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Formal specification and analysis of requirements continues to gain support as a method

for producing more reliable software. However, the introduction of formal methods to a large

software project is difficult, due in part to the unfamiliarity of the specification languages

and the lack of graphics. This paper reports results of an investigation into the effectiveness

of formal methods as an aid to the requirements analysis of critical, system-level fault-

protection software on a spacecraft currently under development. Our experience indicates

that formal specification and analysis can enhance the accuracy of the requirements and add
assurance prior to design development in this domain.

The work described here is part of a larger, NASA-funded research project whose purpose

is to use formal-methods techniques to improve the quality of software in space applications

[2]. The demonstration project described here is part of the effort to evaluate experimen-

tally the effectiveness of supplementing traditional engineering approaches to requirements

specification with the more rigorous specification and analysis available with formal methods.
The approach taken in this investigation was to:

1. Select the application domain. The primary criteria were, first, to select portions of the

requirements of an large, embedded software project currently under development, and,

secondly, to select mission-critical software, meaning that its failure could jeopardize
the spacecraft system or mission.

The selected applications were the requirements for portions of the Cassini spacecraft's

system-level fault-protection software. This on-board software autonomously detects

and responds to faults that occur during operations. About 85 pages of documented

requirements describing the software that commands the spacecraft to a known safe
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state and a software executive that manages the fault protection were involved in the

study. System-level fault protection was targeted as a domain which merited the extra

assurance possible with formal specification and analysis.

2. Model the selected applications using object-oriented diagrams. The object-oriented

modeling tool used in this work was Paradigm Plus, an implementation of OMT, the

Object Modeling Technique [6] 1. This effort built on earlier work in this research

project in which OMT diagrams were found to be a useful complement to formal

specification in a reverse-engineering application [1]. Our work differs in that we applied

OMT to software currently in the process of being developed, with formal proofs as

well as formal specifications being created.

3. Develop formal specifications. The formal specification language used in this study

was that of PVS, the Prototype Verification System [8]. PVS is an integrated environ-

ment for developing and analyzing formal specifications including support tools and a

theorem prover.

4. Prove required properties. We determined properties that must hold for the target

software to be hazard-free and function correctly, specified them in PVS as lemmas

(claims), and proved or disproved them using the interactive theorem-prover.

5. Feedback results to the Project. Because we were analyzing requirements that were

still being updated, part of our task was to keep current with the changes and to

provide timely feedback to the Project as they resolved the remaining requirements

issues and began design development.

The experiment described here produced 25 pages of PVS specifications and 15 pages of

OMT diagrams. 37 lemmas were specified. Of these, 21 were proven to be true and 3 were

disproven. An additional 13 lemmas were stated but not proven. Five of these unproven
lemmas were obviously true from the formal specifications; four were out of the scope of

our application; and four remain to be proven. The lemmas that were proved were claims

or challenges which must be true if the specifications are accurate and the requirements are

hazard-free.

The lemmas were divided into three categories: requirements-met, safety, and liveness

properties. Requirements-met lemmas traced the documented requirements to the formal

specifications. For example, a documented requirement "If a response can be initiated by

more than one monitor, each monitor shall include an enable/disable mechanism" led to

a lemma demonstrating that the specifications satisfied this requirement. We proved or

disproved 10 such requirements-met lemmas.

Safety properties were "shall-not" claims, which can be stated informally as "nothing

bad ever happens [9]." Examples are, "The software shall not activate any response that

is not requested by a monitor" and "The response shall not change the instrument's status

during a critical sequence of commands." We were able to prove 7 such safety properties,

adding assur_.nce that the software did not introduce hazards into the system.

1Paradigm Plus is a registered trademark of Protosoft, Inc.
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Liveness properties described the positive aspects of the correct behavior of the software:

"something good eventually happens [9]." Examples are, "If a response has the highest

priority among the candidates and does not finish in the current cycle, it will be active in

the next cycle" and "If the response occurs during a non-critical sequence of commands,

then the instrument is turned on." We proved 7 such liveness properties, adding assurance

that no hidden assumptions were required for the software to function correctly.

The results obtained from the specification and analysis (including proofs) of the require-

ments were of two types: issues found in the requirements and an evaluation of the process
itself.

A total of 37 issues were found in the requirements. These were categorized as follows:

• Undocumented assumptions: 11. The formalization of the requirements revealed sev-

eral assumptions that were not explicit in the documentation. An example of such an

assumption is, "if the spacecraft is in a critical attitude, then the software is executing

a critical sequence of commands." Frequently, these assumptions involved interface

issues between software modules or subsystems, historically a frequent source of errors

that persist until system testing [4]. In almost every case, the hidden assumption was

currently correct. However, several assumptions merited documentation, especially
since future changes can invalidate current assumptions.

Inadequate requirements for off-nominal or boundary cases: 10. These issues usually

involved unlikely scenarios in which a pre-condition could be false. We often had to

consult spacecraft engineers to know whether such boundary cases were credible. For

example, the case in which several monitors with the same priority level detect faults

in the same cycle was not described. By concretely specifying the possibility of off-

nominal scenarios, the formal analysis can contribute added robustness to the system.

Traceability and inconsistency: 9. These issues included lack of traceability between

the high-level requirements and low-level requirements, as well as inconsistency between

the software requirements and the design of subsystems. Many of these issues were

significant in that they could affect both the logic and the correctness of the formal

specifications. An example is that although the high-level requirements assume that

multiple detections of faults occuring within the response time of the first fault detected

are symptoms of the original fault, the lower-level requirements (correctly) cancel a

lower-priority fault response to handle a higher-priority response.

Imprecise terminology: 6. These were documentation issues, frequently involving syn-
onyms or related terms. The definition of types in PVS enforced their resolution.

Logical error: 1. The logical error involved the handling of a request for service from a

monitor in the case that a higher-priority request occurred. The question as to whether

such a request could face starvation was first raised during the initial close reading.

The formalization of the issue as a lemma which could be disproven provided insight
and certainty.

The evaluation of the process we used to specify and analyze the requirements led us to
three conclusions:
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Using object-oriented models. For the target applications, object-oriented modeling

offered several advantages as an initial step in developing formal specifications. First,

the object-oriented modeling defined the boundaries and interfaces of the embedded

software applications at the level of abstraction chosen as appropriate by the specifiers.

In addition, the modeling offered a quick way to gain multiple perspectives on the

requirements. Finally, the graphical diagrams served as a frame upon which to base

the subsequent formal specification and guided the steps of its development. Since

the elements of the diagrammatic model often mapped in a straightforward way to

elements of the formal specifications, this reduced the effort involved in producing an

initial formal specification. We also found that the object-oriented models did not

always represent the "why," of the requirements, i.e., the underlying intent or strategy

of the software. In contrast, the formal specification often clearly revealed the intent

of the requirements.

Using formal methods for requirements analysis. Unlike earlier work in this research

project on software in which the requirements were very mature and stable and the

formal specification entailed reverse engineering (Space Shuttle's Jet Select Subsystem),

the work on Cassini's fault-protection subsystem analyzed requirements at a much

earlier phase of development. Consequently, the requirements that we analyzed were

known to be in flux, with several key issues still being worked (e.g., timing details,

number of priority levels). A negative effect of the lack of stability was that time was

spent staying current with changes. A positive effect was that issues identified during

our analysis could be readily fed back into the development process before the design

was frozen.

We were concerned as to whether it was a waste of time to formally specify requirements

while they were still likely to change. Certainly, there was inefficiency in rewriting

specifications to conform to changes that occurred during the experiment. However,

based on our experience with this trial project, the formal specification of unstable

requirements had the following advantages:

• Laid the foundation for future work.

• Allowed rapid review of proposed changes and alternatives.

• Clarified requirements issues still being worked by elevating undocumented con-

cerns to clear, objective dilemmas.

• Complemented the lower-level FMEA (Failure Modes and Effects Analysis) al-

ready being perfomed on the software, by providing higher-level verification of

system properties.

• Added confidence in the adequacy of the requirements that had been analyzed

using formal methods.

Rushby's recent study of formal methods for airborne systems reached the similar but

even stronger conclusion that formal methods can be most effectively applied early in

the lifecycle [7].

SEW Proceedings 2 3 4
SEL-94-006



. Using formal methods for safety-critical software. For a safety analysis it is important

to ensure that a hazardous situation does not occur, as well as that the correct behavior

does occur [5]. Fault Tree Analysis, which backtracks from a hazard to its possible

causes, is one method used for this kind of hazards analysis [3]. However, unlike formal

methods of specification and proof, Fault Tree Analysis is an informal method which

in practice permits ambiguous or inadequate descriptions.

Formal methods helped us find hazardous scenarios by forcing us to show every con-

dition and prompting us to define new, undocumented assumptions. The process of

developing formal specifications and proofs led us to think about the full range of cases,

some of which were unanticipated.

In conclusion, one of the goals of the larger research project within which this inves-

tigation was performed is to evaluate the effectiveness and practicality of formal methods

for enhancing the development process and the reliability of the end product. Our main

contributions to this work in the Cassini demonstration project have been:

• Applying formal methods to the software requirements analysis of a project currently

under development,

• Using object-oriented diagrams to guide the formal specification of software require-

ments,

• Formally specifying and proving a set of properties essential for the correct and hazard-

free behavior of the software, and

• Demonstrating that formal methods can be used to specify and analyze an application

involving critical software.
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im, ll Introduction

• Task is part of NASA RTOP to demonstrate

Formal Methods techniques and their

applicability to critical NASA software systems.

(RTOP: Research Technical Objectives and
Plans)

• Formal Methods (FM) refer to the use of

techniques and tools based on formal logic and

mathematics to specify and verify systems,
software, and hardware.

.l_k
F-_l_ri_ • R_ovt

RRk YA

1
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 mO$1 Approach

• Step 1: Select Application

_> Criteria: • Software requirements

• Currently under development

(critical software failure could

jeopardize system or mission)

>> Selection: • Requirements for portions of Cassini

spacecraft's system-level fault protection
software

• Autonomous detection, isolation, and

recovery from on-board faults required

ExperienceRelx_
RRL YA

2

CDS Fault Protection

CDS Interfaces to SFP-2

TKB 6/15/94

CDEA

System

Fault I-_

Protection 6

1 Telemetry 4& 5
2 Uplink CDS Fault
3 Time Services Protection
11 Memory Loading

and SSR dual
recording

CDS
, Bus

_._ EngineeringSubsystems ]

"_ PROBE I

l Instruments t
6 State Monitor and Control
7 Commanding
8 S/C Intercommunication RT

Reception
9 S/C Intercommunication RT

Transmission

10 Dual recording (from both PSAs to
both SSRs)

CDS Critical Design Review
12-73
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immll Approach (continued)

• Safe State Response

_>Mission-phase dependent

>>Commands safe attitude, minimizes power usage,
cancels non-essential activities, reconfigures
hardware

• Fault Recovery Executive

>>Selects which request to service

>_Preemptive priority scheme

>>Special cases complicate requirements

PJ_L YA

3

CDS Fault Protection

SFP Model (Conceptual)
"CDS"

:'C0S'SERV,CES.......,,.......... ,........... _............-...., ,, _..........._,L......... 4._,\
___ SFP fSFP MANAGER SFP SEQUENCING MACHINE_'_I

/COMPONENT(' .... \_11

| / 'Pr'°r"'zati°n' llr 1 2 3 4 5 18 lltl
Uplink ]Command _ _ " ' "'" ',° till

• . and Data us 1/s R i i_equenc'°Ol_ane'ing IOMI _"° ERf r'-- : i IIII
s:c_m. " _ : ib,oCOS rtl'l ...i/IllInterfaces I i

SSR I Services I ° It I_11' I,-; r ' _ '_ _ Illl

Temp. S i = !

CFP ]Control _ll _s_ : [ i_

Disables

TKB 6/15/94

Ground and Spacecraft enables

CDS Critical Design Review
12-71
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-lPL CDS System Fault Protection Monitor and Response Tree

17,;o lU i

Response I

Nn+ r

_ Responses

IIIlll Approach (continued)

• Step 2: Model with Object-Oriented Diagrams

)) Builds on earlier RTOP work [Cheng and
Auernheimer, 93]

)> Object Modeling Technio_e (OMT) tool [Rumbaugh,
et. al., 91], Paradigm Plust_) [Protosoft]

• Step 3: Develop formaI specifications

)> OMT diagrams guided specification

)> Formal specification language was that of PVS
(Prototype Verification System) [Shanker, Owre,
Rushby, 93]

.Jlak
_p_rience Report

I_L YA

t.VX,'_
4
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Sequence t

-.. Probe Subsystem

Sequence Statu

nable/d_sable Criticality Probe Relay Flag

/ _ Stateschedule . rrequest Command
/ power o(! Probe

Protect:on _ f ' '! _ Parent I_---_'"w__ .[_J p rs_,,__ M.. _ r / r r ResponseJ /= t m q
4 control reduce ower

=ti,_,e,..... \ I , r .oqo.st / i
" _/ _ L s,cs,,le,R.p...._ _°'e°::C;:;::,°,,

Response " Critical Sequence FlagI CriticalAttitude Flag reduce power

AE;_l_e/D_iT,e Flag . L_ CDS Inlema, Reques, F,ag I

Req.estB,, I Emo.ge.°yO_,., r' E_o.... ._ost.op,.,._l
Request Priority / , "-

enable / set emergency conflguraion
/ 'k _-

d,sabfe / configuretosa,estate \_ RFS Iactivate

cancel configu e dcwnlink,eq.... ;  st te I
command TWTA to operation

,cl ..... quest / [ I: ......geo0y.°,.... I
' ICDS set emergency up]ink

set telemetry rood,

record telemetry

S/C S.a.Sij_g._e#9onse Object Diagram

Fault Protection Mgr Functional Diagram

cleared request
Requested A

Resp ..... _ll_ _

// set \_.i/ ponses activated &cancelled res-onse I activate 1 \

_=.didate.)- - " t n'* I \
/ _ J _ responses J \

_.,o.,-C_/'_ \ ...&o,d.P__ ',_-..
/ o..d,..,. _ /oo..\new HPOM _= old HIOM

request of

select ' - "

HPOM " -

new HPOM = old HPOM

HPOM _)

1 ) CAS-3-331 dated Jan.28 says that only cancelled responses have their requests cleared.
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S/C Sating Response Event Trace

Monitor Command Faull T'W'rA _'C Sequence
Prolect_on RF Sating

Mgr Loss Response

Response

CDS AACS RFS Probe REA

Subsystem Repl
& Htrs&

Science RWM

Inslruments
Subsystem

 Jmll Approach (continued)

• Step 4: Prove required properties

>>Specify properties in PVS as claims to be proven

>>Prove/disprove claims using interactive theorem
prover

• Step 5: Feedback results to Cassini Project

RRLYA

5
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Jr:q.
Experience Report

RRL, YA

12/I/94

• 6

• Summary: 15 pages of OMT diagrams

25 pages of PVS specifications

37 properties specified as claims

• 24 proven/disproven

• 5 true from specifications

• 4 out of scope

• 4 remain to prove

• Two types of results:

>>Issues found in documented requirements

>>Evaluation of process

_MIl Results: Issues Found

.J_L
ExFe_cnce Report
RRL, YA

7

3 categories of claims specified and proven

>>"Requirements-met"

• Demonstrate that formal specifications accurately
represent key requirements

• Example: "If a response can be initiated by more than
one monitor, each monitor shall include an enable/
disable mechanism."

• 10 proven/disproven, adding assurance that
specifications are correct

>>Safety properties

• "Shall-not" claims that "nothing bad ever happens"
[Win_ 90]

• Example: "The response shall not change the
instrument's status during a critical sequence of
commands."
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 mmB Results: Issues Found (continued)

Experlence Repo.

RRL. YA

1_J94

$

>>Safety properties (continued)

• 7 proven, adding assurance that software does not
introduce hazards into system

• Example: "The response shall not change the
instrument's status during a critical sequence of
commands."

>>Liveness properties

• Describe correct behavior: "something good eventually
happens" [_Ving, 90]

• Example: "If a response has the highest priority among
the candidates and does not finish in the current cycle,
it will be active in the next cycle."

• 7 proven/disproven, adding assurance that no hidden
assumptions required for correct behavior

saf: THEORY

% Example below is excerpted from saf theory.

% Spacecraft saflng commands the AACS to homebase mode, thereby
% stopping delta-v's and desats.

BEGIN

aacs mode: TYPE = {homebase, de=umble}
attitude: TYPE

cds Internal request: VAR bool
critical attitude: VAR bool

prev aacsmode: VAR aacs_mode

aacs_stopfnc (critical attitude, cds internal request, prev_aacs_mode):aacs mode . - - -

IF cri=ical attitude

THEN IF _ds_internai_request

THEN prey aacs mode
ELSE homebase -

ENDIT

ELSE homebase
ENDIF

% Lemma asserts that if Spacecraft Safing is requested via a CDS internal

% request while the spacecraft is in a critical attitude, then no change is
% commanded to the AACS. Otherwise, the AACS is commanded to homebase.

aacs-s a fIng_re q_me t_l : LEMMA

(cri_Ical_attltude AND cds Internal request)

OR (aacs stop fnc(critical-a_titude_ cds internal request, prev_aacs_mode)- homebase) - -- -

END saf
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 mlli Results: Issues Found (continued)

.JI3L
Experience Report

RRLYA

1 To't/S4
9

37 issues found:

)) Undocumented assumptions: 11

• Example: "If the spacecraft is in a critical attitude, then
the software is executing a critical sequence of
commands."

• Frequently involved interface issues, historically a
source of errors that persist until integration and
system testing [Lutz, 93]

• Assumptions almost always currently correct, but
future design changes could invalidate them.

)) Inadequate requirements for off-nominal or boundary
cases: 10

• Example: Requirements for case in which several
monitors with same priority level detect faults in same
cycle were not described

il[Bll Results: Issues Found (continued)

)_ Inadequate requirements for off-nominal or boundary
cases (continued)

• Involved unlikely scenarios in which pre-condition
could be false

• Concretely specifying possible cases builds in
robustness

)_ Traceability and inconsistency: 9

• Example: High-level requ/rements assume that
detected faults occurring during response time of initial
fault are symptoms of initial fault; low-level

requirements (correctly) cancel lower-priority response

• Formal specification forced resolution of discrepancies

.JILL
Experience Report
RR1., YA

lg/1,S4
10
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_B'm Results: Issues Found (continued)

_ Imprecise terminology: 6

• Example: "Stop" and "cancel" sometimes synonymous;
sometimes not

• Automatic type checking enforced precision

_ Logical error: 1

• Example: can a request for service face starvation due
to higher-priority requests?

• Formalizing question as lemma which could be
disproven provided insight and certainty

RR_ YA

12/_4
]1

_][m!! Results: Process Evaluation

ExpeneBce Repm_

RRI. YA

12

• Benefits of combining Object-Oriented Models
and Formal Methods

_ Frames the problem

_ Basis for technical discussion

_ Road map

• Mapping of elements
• Reduced effort

_ Complementary roles

• OMT: informal

multiple perspectives

communicates key elements

• PVS: formal

unambiguous specification
analysis of completeness
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_mlll Results: Process Evaluation

(continued)

)_ OO model did not represent the "why" of the
requirements (underlying intent or strategy) as clearly
as the formal specifications

• Using Formal Methods for requirements

analysis

_ Requirements were not yet stable

)_ Waste of time to formally specify?

• Time consuming to stay current

• Interactive process

.JILL
Exl_Jr_nce Report

RRI. ¥A

12/,./_
13

_mlll Results: Process Evaluation

(continued)

.B_L

R_k YA

14

)_Advantages of formal specification of unstable
requirements

• Laid foundation

• Rapid review of proposed changes

• Clarified issues being worked: undocumented
concerns elevated to clear, objective dilemmas

• Complemented lower-level FMEAs (Failure Modes and
Effects Analyses)

• Added confidence in adequacy of requirements
analyzed using formal methods

• Issues identified fed back and resolved early in
development
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 'Mll Results: Process Evaluation

(continued)

• Using Formal Methods for safety-critical
software

_>FM helped find hazardous situations

>_Forced analysis of full range of cases, some
unanticipated

7_Prompted definition of undocumented assumptions,
some of which are not always true

77Proofs of safety properties ensured that some unsafe
states do not occur

EXl_rie nee Report
RRL YA

15

 mMll Conclusion

Contributions of this work:

77Applied FM to software requirements of project
currently in development

7>Used object-oriented diagrams to guide formal
specifications of requirements

>7Formally specified and proved some properties
essential for correct and hazard-free behavior

>7Demonstrated use of FM in safety-critical application

Experience Repert
RRL YA
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