
 Open access  Journal Article  DOI:10.1109/TSE.1977.229907

Experience with Modular Concurrent Programming — Source link 

Per Brinch Hansen

Institutions: University of Southern California

Published on: 01 Mar 1977 - IEEE Transactions on Software Engineering (IEEE)

Topics: Concurrent Pascal, Compiler, Concurrent computing, Data structure and Modular design

Related papers:

 Experience with processes and monitors in Mesa

 Monitors: an operating system structuring concept

 Modula: A language for modular multiprogramming

 Hierarchical ordering of sequential processes

 Extending Concurrent Pascal to Allow Dynamic Resource Management

Share this paper:    

View more about this paper here: https://typeset.io/papers/experience-with-modular-concurrent-programming-
4ljcb5deoa

https://typeset.io/
https://www.doi.org/10.1109/TSE.1977.229907
https://typeset.io/papers/experience-with-modular-concurrent-programming-4ljcb5deoa
https://typeset.io/authors/per-brinch-hansen-1qiio270hx
https://typeset.io/institutions/university-of-southern-california-255p3f56
https://typeset.io/journals/ieee-transactions-on-software-engineering-26rjzvlm
https://typeset.io/topics/concurrent-pascal-2l4jxed6
https://typeset.io/topics/compiler-1rd4cb0x
https://typeset.io/topics/concurrent-computing-1ltisuq0
https://typeset.io/topics/data-structure-fnmrmwtt
https://typeset.io/topics/modular-design-1qoktbue
https://typeset.io/papers/experience-with-processes-and-monitors-in-mesa-37otkyrjs0
https://typeset.io/papers/monitors-an-operating-system-structuring-concept-4uutiz463b
https://typeset.io/papers/modula-a-language-for-modular-multiprogramming-470x3ovyzt
https://typeset.io/papers/hierarchical-ordering-of-sequential-processes-2ecb10y71l
https://typeset.io/papers/extending-concurrent-pascal-to-allow-dynamic-resource-2l52dic9hq
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/experience-with-modular-concurrent-programming-4ljcb5deoa
https://twitter.com/intent/tweet?text=Experience%20with%20Modular%20Concurrent%20Programming&url=https://typeset.io/papers/experience-with-modular-concurrent-programming-4ljcb5deoa
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/experience-with-modular-concurrent-programming-4ljcb5deoa
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/experience-with-modular-concurrent-programming-4ljcb5deoa
https://typeset.io/papers/experience-with-modular-concurrent-programming-4ljcb5deoa


        

Experience with

Modular Concurrent Programming∗

(1977)

This paper summarizes the initial experience with the programming language

Concurrent Pascal in the design of three model operating systems. A Con-

current Pascal program consists of modules called processes, monitors, and

classes. The compiler checks that the data structures of each module are

accessed only by the operations defined in the module. The author empha-

sizes that the creative aspect of program construction is the initial selection

of modules and the connection of them into hierarchical structures. By com-

parison the detailed implementation of each module is straightforward. The

most important result is that it is possible to build concurrent programs of

one thousand lines out of one-page modules that can be comprehended at a

glance.

1 Introduction

This paper summarizes the initial experience with the abstract program-
ming language Concurrent Pascal in the design of three model operating
systems. A Concurrent Pascal program consists of modules called processes,
monitors, and classes (Brinch Hansen 1975a). The compiler checks that the
data structures of each module are accessed only by the operations defined
in the module. The most important result so far is that it is possible to build

a concurrent program of one thousand lines of text out of one-page modules

that can be comprehended at a glance (Brinch Hansen 1976b).
When this research project was started four years ago we had four main

goals:

∗P. Brinch Hansen, Experience with modular concurrent programming, IEEE Transac-

tions on Software Engineering 3, 2 (March 1977), 156–159. Copyright c© 1977, Institute
of Electrical and Electronics Engineers, Inc.

1



  

2 PER BRINCH HANSEN

1. To develop an effective method for constructing large, reliable concur-
rent programs from trivial modules that can be defined, programmed,
tested, and described one at a time.

2. To design an abstract programming language that supports a precise
form of modularity and hides irrelevant machine detail.

3. To make a compiler that checks whether program modules use one
another properly (in a restricted sense).

4. To build useful minicomputer operating systems exclusively by means
of this abstract programming language.

The first attempt by Hoare and myself to invent a structured language for
concurrent programs led to a notation for shared variables, critical regions,
and scheduling queues (Hoare 1972a; Brinch Hansen 1972). In 1972 we
combined these concepts into a single program module called a shared class

(Brinch Hansen 1973) or a monitor (Hoare 1974). This was inspired by
Dahl’s class module (Dahl 1972; Hoare 1972b) and Dijkstra’s secretaries

(1971).
To experiment with these ideas on modularity I designed the program-

ming language Concurrent Pascal (Brinch Hansen 1975b). It extends the se-
quential language Pascal (Wirth 1971) with processes, monitors, and classes.
A Concurrent Pascal compiler for the PDP 11/45 computer (written in Pas-
cal) was completed in January 1975 (Hartmann 1975).

A Concurrent Pascal program consists of a fixed number of processes
executed simultaneously. Each process performs a sequence of operations on
a data structure that is inaccessible to other processes. Processes can only
communicate by means of monitors. A monitor is a module that defines
all the possible operations on a shared data structure. It can, for example,
define the send and receive operations on a message buffer. Finally, a class
is a module that defines all the possible operations on a data structure used
by a single process only. It can, for example, define the open, close, read,
and write operations on a disk file.

The compiler checks that the data structures of each process, monitor,
and class are accessed only by the operations defined within that module.
The controlled access to data structures tends to confine programming errors
within single modules and prevent them from causing obscure effects in other
modules. This makes systematic testing of modules fast and effective.



      

MODULAR CONCURRENT PROGRAMMING 3

Concurrent Pascal has been used to write three model operating systems:
a single-user operating system (Solo), a job stream system for small jobs,
and a real-time scheduler for process control (Brinch Hansen 1975d, 1976a,
1976b). They have been running successfully on a PDP 11/45 computer for
more than a year.

The following describes the modular structure of these operating sys-
tems. I hope to show that the creative aspect of concurrent programming is

the initial selection of modules and the connection of them into hierarchical

structures. The detailed implementation of each module is quite straightfor-

ward. These details are described in the three papers mentioned above.

2 Program Modules

I will begin with an example from the job stream system which compiles and
executes a stream of Pascal jobs. Input, execution, and output take place
simultaneously using large buffers stored on disk.

Figure 1 shows two processes in the job stream system connected by
a disk buffer. The circles are program modules (processes, monitors, and
classes); the arrows show how they call one another.

♠ ♠

♠ ♠

♠ ♠

♠

�
�✒

�
�✒

❅
❅■

❅
❅■

✻ ✻

C C

C C

P P

M

FIFO DATA FILE

PAGE BUFFER

CHAR BUFFERS

JOB PROCESS OUTPUT PROCESS

Figure 1 Job stream system.

A job process sends one character at a time to a character buffer module
which assembles them into disk pages. When a page is full, the character
buffer sends it through a page buffer module which in turn calls a data file

module to store the page in a disk file of fixed length. The disk file is used
as a cyclical buffer. The page buffer uses a fifo (first-in, first-out) module to



    

4 PER BRINCH HANSEN

keep track of the order in which pages are transferred to and from the disk
file.

An output process receives one character at a time from another character
buffer which calls the page buffer when it needs another page from the disk.

Each of the modules consists of a data structure and the possible opera-
tions on it. Take for example the page buffer,

type pagebuffer =
monitor

var . . .

procedure send(block: page)
begin . . . end

procedure receive(var block: page)
begin . . . end

begin initialize buffer end

It is defined as a data type that can be used to transmit pages from one
process to another by means of send and receive operations.

A page buffer is represented by a data file and a fifo sequence. It also
uses two queues to delay the sending and receiving processes when the buffer
is full or empty:

var file: datafile; next: fifo;
sender, receiver: queue

These variables are declared within the module and are not accessible outside
it. They can only be used by the routines of the modules, for example

procedure receive(var block: page)
begin

if next.empty then delay(receiver);
file.read(next.departure, block);
continue(sender)

end

This page buffer routine in turn calls other routines

next.empty next.departure file.read



      

MODULAR CONCURRENT PROGRAMMING 5

defined within the fifo and data file modules, next and file.
A particular page buffer can be declared and used as follows by two

processes:

var buffer: pagebuffer; text1, text2: page;

buffer.send(text1) buffer.receive(text2)

3 Hierarchical Structures

The job stream module that implements data files on disk was borrowed
from the Solo operating system. Figure 2 shows the hierarchical structure
of the Solo filing system (simplified a bit).

♠

♠

♠

♠

♠

♠

♠

♠

♠

♠ ♠

♠

✻
✛

✻

✻

✻

✻

✻

�
��✒

�
��✒

❅
❅❅■

❅
❅❅■

�
�✒

�
�✒

❅
❅■

❅
❅■

C

M

C

C

C

C

M

M

C

C C

P

FIFO

RESOURCE

DATA FILE

TERMINAL

VIRTUAL TERMINAL

DISK

DISK FILE

DISK CATALOG

FIFO

RESOURCE

PROGRAM FILE

JOB PROCESS

Figure 2 Solo system.

The heart of Solo is a job process that compiles and executes programs. It
can access disk files through data and program file modules. Since there are
other processes in the system, the file modules must use a resource module



     

6 PER BRINCH HANSEN

to get exclusive access to the disk during page transfers. Disk catalog and
disk file modules are used to locate a named file and its pages on the disk.
A disk module handles the details of transferring a single page to or from
the device. If the disk fails this is reported to the operator through a virtual

terminal. Each process has its own virtual terminal. They all use the same
resource module to get exclusive access to a single real terminal. A resource
module uses a fifo module to implement first-come, first-served scheduling.

The Solo system was written eight months before the job stream system.
It was a pleasant surprise to discover that 14 modules from Solo could be
used unchanged in the job stream system. This may be the first example of
different kinds of operating systems using the same modules.

Figure 3 shows the structure of another concurrent program. This is the
real-time scheduler which executes a fixed number of task processes regularly
with frequencies chosen by an operator. It is based on an existing process
control system (Brinch Hansen 1967).

♠

♠ ♠

♠

♠

♠ ♠

♠

♠

♠

�
�

��✒

❅
❅

❅❅■✻

✁
✁
✁
✁
✁
✁
✁✁✕

❆
❆

❆
❆

❆
❆

❆❆❑

�
�

��✒

❅
❅

❅❅■

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✂✍

✁
✁
✁
✁
✁
✁
✁✁✕

�
�

��✒

· · ·

M

P P

M

M

P P

C

C

CTASK QUEUE

TIME TABLE

TASK PROCESSES

CLOCK

TASK SET

TERMINAL

BELL KEY

PULSE PROCESS OPERATOR PROCESS

Figure 3 Real-time scheduler.

Each task is a cyclical process that waits inside a task queue module until
a timing signal from a time table module wakes it up. After performing its
task the process waits for the next signal. The time table defines the start
time and frequency of each task. A pulse process updates a clock module
every second and calls the time table which then starts all tasks that are due.



    

MODULAR CONCURRENT PROGRAMMING 7

The operator contacts the scheduler by pushing the bell key on a terminal.
This wakes up an operator process which then accepts a command from the
operator through a terminal module. The command may cause the operator
process to either set the clock or change the time table. The scheduler uses
a task set to keep track of task names.

4 Program and Module Size

The model operating systems illustrate how one can build a concurrent pro-
gram as a hierarchy of modules. Each module implements a data type and
its operations. Other modules can use these operations, but cannot access
the components of the data type directly.

So modules “know” very little about each other. This makes it possible to
program them one at a time. The programming experience with Concurrent
Pascal illustrates the success of this approach.

Job Real
Solo Stream Time

Lines 1300 1400 600
Modules 23 24 13
Lines/Module 57 58 46
Routines/Module 5 4 4
Lines/Routine 11 15 12

The table shows that each of the model operating systems is a Concurrent
Pascal program of about 1000 lines of text divided into 15–25 modules. A
module is roughly one page of text (50–60 lines) with about 5 routines of
10–15 lines each.

These three examples consistently show that it is possible to compose
nontrivial concurrent programs of very simple modules that can be studied
one page at a time as one reads a book. This must surely be the main goal
of structured programming on a larger scale.

Each of the model operating systems corresponds to an assembly lan-
guage program of about 4000 machine instructions. But fortunately they
are written in an abstract programming language that hides machine de-
tail, such as registers, addresses, bit patterns, interrupts, store allocation,
and processor multiplexing. As a result it was possible for me to design,
program, test, and describe each of these programs in a matter of weeks.
Compared to assembly language, Concurrent Pascal has reduced my design
effort for concurrent programs by an order of magnitude and has made them



    

8 PER BRINCH HANSEN

so simple that a journal could publish the complete text of a 1300 line pro-
gram (Brinch Hansen 1976b).

5 Reliability and Efficiency

The integrity of modules enforced during compilation tends to make pro-
grams practically correct before they are even tested. The modules of a
concurrent program are tested one at a time starting with those that do not
depend on other modules. Each module is tested by means of a short test
process that calls the module and makes it execute all its statements. A
detailed example of how this is done is described in Brinch Hansen (1975d).

When a module works, another one is tested on top of it. The compiler
now makes sure that the new (untested) module only uses the routines of
the old (tested) module. Since these routines already work, the new module
cannot make the old one fail. This makes it quite easy to locate errors during
testing.

Although systematic testing theoretically does not guarantee correctness
it is very successful in practice. The Solo system was tested in 27 test runs
during April 1975. It has since been used daily without software failure. The
job stream system and the real-time scheduler were tested in 10 and 21 test
runs. So the initial experience has been that a concurrent program of one

thousand lines requires a couple of compilations followed by one test run per

component. And then it works.
The checking of access rights to data structures is almost exclusively done

during compilation. It is not supported by hardware protection mechanisms
during execution. The elimination of consistency checks at run time makes
routine calls between modules about as fast as routine calls within modules:

µs
simple routine call 60
class routine call 80
monitor routine call 200

The static allocation of store among a fixed number of processes also
contributes to efficiency (Brinch Hansen 1975c).

The Solo and job stream systems compile programs at the speed of the
line printer (10 lines/s) and are not limited by the speed of the computer.



    

MODULAR CONCURRENT PROGRAMMING 9

6 Final Remarks

As the first abstract language for modular concurrent programming Concur-
rent Pascal will no doubt turn out to have deficiences in detail, but the overall
modular approach to program design by means of processes, monitors, and
classes seems to be a fertile direction for further research.

Since a concurrent program can be composed of semi-independent mod-
ules of one page each, there is reason to believe that verification techniques
for small, sequential programs can be extended to concurrent programs as
well. Some of this work has already been started by Hoare (1972a, 1972b,
1974), Howard (1976), and Owicki and Gries (1976). It would be a worthy
achievement to verify parts of a working operating system, such as Solo.

The greatest value of a formal approach to correctness is probably the
extreme rigor and structure that it must impose on the design process from
the beginning to be succesful. This cannot fail to improve our informal
understanding of programs as well.

References

Brinch Hansen, P. 1967. The RC 4000 real-time control system at Pulawy. BIT 7, 4,
279–288. Article 1.

Brinch Hansen, P. 1972. Structured multiprogramming. Communications of the ACM 15,
7 (July), 574–578. Article 4.

Brinch Hansen, P. 1973. Operating System Principles. Prentice Hall, Englewood Cliffs,
NJ, (July).

Brinch Hansen, P. 1975a. The programming language Concurrent Pascal. IEEE Transac-

tions on Software Engineering 1, 2 (June), 199–207. Article 7.

Brinch Hansen, P. 1975b. Concurrent Pascal report. Information Science, California
Institute of Technology, Pasadena, CA, (June).

Brinch Hansen, P. 1975c. Concurrent Pascal machine. Information Science, California
Institute of Technology, Pasadena, CA, (October).

Brinch Hansen, P. 1975d. A real-time scheduler. Information Science, California Institute
of Technology, Pasadena, CA, (November).

Brinch Hansen, P. 1976a. The job stream system. Information Science, California Institute
of Technology, Pasadena, CA, (January).

Brinch Hansen, P. 1976b. The Solo operating system. Software—Practice and Experience

6, 2 (April–June), 141–205. Articles 8–9.

Dahl, O.-J., Dijkstra, E.W., and Hoare, C.A.R. 1972. Structured Programming. Academic
Press, New York.

Dijkstra, E.W. 1971. Hierarchical ordering of sequential processes. Acta Informatica 1,
115–138.

Hartmann, A.C. 1975. A Concurrent Pascal compiler for minicomputers. Information
Science, California Institute of Technology, Pasadena, CA, (September).



   

10 PER BRINCH HANSEN

Hoare, C.A.R. 1972a. Towards a theory of parallel programming. In Operating Systems

Techniques, C.A.R. Hoare and R.H. Perrott, Eds., Academic Press, New York.

Hoare, C.A.R. 1972b. Proof of correctness of data representations. Acta Informatica 1,
271–281.

Hoare, C.A.R. 1974. Monitors: An operating system structuring concept. Communica-

tions of the ACM 17, 10 (October), 549–557.

Howard, J.H. 1976. Proving monitors. Communications of the ACM 19, 5 (May), 273–279.

Owicki, S., and Gries, D. 1976. Verifying properties of parallel programs: An axiomatic
approach. Communications of the ACM 19, 5 (May), 279–285

Wirth, N. 1971. The programming language Pascal. Acta Informatica 1, 35–63.




