  
 

One Sentence Summary  

Non-local reverse replay is associated with model-based reinforcement learning in humans and 15 
is rationally prioritised according to utility. 
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Main Text 

Effective decision making incorporates new experience into our existing knowledge of the 
world. This allows us to infer the likely future consequences of different actions without having 
to experience them. When you encounter a traffic jam at crossroads, for example, you learn 
that the route just taken should be avoided, but you might also infer the value in avoiding the 5 
alternate paths leading to this same location. Learning from direct experience can be 
straightforwardly achieved by detecting co-occurrence between actions (like routes taken), and 
subsequent rewards (1-3). However, to propagate that experience to many other distal 
situations requires additional computation, as in the example of alternate converging roads. We 
understand little about how this type of indirect learning is achieved in the brain (4-7). 10 

In reinforcement learning (RL) theory (8), non-local value propagation can be achieved by 
“model-based” methods. In essence, these leverage a learnt map or model of the environment 
to simulate, or simply retrieve, potential trajectories (9, 10). These covert trajectories can 
substitute for direct experience and thereby span the gaps between actions and outcomes (11), 
a process known as experience replay.  15 

In neuroscience, a potential neural substrate for this process is the phenomenon of hippocampal 
“replay”. Here, cells in the hippocampus that encode distinct locations in space fire sequentially 
during rest in a time-compressed manner, recapitulating past or potential future trajectories 
(12-14). In rodents, hippocampal replay has been linked to learning in a number of different 
types of task (15-19), potentially reflecting (but in most cases not specifically isolating) a 20 
common mechanism of nonlocal value propagation. Also, hippocampal replay events co-occur 
with the firing of reward responsive cells in the dopaminergic midbrain (20), again suggesting 
the possibility that sequences can propagate value. More recently, replay was shown to support 
nonlocal propagation of value in an inferential reasoning task (21). 

Here we build on this line of work to investigate whether such a replay mechanism specifically 25 
supports trial-by-trial reinforcement learning and whether it is preserved in humans. Using 
methods developed to measure fast neural sequences noninvasively (22), replay has now been 
found in humans during rest (23-25), with strong parallels to observations in rodents (23). 
However, a direct connection between replay of this sort and non-local reinforcement learning 
has yet to be established. 30 

If replay supports non-local value learning, then its statistics should also be relevant for a 
second unresolved question, namely, given limited available time and resources which of the 
myriad possible future actions should the brain prioritise during replay? A reward-maximising 
agent might prioritise replay of whichever past experiences are most likely to improve future 
choices and thereby earn more reward (26). Recent theoretical analysis (27) argues that such 35 
rational priority of replay can be decomposed into the product of two factors, need and gain. 
Need captures how frequent a given experience will be encountered again in the future, while 
gain quantifies an expected reward increase from better decisions if that experience is replayed. 
Consistent with this view, Igata, Ikegaya and Sasaki (28) reported that replay preferentially 
represents salient locations when rats update their behavioural strategies. 40 

Accordingly, we designed a novel decision-making task to measure both the behavioural effect 
and neural signature of nonlocal learning in humans, while at the same time manipulating need 
and gain to test its rational prioritisation.  

 

 45 
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Task design 

Our key hypothesis was that neural replay facilitates non-local learning, and that such replay 
is prioritised by its utility for future behaviour. To detect human replay, we measured whole-
brain activity using magnetoencephalography (MEG) while subjects performed a novel 
decision-making task. The task explicitly separates learning from direct vs. non-local 5 
experience, permitting the measurement of unambiguous neural and behavioural signatures of 
the latter (Fig. 1). 

To isolate local and non-local learning, the task comprised three starting states (henceforth 
called “arms”), each with two alternative choices (Fig. 1A). On each trial, subjects are 
presented with one of the three starting arms and asked to make a choice between two paths 10 
within the arm. A choice then leads to a sequence of three stimuli (“path”) followed by an end 
state (Fig. 1D). Each end state carries a reward (£1 or 0) with a probability that changes slowly 
from trial to trial. Crucially, the two end states, reachable from each arm, are shared across all 
three starting arms. This task structure allows subjects to use reward feedback to inform their 
choices, in particular their future choices at the other two starting arms (non-local learning). 15 
Put more explicitly, local learning in this task is defined as updating action value in the current 
arm based on the received outcome (£1 or 0), while the non-local learning is defined as value 
updating in the other paths (from the other two starting arms) that lead to the same end state. 
This feature allows us to isolate learning about nonlocal options and to compare non-local 
learning within the same trial, but between paths with different properties (e.g., gain and need). 20 
Note this is rendered possible because there are always two non-local paths per trial that are 
matched to one another in all respects, including the actual outcome (Fig. 2A). The use of 
three-stimulus sequences allows unambiguous measurement of extended replay sequences (vs. 
co-occurrence) as well as their directionality.  

In addition to distinguishing learning from local experience (the path just chosen) vs. non-local 25 
experience, the task allowed us to test our hypotheses that replay, and learning, should favour 
the higher priority of the two non-local paths. Priority differed between paths as a function of 
both need and gain. Differences in need arise out of the fact that each starting arm was 
encountered with a different, but constant, probability: rare (17%), occasional (33%), and 
common (50%) respectively (Fig. 1A). These probabilities were learnt prior to the main task. 30 
Gain is a function of subject’s experience of rewards in the main RL task, which in turn 
depends on the subject’s own choices (i.e., gain is not manipulated explicitly or directly, nor is 
it necessarily independent from need. However, empirically, no significant correlation was 
found between need and gain, r = -0.004, p = 0.61). Since rewards were stochastic with 
fluctuating probability (Fig. 1B), the gain of propagating information about outcomes to 35 
different paths also fluctuated from trial to trial according to their individual reward histories. 
For instance, a newly encountered reward is more informative if this information promotes the 
selection of actions that would otherwise not be favoured, whereas the absence of reward is 
more informative for avoiding actions that would otherwise have been chosen.  

Notably, a drifting reward probability creates a continuous learning task. As a result, subjects 40 
never know for sure whether either end state (or both) will deliver reward on a particular trial, 
or which of the two has a higher rewarding probability. Consequently, there is no absolute 
“correct” or “wrong” choice, only an ongoing adjustment of choice preference in light of 
experienced rewards and non-rewards, for local, as well as non-local experiences (Fig. 2A). 

Thus, our main RL task allowed us to investigate how subjects learn efficiently by 45 
incorporating new experiences, particularly those derived from a different starting arm, into 
updated choices. Before the main RL task, subjects were first taught an overall task model 
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comprising knowledge of the relations among different elements in the task, as well as the 
different starting probabilities assigned to each arm. To avoid any biased learning of the model, 
we introduced each component of the task carefully at different times (Fig. 1C).  

To index neural representations of states in the main RL task, we first showed subjects 18 
visual stimuli in random order, a task phase called the functional localiser. These stimuli acted 5 
as the different states in the main RL task (e.g., 𝐴1, 𝐴2, 𝐴3 in Fig. 1A). We constructed a 
probabilistic decoding model for each stimulus based on their evoked neural response in this 
functional localiser task. These decoding models are used later to search for sequential 
reactivation of states in the main RL task. Note that the classifiers are unbiased to task 
experience and structure, because at this phase of the experiment subjects have no knowledge 10 
of the relationship among those stimuli, nor their value.  

The experiment proceeded across distinct phases to ensure good knowledge of the task model 
(i.e., model construction, Fig. 1C). Consequently, upon completion of the functional localiser 
phase, subjects learnt how the 18 stimuli formed 6 distinct sequences, i.e., the relationship 
among the 18 stimuli. We refer to this phase as sequence learning. Subjects next learnt a 15 
mapping between sequences and end states, i.e., end state learning and then learnt which 
sequence belongs to which starting arm, i.e., arm learning. Note that, up to this point, no 
rewards have been introduced yet; subjects have only learnt the relational structure among 
arms, end states, and sequences. Following the arm learning phase, subjects learnt the starting 
probability of each arm, including the fact that these probabilities remain constant throughout 20 
the experiment. Subjects also learnt the frequency of each starting arm by experience, i.e., arm 
frequency learning. To ensure subjects had acquired knowledge of the full task structure, we 
included a quiz after each learning phase. All subjects achieved performance greater than 85% 
(see Materials and Methods). Upon completion of the entire set of preparatory phases, subjects 
performed the main RL task.  25 

 

 

Fig. 1 Experimental design for model-based reinforcement learning task. (A)  At each trial 

of the main RL task, subjects were presented with one of the three starting arms according to a fixed 

probability, and asked to select one from two alternative paths within this arm. This was followed by a 30 
transition through the associated path states and ended with an outcome (£1 or 0). The reward 
probability of the end states (i.e., X and Y) varied slowly and independently over time. A crucial feature 

of this task is that the end states are shared across all three arms, which enables non-local learning. Need 

is manipulated by the starting probability of each arm, shown as colour codes on the left. Gain is 
manipulated by the fluctuating reward probability of end states, X and Y, respectively. (B) An example 35 
of such drifting reward schedule. The reward probability of X and Y changes gradually and 

independently over trials, with gaussian random walk, bounded between 25% and 75%. (C) Each phase 
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of the experiment is shown in order. Subjects learnt the task model before commencing the main RL 
task. (D)  An example of task trial in the main RL task. On the top, the text indicates what subjects need 

to do at a given time point in the trial. On the bottom, the corresponding symbols of task stimuli are 

shown. All photos shown are from pixabay.com and are in the public domain. 

 5 

Behavioural evidence of non-local learning and prioritisation 

The main RL task required subjects to learn the value of each action at each starting arm, with 
the aim of maximising reward. Direct, model-free learning allows subjects to favour a 
previously rewarded action when they encounter the same starting arm again. Consistent with 
this, when the starting arm is the same, subjects were more likely to repeat the same action if 10 
they had been rewarded compared to not rewarded on the last trial (Mixed effects logistic 
regression, p = 7.5×10-15). We then tested whether subjects transfer the value obtained in the 
chosen (i.e., local) path to the other non-local paths that lead to the same end state (Fig. 2A). 
Achieving effective non-local learning requires use of a model-based mechanism (such as 
replay), to propagate local rewards to non-local actions. A path leading to a previously 15 
rewarded end state was favoured even when the choice was presented at a different starting 
arm (p = 9.5×10-23). This effect did not differ significantly between trials whether the starting 
arm was repeated or not (p = 0.90 for the main effect of arm, p = 0.46 for the interaction effect 
between arm and reward, Fig. 2B). This is a hallmark of non-local, model-based learning (4, 

29).  20 

The previous analyses consider choices only as a function of events happening on the 
immediately preceding trial. To ask more detailed questions about learning, we built a 
computational model that incorporates longer-run effects of experience on multiple later 
choices. The model used – a modified Q-learning model – updates the value of each action 
based on experienced rewards and chooses action on the basis of these values (see Materials 25 
and Methods). However, we allow for the possibility that action values leading to the local path 
are learnt with a potentially different learning rate (𝛼!) than action values leading to the non-
local path (𝛼"). Upon fitting this model to subject’s trial-by-trial choices (30), we found that 
non-local action values were updated to a similar extent as local action values (𝛼! = 0.64, 𝛼" 
= 0.60, diff in learning rate = 0.04, 𝑝 = 0.61). These results confirm that subjects incorporate 30 
reward information into non-local actions, again, a hallmark of model-based learning. 

We then asked whether the behavioural signature of learning from non-local outcomes 
was greater for paths with higher priority. We augmented the baseline model with additional 
free parameters measuring the strength of non-local learning as a function of the two task 
features that determines priority: gain (the informativeness of the current reward for improving 35 
choice at a given arm) and need (the likelihood that arm will be visited in the future, given by 
its frequency). This was possible because, in the task, there are always two non-local paths 
sharing the same end state with the current chosen one, allowing us to compare learning directly 
across them. We calculated the strength of learning by estimating separate learning rates for 
the higher and lower priority paths on each trial, in addition to a third learning rate for updating 40 
the local (chosen) path (𝛼! = 0.63). Numerically, a higher learning rate was estimated for both 
higher-gain (𝛼#= 0.79 vs 𝛼$= 0.37, Table. S1) and higher-need paths (𝛼#= 0.61 vs 𝛼$= 0.54, 
Table. S1), a difference significant for gain (credible interval based statistical test, p = 0.020, 
see Materials and Methods for details), but not need (p = 0.16, Table. S1), indicating a 
divergence in gain. 45 
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Fig. 2 Behavioural evidence of non-local learning. (A)  An illustration of sequences of states for 

local (left – single path) and non-local experience (right – two non-local paths). The black arrow 

indicates the direction of actual experience, the red arrow indicates the hypothesized direction of credit 
(i.e., outcome, £1 or 0) assignment after receiving reward, solid red for the local experience, and dotted 5 
red for the two non-local experiences. (B) Behavioural results. The difference in performance between 

reward and no-reward in non-local paths is a defining feature of non-local learning. Rew/Non indicates 

whether subjects were rewarded or not rewarded on the last trial. P (same choice) is the probability that 
subjects, in the current trial, select the path leading to the same end state as that on the last trial. Error 

bars show the 95% standard error of the mean, each dot indicating results from each subject. * indicates 10 
p < 0.05, ** indicates p < 0.01. 

 

Neural decoding of the task states 

We next asked how the observed non-local learning is achieved in the brain. First, we verified 
that we could decode all 18 visual stimuli (corresponding to the 18 states, comprised of 6 15 
distinct paths in the main RL task), well above chance. Classifiers were trained based on the 
evoked neural response of visual stimuli in the functional localiser task. In a leave-one-trial-
out cross-validation scheme, one trial from each stimulus was omitted to form the testing set, 
and the remaining trials comprised the training set. We trained a binary classifier for each 
stimulus, based on their whole-brain neural response at a single time bin from post stimuli 20 
onset. This avoids potential timing confound for later sequence detection (22, 31). We obtained 
a peak cross-validation decoding accuracy of 47 ± 3 % (vs. chance level, 1/18 ≈ 6%), around 
200 ms post stimulus onset (Fig. 3, see also Fig. S1, and Materials and Methods), consistent 
with previous findings (23, 24). Note that the mapping between the 18 visual stimuli and the 
corresponding state index was fixed within subject but was randomised across subjects. This 25 
randomisation ensures that any systematic difference among stimuli (e.g., stimulus preference 
or stimulus decodability), even if consistent across subjects, could not contribute to a difference 
in state decoding at the group level. We also verified, in simulation, that a decoding accuracy 
of 47% is sufficient to allow reliable detection of sequences (Fig. S2, see Materials and 
Methods for details). This showed that the sensitivity in detecting a ground-truth sequence 30 
strength was about 80% of that possible with perfect decoding accuracy, providing evidence 
of our ability to detect reliable sequences with a similar level of decoding accuracy in the real 
data.  
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Fig. 3 Multivariate stimuli decoding. (A) Examples of multivariate whole-brain neural activity for 

classifier training, e.g., girl, house, and zebra. (B) Example of “house” classifier performance (red) 

plotted against all other 17 stimuli classifiers, when “house” picture was presented. The mapping 

between visual stimuli and their index states was randomised across subjects. (C) Mean decoding result 5 
for all subjects. The temporal generalisation plot is on the left panel, with Y axis indicating the time 

bins (10 ms each), the classifiers were trained on, and the X axis indicating the test time of classifiers. 

On the right panel, we plot the diagonal pattern of the temporal generalisation, namely the decoding 
accuracy obtained at the same time we trained the classifiers on. The dotted line is the permutation 

threshold. The mean performance for each individual state is shown in Supplementary Figure 1, data 10 
for each subject is shown in Supplementary Figure 3A. 

 

 

Overall sequential reactivations of experiences during reward receipt 

Having developed a set of stimulus classifiers, we next searched for their sequential 15 
reactivation in the main RL task. We applied the decoding models of the 18 stimuli (consisting 
of 6 paths) to the time of reward receipt, the period when new reward information is received, 
and learning occurs (Fig. 4A, see also Fig. S3B for representative MEG traces). Note that this 
period is analogous to the time when rodents consume a reward and backward replay sequences 
are observed (32) (but also see Discussion for connections to rodent sequences). We 20 
operationally refer to any reactivation of sequences here as replay.  

We first look for spontaneous sequential replay of all stimulus reactivations whose orderings 
are consistent with the task. We refer to sequences that express the same direction as experience 
(e.g., 𝐴1 → 𝐴2 → 𝐴3) as forward replay, and sequences in the opposite direction (e.g., 𝐴3 →
𝐴2 → 𝐴1) as backward replay. Utilizing a recent methodological advance in MEG decoding 25 
of replay (22), we first assessed replay strength of all possible pairwise transitions at different 
speeds (i.e., state-to-state time lags), in both forward and backward directions (see Materials 
and Methods). Then, we obtained the sequence strength for each path by averaging their 
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corresponding pairwise transitions (e.g., 𝐴1 → 𝐴2  and 𝐴2 → 𝐴3 , for the 𝐴1 → 𝐴2 → 𝐴3 
path). We used a conservative non-parametric permutation test to determine the significant 
time lags, while controlling for multiple comparisons for all computed time lags. The same 
sequence analysis procedure has been validated in our previous work (23, 24). 

Overall, we found evidence for two types of replay after reward receipt. First, we found 5 
significant forward replay encompassing a 20-30 ms state-to-state time lag. Second, we found 
backward replay encompassing a 130-170 ms state-to-state lag (Fig. 4B, see also Fig. S3C for 
individual sequence plots; Fig. S4 for group level effects in linear mixed models). As in our 
previous work (23, 24), we then identified the time lags of interest based on a contrast between 
forward and backward sequences involving the same states (e.g., 𝐴1 → 𝐴2 vs. 𝐴2 → 𝐴1). 10 
These reflect the time lags at which forward replay is significantly stronger than backward 
replay, and vice-versa. We found that the forward sequence peaked at 30 ms lag, while the 
backward sequence peaked at 160 ms lag (Fig. 4C). Consequently, for all subsequent analyses, 
we focus exclusively on forward replay with 30 ms lag and backward replay with 160 ms lag. 
This focus allows us to investigate the finer-grained properties of replay at lags where it is 15 
known to be present, while avoiding further multiple comparisons over lags. 

Recall that we tested subjects’ knowledge of all 6 paths both prior to and during the main RL 
task. At either time, subjects’ knowledge was not different across the 6 paths (before the main 
RL task, F (5,168) = 1.49, p = 0.20; during the main RL task, F (5,168) = 1.39, p = 0.23). 
Within subject, replay strength of the 6 paths also cannot be predicted by their corresponding 20 
structural knowledge during the RL task (96.2 ± 0.5% correct on average) for either 30 ms 
replay (p = 0.67), or 160 ms lag replay (p = 0.82). We also verified that differences in decoding 
accuracy across states did not predict sequence strength for either 30 ms lag forward replay (p 
= 0.30), or 160 ms lag backward replay (p = 0.56). These findings suggest that the (small) 
differences in structural knowledge, or state decoding abilities, do not contribute to the 25 
measured sequence strength.  
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Fig. 4 Sequential replay of experiences during reward receipt. (A) An illustrative exemplar 

trial in the main RL task is shown (subject 14, trial 107). On the left panel, subject selected an 
A1->A2->A3 path, which renders A1->A2->A3 as the local experience, and C1->C2->C3 and 

E1->E2->E3 as two non-local experiences on this trial. On the right panel, the state decoding matrix 5 
during outcome receipt time (e.g., getting £1 in X) is shown, along with the gain estimate for the two 
non-local paths. A backward 160 ms lag sequences for both C1->C2->C3 and E1->E2->E3 path, and a 

forward 30 ms lag sequence for A1->A2->A3, are depicted. For visualization purpose, the reactivation 

strength of each state is max-normalised. Each time bin is 10 ms. (B) Sequence analysis at outcome 
receipt time shows two distinct signatures, one forward sequence (blue) with a 20-30 ms state-to-state 10 
time lag (left panel), and a backward sequence (red), with a 130-170 ms time lag (right panel). The X 

axis is the time lags. The Y axis is the evidence of sequence strength. (C) Contrast between backward 

and forward sequences in the computed time lags (i.e., speed). In this contrast, a forward sequence 
peaked at 30 ms time lag, and a backward sequence peaked at 160 ms time lag. Consequently, these 

time-points were selected for all later analyses. The dotted line is the permutation threshold after 15 
controlled for multiple comparisons. 

 

 

 

 20 
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Two types of replay: functional and physiological differences 

The forward replay with 30 ms state-to-state time lag accords with previous work measuring 
replay in humans during post-task rest (23), though our results now extend those findings to a 
context that includes learning. The 160 ms backward replay has not been reported previously 
(although see Wimmer, Liu, Vehar, Behrens and Dolan (24) for memory replay at a similar 5 
speed). This replay pattern is intriguing as its direction is consistent with theoretical proposals 
for solving credit assignment by backpropagating reward information (27), and is also 
consistent with empirical results (12, 23, 32).  

If this 160 ms backward replay supports non-local updating, we would expect it to also 
represent the contents of non-local paths. In line with this prediction, the 160 ms backward 10 
replay significantly represented non-local paths (one sample t test, t (28) = 2.92, p = 0.007), 
and to a significantly greater degree than local ones (paired t test, t (28) = 2.21, p = 0.03, Fig. 

5B). The 30 ms forward replay showed an opposite pattern (interaction between replay types 
and representational content, F (1,28) = 7.37, p = 0.01). It did not represent non-local paths 
(one sample t test, t (28) = -0.09, p = 0.93), but likely the local one, i.e., the path just taken (t 15 
(28) = 1.42, p = 0.08, Fig. 5A).  

We also tested whether these distinct replay signatures differ in terms of their underlying 
physiological properties. Fast human replay (e.g., with 40 ms time lag) during rest is associated 
with an increased ripple frequency power (23), akin to sharp wave ripple replay in rodents (33-

35). In line with these results, we found that the initiation of a 30 ms forward replay was 20 
associated with a ripple frequency power increase (one sample t test, t (28) = 3.98, p = 4.3×10-

4), but this power increase was not seen for the 160 ms backward replay (t (28) = 0.64, p = 
0.53). A significant difference was also evident in the ripple power between the two types of 
replay (paired t test, t (28) = 3.03, p = 0.0052, Fig. 5C, see also Fig. S5). Mindful of well-
known caveats regarding source localising MEG signals (36), whole-brain beamforming 25 
results indicated that while both replay types are associated with activation in visual cortex and 
medial temporal lobe, the 30 ms forward replay has higher hippocampal activation, and 
intriguingly, also higher activation in a region that encompassed the ventral tegmental area 
(VTA), compared to the 160 ms backward replay. Conversely, the 160 ms backward replay has 
greater cortical engagement (Fig. S6).   30 

 

 

Fig. 5 Representational and physiological differences between the two types of replay. (A) 

A 30 ms forward sequence is likely to encode local experience, but not non-local. (B) A 160 ms 

backward replay encodes non-local as opposed to local experience. (C) The initialization of 30 ms 35 
forward sequence is associated with a power increase in a ripple frequency band (80-180 Hz), but this 
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is not the case for 160 ms backward sequence. These frequency power signatures are significantly 
different. The grey line connects results from the same subject. Error bars show the 95% standard error 

of the mean, each dot indicating results from each subject. * indicates p < 0.05, ** indicates p < 0.01. 

 

 5 

Non-local replay accompanies efficient non-local learning 

Having identified neural candidates for learning, we tested whether non-local replay (i.e., the 
160 ms backward replay) is associated with non-local learning and, if so, whether such replay 
is competitively prioritised between the two non-local paths in accord with theoretical accounts 
(27). We again posed these questions in terms of RL-based computational models of trial-by-10 
trial choice behaviour (see Materials and Methods). 

First, in asking whether replay accompanies non-local learning, we augmented a baseline Q-
learning model with a term measuring the effect of trial-by-trial neural replay on value learning. 
Having first separated learning rates for local and non-local paths (as before, these are paths 
leading to the same end state), we tested whether the baseline learning rate for each non-local 15 
path was significantly increased on trials when that path exhibited significant neural replay, vs. 
when it did not. We found higher nonlocal learning rate in the presence vs. absence of 
significant 160 ms backward replay (see supplementary material for detail, 𝛼%&'$()  = 0.70; 
𝛼"*+%&'$() = 0.61; difference in learning rates = 0.09; 𝑝 = 0.023, Table. S2). This was not the 
case when the same analysis was repeated for the 30 ms forward replay (difference in learning 20 
rates = 0.01, p = 0.457, Table. S2), and neither of the two replays was linked to local learning 
(with vs. without replay, p = 0.60 for 160 ms replay; p = 0.88 for 30 ms replay, Table. S3).  

We next asked whether replay is prioritised to favour the more useful non-local experience. 
Recall that each trial has one local and two non-local paths. Thus, on each trial, we can classify 
the two non-local paths as high vs. low priority. This priority can be computed based on either 25 
the need (17%, 33%, 50%, for paths in rare, occasion and common arm, respectively), the gain 

(estimated per-arm, -trial, and -subject from behavioural model), or their product (need * gain) 
– i.e., utility (Fig. S7). According to RL theory (27), need should interact with gain (i.e., utility) 
in determining the actual priority for replay. Indeed, we found that the strength of the 160 ms 
backward replay was significantly stronger for a high vs. low utility (need * gain) path (Fig. 30 
6A, paired t test, t (28) = 3.30, p = 0.003). Such prioritisation was absent in a high vs. low need 
or gain comparison (Fig. S7), nor did it exist for 30 ms replay (Fig. 6A, t (28) = -0.34, p = 
0.74). These prioritisation results cannot be explained by differences in the actual frequency 
paths were encountered (which was determined by subjects’ own choices): We found no link 
between replay strength of a specific path, and its frequency of occurrence in the RL task (p = 35 
0.59 for 30 ms replay, p = 0.54 for 160 ms replay). Model-agnostic analyses (e.g., reward vs. 
no-reward) parallel these results (Fig. S8). 

Finally, given that the 160 ms lag replay was associated with better non-local learning trial-by 
trial, within-subject (which is our main hypothesis), we conjectured that stronger 160 ms replay 
might also be positively associated with better task performance across subjects. This indeed 40 
was the case: a significant positive correlation, across subjects, was evident between average 
160 ms lag replay strength and average reward earned per trial (robust correlation, r = 0.41, p 
= 0.03, Fig. 6B). This was not true for the 30 ms lag replay (r = -0.29, p = 0.13). We also tested 
whether a 40 ms backward replay (albeit non-significant on its own) may be related to value 
learning, given its reported involvement in a previous study (23). We found no evidence that a 45 
40 ms lag replay was associated with learning for either local (p = 0.28) or non-local experience 
within-subject (p = 0.32), nor that it was linked to task performance across subjects (p = 0.18). 



Submitted Manuscript: Confidential 

13 

 

 

 

Fig. 6 Prioritisation of non-local replay. (A) 160ms backward sequence is replayed to a greater 

degree in the higher priority non-local path compared to lower priority one. The 30 ms forward replay 

does not differentiate between the two non-local paths. Error bars show the 95% standard error of the 5 
mean, with dots indicating results from each subject. * indicates p < 0.05, ** indicates p < 0.01. Grey 
line connects results from the same subject. (B) Sequence strength of 30 ms lag replay does not correlate 

with task performances (left panel). By contrast there is a significant positive correlation between the 

160 ms lag replay and task performances across subjects (right panel). Each dot indicates result from 

one subject. The solid line reflects the best robust linear fit. The dotted line indicates the chance level 10 
of reward rate per trial with random choices. 

 

Discussion 

In the current study, we disassociated between two types of replay as a function of local vs. 
non-local learning. As a result, we established a connection between neural replay and learning 15 
via non-local credit assignment as expressed in behaviour.  

Replay of non-local experiences was associated with more effective learning of action values, 
evidenced by enhanced assimilation of reward information on subsequent choices. In other 
words, replay connects actions and outcomes across intervening states and offers a neural 
mechanism for model-based reinforcement learning. Furthermore, the content of this replay, 20 
and separately the strength of updating as expressed behaviourally, were prioritised according 
to their utility for future behaviour (27). 

These findings corroborate a long-standing hypothesis about the role of awake replay on 
model-based planning and credit assignment. This hypothesis was based primarily on rodent 
studies reporting replay patterns that would be appropriate for this function (12, 32). These 25 
results also extend on our previous fMRI results in humans linking non-local reactivation 
(without assessing sequences) to planning (4, 5, 37). In the current study, by exploiting the 
temporal resolution of MEG and the use of three-stimulus sequences, we could distinguish 
sequential replay from mere reactivation of isolated states. Notably, there were no significant 
effects related to reactivation of individual states alone (Fig. S9). 30 

The 160 ms backward replay supporting non-local learning is distinct from the 40 ms replay 
reported in previous studies (23, 38). Unlike the latter, the 160 ms replay is not associated with 
a ripple frequency power increase (23). This raises an intriguing possibility that the 160 ms 
replay, which has a state-to-state transition frequency of around 6 Hz, might be processing 
states on consecutive theta cycles, which may have connections to rodent theta sequences (39-35 
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42). However, theta sequences generally occur during ongoing behaviour in rodents and are in 
a forward direction, akin to a “look ahead” signal (but see (43) for backward theta sequence), 
while the 160 ms sequence we identify is backward in direction and occurs at the end of a trial.  

It is interesting to note that the 160 ms backward replay alone is associated with value learning, 
while in Liu, Dolan, Kurth-Nelson and Behrens (23), we observed a faster replay (30-50 ms 5 
lag) shifting from forward to backward after a pairing with reward. This 160 ms lag replay 
might reflect a stronger task-engagement, or a more conscious computation compared to the 
40 ms lag replay reported previously. This is plausible given there is no substantial gain 
(because reward contingency was fixed) in the previous study (23), and therefore replay was 
not required to promote learning. On the other hand, we can speculate that the faster 40ms lag 10 
replay previously observed may be similar to the 30ms lag replay observed here, which might 
reflect a stereotyped recapitulation of recent experience. This interpretation is consistent with 
previous findings (38) where the fast 40 ms lag sequences in a sequential planning task were 
shown to represent all possible transitions, instead of a specific planning trajectory.  

The backward direction, representational contents and timing of this reverse replay are well 15 
suited to solve the non-local credit assignment problem, where an outcome at the end of a path 
impacts on decisions made at the (alternative) beginning. Theoretical work has focused more 
often on forward replay (or mental stimulation) of potential trajectories assumed to occur at 
choice time. Such patterns – more reminiscent of “planning” in the colloquial sense – also 
occur in rodents and could also, in principle, solve the current task. More generally, in the same 20 
framework they can be viewed as another means by which replay serves to connect actions and 
outcomes (27). We found no evidence that forward replay at choice time related to credit 
assignment (Fig. S10, also see 𝐓𝐚𝐛𝐥𝐞. 𝐒𝟒 – for related modelling results). Such a process may 
play a role in other circumstances or in other task implementations, for instance in games like 
chess where particular choice situations are unlikely to have been anticipated ahead of time. 25 

Together, our results connect several findings in human and rodent neuroscience, reveal that 
non-local backward replay serves as a neural mechanism for model-based reinforcement 
learning.  

 

                         30 
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Materials and methods summary  

Full materials and methods information are in the supplementary materials.  

 

Participants 

29 subjects (mean 23 ± 0.41 years, 17 females) were included for all analyses. All participants 5 
provided informed consent. They were all healthy with no history of psychiatric or neurological 
disorders. The number of subjects collected (30 + 1 pilot) were determined based on a prior 
power analysis where a one-sample t test requires approximately 27 people to find an effect 
different from 0 of size d = 0.5 (with alpha = 0.05, power = 0.80). Data from one subject were 
excluded due to contamination of metal on the MEG signal; pilot data was also excluded from 10 
formal analysis, leaving 29 subjects in total. 

 

Stimuli and task design 

In the current task, there were 3 starting arms, 2 end states, and 18 intermediate states 
(consisting of 6 paths). All of them are indexed by distinct pictures. The mapping between 15 
stimuli and states was fixed within subject but randomised across subjects. The task was run in 
following order: A) functional localiser – to obtain neural representations of the 18 stimuli 
(i.e., 6 paths); B) Model construction I: sequence learning – of the transition structures among 
6 paths; C) Model construction II: end state learning – connections between 6 paths and 2 end 
states; D) Model construction III: arm learning –connections between 3 starting arms and 6 20 
paths; E) Model construction IV: arm frequency learning – occurrence probability (i.e., need) 
of each starting arm in the main RL task (44). F) Main RL task – value learning, separating 
local and non-local experiences. In addition, need and gain were manipulated separately. Need 
was defined by the occurrence probability of the 3 starting arms (learnt in frequency learning, 
fixed across the experiment). Gain was manipulated by a drifting reward probability of each 25 
end state (with binary outcome, £1 or 0), they follow independent Gaussian random walk across 
trials, bounded between 25% and 75% (27, 29, 45).  

 

MEG data acquisition and preprocessing 

The MEG data was collected while subjects sat upright, performing the task (with exception to 30 
frequency learning). The data was recorded at 1200 samples/second using a whole-head 275-
channel axial gradiometer system (CTF Omega, VSM MedTech). The task was divided into 
multiple scanning sessions, with each session less than 10 mins. Subjects were asked to remain 
still during the scanning session but were able to take a rest between sessions. At the start of 
each scanning session, participants were asked to move back to where they were, and their 35 
head positions were registered.  

In preprocessing, the raw MEG data was first high passed at 0.5 Hz, and down sampled to 100 
Hz for later analyses (with exception to temporal frequency analysis, for which the data were 
down sampled to 400 Hz, thereby preserve the ability to look for power change in high 
frequency, up to 200 Hz). Following that, excessively noisy segments and sensors were 40 
identified and removed, the resulting MEG data were then submitted to independent 
component analysis (ICA). The ICA was used for de-noising purposes alone. In each scanning 
session, up to 10 independent components (150 in total) can be excluded if they were clearly 
noise based on properties like spatial topography, time course, kurtosis of the time course and 
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frequency spectrum. At the end, all analyses were performed on the filtered, cleaned MEG 
signal at whole-brain sensor level (except for source localisation).  

 

Behavioural analysis and modelling 

Choice behaviour in the main RL task was analyzed as a function of reward (£1 or 0) at last 5 
trial and starting arm (same vs. different compared to last trial) at current trial. The choice at 
current trial was binarized based on whether it led to the same, or different, end state as that of 
the last trial. Linear mixed model was used to assess the group level effect while treating 
subjects as random effects, thereby accounting for trial-by-trial, subject-by- subject variations.  

Modelling analyses were performed based on a modified Q learning algorithm (4, 29). In 10 
particular, learning rate were modelled separately for local and non-local experiences. Further 
extensions of the model separated learning for the two non-local experiences, based on priority 
(need or gain). The key comparison here was the learning rate difference between high vs. low 
priority paths.  

 15 

Neural decoding analysis 

Classifiers for the 18 intermediate states (i.e., 6 paths) in the main RL task were trained based 
on the evoked visual response at 200 ms post-stimulus onset (whole-brain sensor pattern) in 
the functional localiser task (23, 24). Importantly, during the functional localiser task, 
participants did not know either the mapping or occurrence probability of the stimuli and its 20 
corresponding states, and those stimuli were presented in a random order with equal 
occurrence. Thus, the classifiers were unbiased by the task structure.  

Classifiers for the 2 end states were trained during the quiz question during end state learning; 
classifiers for the 3 starting arms were trained during the quiz question during the arm learning. 
In all those quiz questions, the picture for either end state or starting arm was presented in the 25 
centre of the screen, and subjects were asked to think about its associated paths. The training 
procedure and parameters were chosen to be identical as for the 18 intermediate states. Those 
classifiers were also unbiased by the occurrence probability (i.e., need) which was only learnt 
afterwards.  

All classifiers were later used to examine for reactivation or sequences (i.e., sequential 30 
reactivation) in the main RL task. The decoding was performed both at the end (after reward 
receipt) and start (when the starting arm picture was presented) of a RL trial, to probe for credit 
assignment (value learning) and choice-related neural signatures respectively.  

 

Neural sequence analysis 35 

Sequence analysis was performed on the time series of decoded states at either the end or the 
start of a trial in the RL task. This analysis focused on the sequential reactivation of the 18 
intermediate states, which consist of 6 distinct paths. The reactivation of starting arms states or 
end states were not considered in the sequence analysis to avoid potential visual confound. 
Sequence strength of a pair-wise state to state transition (e.g., state 𝑖 → 𝑗) measures the extent 40 
to which the representation of state 𝑖 statistically predicts subsequent representation of some 
other state 𝑗 at a particular time-lag (i.e., speed of replay), in a multiple regression model. This 
is an average measure of statistical predictiveness, where both the number and strength of 
replay events contribute to the current measure, which we call “sequence strength”. This 
approach is motivated, in large part, by the fact that neural representations (of different states) 45 
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are only noisily and probabilistically decoded. The detailed approach, including related 
simulations, are described in Liu, Dolan, Penagos-Vargas, Kurth-Nelson and Behrens (22). The 
same human replay detection procedure has been applied successfully in previous empirical 
work (23, 24). 

 5 

Sequence-behavioural modelling 

We built a novel Q-learning model to formally test the effect of replay on learning. This 
separately models the learning rate for local vs. non-local experience. Crucially, replay of a 
specific path (local or non-local) is allowed to influence learning of the same path by having 
an additional free parameter associated with the existence of its replay (1 or 0, based on whether 10 
it is significant in permutation test). The key comparison is the learning rate difference between  
𝛼%&'$() for paths with significant replay and 𝛼"*+%&'$() for paths without significant replay.  
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