Experience with Predicate Abstraction*

Satyaki Das', David L. Dill!, and Seungjoon Park?

! Computer Systems Laboratory, Stanford University, Stanford, CA 94305
2 RIACS, NASA Ames Research Center, Moffett Field, CA 94035

Abstract. This reports some experiences with a recently-implemented
prototype system for verification using predicate abstraction, based on
the method of Graf and Saidi [9]. Systems are described using a language
of iterated guarded commands, called Mur¢™~ (since it is a simplified
version of our Mur¢ protocol description language). The system makes
use of two libraries: SVC [1] (an efficient decision procedure for quantifier-
free first-order logic) and the CMU BDD library. The use of these libra-
ries increases the scope of problems that can be handled by predicate
abstraction through increased efficiency, especially in SVC, which is ty-
pically called thousands of times. The verification system also provides
limited support for quantifiers in formulas. The system has been applied
successfully to two nontrivial examples: the Flash multiprocessor cache
coherence protocol, and a concurrent garbage collection algorithm. Ve-
rification of the garbage collector algorithm required proving properties
simple of graphs, which was also done using predicate abstraction.

1 Introduction

Abstraction is emerging as the key to formal verification of large designs, espe-
cially designs that are not finite-state. Predicate abstraction, first described by
Graf and Saidi [9], provides a means for combining theorem proving and model
checking techniques by automatically mapping an unbounded system (called the
concrete system) to a finite state system (called the abstract system). The states
of the abstract system correspond to truth assignments to a set of predicates.
The user must supply the predicates and properties to be proven. The system
automatically model checks the properties on the abstract system defined by
the predicates. The abstraction is comservative, meaning that if a property is
shown to hold on the abstract system, there is a concrete version of the property
that holds on the concrete system; however, if the property fails to hold on the
abstract system, it may or may not hold on the concrete system.

We have recently implemented a prototype system for efficient verification
of invariants by predicate abstraction, to discover how far predicate abstraction
can take us towards the goal of formal verification of real systems. Results have

* This work was supported by DARPA/NASA contract DABT63-96-C-0097-P00002
and NASA contract NASI-98139. The content of this paper does not necessarily
reflect the position or the policy of the Government and no official endorsement
should be inferred.

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 160-171, 1999.
© Springer-Verlag Berlin Heidelberg 1999

Experience with Predicate Abstraction 161

been encouraging. Systems are described using a language of iterated guarded
commands, which we call Mur¢~~ (since it is a simplified version of our Mur¢
protocol description language). The system makes use of two libraries: an efficient
decision procedure for quantifier-free first-order logic, called SVC [1], and the
CMU BDD library written by David Long. The use of these libraries increases
the scope of problems that can be handled by predicate abstraction through
increased efficiency, especially in SVC, which is typically called thousands of
times. The prototype verifier is written in Common Lisp, and the libraries (which
are written in C and C++) are called via the “foreign function” interface.

We have applied it successfully to two nontrivial examples: the Flash mul-
tiprocessor cache coherence protocol, and a concurrent garbage collection algo-
rithm. In verification, discovering strategies for effective use of a tool is often as
important as the design of the tool. We quickly found that we needed limited
support for quantifiers, for expressing properties of unbounded numbers of pro-
cesses and data. For the garbage collection algorithm, it was necessary to prove
some properties of a recursive function. Interestingly, some recursive algorithms
can be verified by translating them to Mur¢~ " and using predicate abstraction.

The more detailed description below has programs written in a syntax other
than Mur¢~", and logical formulas in a syntax other than SVC. The benefits of
readability were deemed to outweigh the possibility of translation errors.

Related Work

Our work is derived from the Graf/Saidi abstraction scheme [9]. However, the ori-
ginal implementation represented the abstract state space as a set of monomials
(a monomial is a product of Boolean variables and negated variables). Instead,
we use BDDs, which usually represent Boolean functions more efficiently. Ho-
wever, Graf and Saidi also sacrificed some accuracy by representing the image
of a monomial under a transition rule as a single monomial which must cover
all of the states in the image of the transition rule. Our method has no such
restriction. So, our verifier is more accurate, but may require more computation
(which is performed more efficiently).

Our approach to handling parameterized systems uses quantified formulas,
(similar to [17] and [13]), which differs from the method presented in [12]. They
used linear systems of equations to deal with state transitions. The basic idea is
that for each state there is an abstract variable which keeps track of the number
of processes in that state. So if a process moves from ¢ to ¢’ then the value of
Xq is decremented by one while X is incremented by one. We have handled
reasoning about parameterized systems by introducing formulas quantified over
the replicated processes as abstract state variables. This is similar to what was
proposed in [8] and [7].

Another approach to generating abstract state graphs is to abstract the con-
crete rules [3]. This has the advantage of requiring fewer validity checks (as they
are required when constructing the abstract transitions). However, abstracting
the rules may also lose more information about the concrete system, and so
might be unable to prove the invariant of interest.

162 S. Das, D.L. Dill, and S. Park
2 Predicate Abstraction

This section summarizes the theory of predicate abstraction and its implemen-
tation in the prototype verifier. The notation is somewhat different from Graf
and Saidi’s, but everything is very similar until the details of the computation
of the successors of a set of abstract states (the recursive decomposition).

The Concrete and Abstract Descriptions

As with previous work in this area, the concrete system is modeled as a collection
of iterated nondeterministic commands. There is a single global state variable X
that represents the complete state of the system. Multiple state variables can be
represented by making them fields of a variable of record type. The initial state
of the concrete system is generated by an assignment X := init(X) !

There is a set of transition rules. Each rule defines a transition function f
which maps states to states (the input language has guarded commands, but the
guards are not necessary since the transition functions can be defined to leave
state variables unchanged when their guards are not satisfied).

An ezecution of the system is a sequence of states, qo, ... qn, ¢nt1,-- ., where
qo = init(g—1) for some arbitrary state g_; (note that g_; does not occur in the
execution sequence) and ¢, +1 = f(gy) for some transition function f. A concrete
state ¢ is reachable if it appears in some execution sequence. We are interested
in whether predicates on the state variables are invariants, meaning that they
hold for every reachable state of a concrete system.

An abstract system is defined by a concrete system and a set of NV predicates,
¢1, P2, ... 0on. Each state g4 of the abstract state space is a truth assignment
to the indices 1 through N (so the set of states is finite). The predicates define
an abstraction function, «, which maps concrete states to abstract states. In
particular, g4 = a(gc) whenever Vi : q4(i) = ¢i(qc). An abstract state g4 is
reachable if it is an abstraction of a reachable concrete state g¢.

The reachable state space can be used to check invariants. If the user knows
what invariants he or she wants to prove, these invariants are supplied as some
of the predicates ¢; (actually, the invariant may sometimes be decomposed into
a conjunction of simpler properties). If g4(i) is true in all reachable abstract
states, the invariant has been proven. In addition, a BDD describing the abstract
reachable state space can be converted into an invariant for the concrete state
space by concretizing it, as described below.

Approximating the Abstract Reachable State Space

Sets of abstract or concrete states are represented using logical formulas. Ab-
stract states are represented using BDDs, which can be regarded as propositional

! Initialization depends on the values of the state variables, which are unconstrained,
so as to allow nondeterministic choice of start states. The initialization rule is also
conveniently similar to the transition rules of the system.

Experience with Predicate Abstraction 163

formulas, by associating Boolean variables By, ..., B, with the truth values of
the corresponding predicates. The concrete domain is not necessarily finite, so
the concrete state space is represented using first-order formulas.

If s¢ is a set of concrete states, a(s¢) will be taken to be {a(qc) | go € sc}-
The concretization function v is the inverse image of a: v(s4) = {qc¢ | a(qc) €
sa}. Note that Vse : s¢ C y(a(se)). If 4 is a propositional formula (e.g., a
BDD) over the variables B; representing the set s4, a first-order formula ¢
representing v(s4) can be computed by substituting each predicate ¢; for B; in
Ya.

An approximation of the reachable state space of the abstract system is com-
puted by (the usual) breadth-first symbolic traversal. At any time, the algorithm
has a BDD representing the current abstract reachable set. Initially, this formula
represents an abstraction of the initial states of the concrete system. Then, the
algorithm iteratively computes an over-approximation of the set of all successors
of the current reachable set. At the end of the next iteration, the formula is the
logical disjunction of the formula for the current reachable set and the formula
for its successor set.

The key step in this procedure is how to find the formula for the set of suc-
cessors. Given a BDD 4 which characterizes s4, find a BDD ¢, characterizing
the successors of s4 in the abstract system. It is sufficient to compute the succes-
sors contributed by each concrete transition function f, since the set of abstract
successors is the union of the successors contributed by the individual functions.
The formula for the initial abstract states is computed by finding the possible
successors of the entire state space under the “transition function” init (in other
words, finding the formula for the successors of true under init).

The abstract successors are computed by a method similar to that of Graf
and Saidi, but using recursive subdivision of the concrete state space. The first
step computes o = y(1p4) by substitution (as described above). ¥ represents
the set of all states that could abstract to a state in s4.

We assume that each transition function f can be written as a first-order
term, which is also name f. Predicates ¢;(x) that characterize the sets {g¢c |
¢:(f(gc))} can be pre-computed by substituting the term f(X) for X in ¢.
Intuitively, ¢;(z) means “z is a predecessor of a state that can satisfy ¢;.”

We compute 1/, by recursive case splitting on each bit B; in the abstract
formula, in ascending order of 3.

By, NH(W A @, m+1)

(o) — 4 VB A H@A G, me1) PO =N
Y true if m = N + 1 A4 is satisfiable
false if m = N + 1 A is unsatisfiable

The formula 1) is a Boolean combination of predicates ¢; form <i < N+4+1.1If s
is the set of concrete states represented by 1, the function H, below, computes
a logical formula representing the set of abstract states a(f(s)). If m < N, it
splits s into two parts, s’ and s, by conjoining 1) with ¢; and then —¢;; H is
then called recursively to compute «(f(s")) and a(f(s”)). When m = N + 1,

164 S. Das, D.L. Dill, and S. Park

every ¢; has been assumed true or false in v, so 1 is equivalent to one of these
values.

Several important optimizations are not shown. First, H(false, m) is always
false, so we check whether v is satisfiable at each step, using SVC. Second,
H (), m) is saved in a table the first time it is computed; this table is checked
to see if the needed value is available before computing H recursively. Finally,
the propositional operations are performed using a BDD library, so common
subexpressions are shared.

Dealing with Indexed Sets of Transitions

Mur¢~—, like Mur¢ before it, allows the user to define a set of transition rules
that vary over an index variable. There is a construct called a “ruleset,” which
declares a index variable that can be used in the code for transition rules con-
tained in the ruleset. This feature is useful for describing collections of nearly
identical processes.

Ruleset parameters are encoded as accesses to an infinite array, indexed by
the natural numbers, whose entries are rule indices. The contents of the array
are unconstrained, so it serves as a source of nondeterministic choices. The ith
element of the array is looked up to determine the choice of the transition rule
to execute in the ith step of a computation.

Stating properties of parameterized systems requires quantified formulas, but
SVC can only decide quantifier-free formulas. The prototype verifier copes with
quantifiers using some simple heuristics:

— In parameterized processes, the concrete variables associated with each pro-
cess are frequently stored in an array, so quantified variables are instantiated
with all array index expressions.

— Since SVC checks validity, variables that are universally quantified outside
of the scope of an existential quantifier can be replaced by a fresh symbolic
constant (which is distinct from all other names in the formula). Instantiation
of quantifiers with these fresh variables is also useful.

— As a last resort, the system allows the user to supply hints about how to
instantiate (and not instantiate) variables.

These measures are barely adequate; more sophisticated handling of quantifiers
is required in the future.

3 FLASH Cache Coherence Protocol Example

One advantage of predicate abstraction is that it can be used to strengthen
invariants, automatically. This is potentially valuable, since finding appropriate
invariants is one of the most difficult aspects of verifying a design using a theorem
prover.

This technique was evaluated on a protocol that was previously verified by
several methods: the Stanford FLASH multiprocessor cache coherence protocol.

Experience with Predicate Abstraction 165

The model of the cache coherence protocol consists of a set of nodes, each of
which contains a processor, caches, and a portion of global memory of the sy-
stem. Each cache line-sized block in memory is associated with a directory header
which keeps information about the line. The state of a cached copy is in either
invalid, shared (readable), or exclusive (readable and writable). The distribu-
ted nodes communicate using asynchronous messages through a point-to-point
network.

This protocol has been verified using an aggregation abstraction with help
of a theorem prover. This proof required many lemmas that showed that va-
rious pairs of actions commute (produce the same state, regardless of execution
order). However, the lemmas don’t hold in arbitrary system states; instead, it
is necessary to prove an invariant that characterizes the reachable states, then
prove that the lemma holds given the invariant. Finding this invariant was the
most difficult part of the proof. A more detailed description of the protocol and
the proof can be found in [14].

To prove the invariants, it is necessary to strengthen them until they are
inductive (strengthening them is equivalent to finding an induction hypothesis).
In practice, strengthening an invariant is a trial-and-error process involving re-
peated failed proofs, from which new properties must be manually extracted.
This usually requires many iterations, and each iteration is difficult.

Predicate abstraction makes invariant strengthening easier. The user sup-
plies plausible properties that might be useful in strengthening the invariant,
and the system automatically tries various Boolean combinations of these con-
ditions until it is able to prove the property (or not). This saves the effort of
trying Boolean combinations by hand. When the abstract reachability analysis
generates a state where the candidate invariant does not hold, it is possible to
report an abstract state, along with a concrete transition that enters the state.
This information may suggest additional predicates that should be added.

To use predicate abstraction for invariant strengthening, the user starts with
a description of the system and some (relatively simple) invariants that are
sufficient conditions to prove the verification conditions of interest. For example,
a desired property of FLASH was that there be at most one exclusive copy of a
memory line in the system. To prove this, two predicates were supplied initially:

— There are no exclusive copies.
— There is a single exclusive copy

The invariants discovered using these properties are not strong enough, so two
more properties were added about the PUTX message, which is a message from
the directory to the cache that wants an exclusive copy.

— There are no PUTX replies in the network.
— There is a single PUTX reply in the network

The Mur¢~~ description of the protocol used in this test was somewhat
different from the PVS description used in the aggregation proof. The first sim-
plification was modeling the memory as a separate node in the machine, when in

166 S. Das, D.L. Dill, and S. Park

fact memory is stored in processing nodes. This simplification was necessitated
by the inefficient treatment of quantifiers in the current Mur¢~ " prototype. The
second simplification was the result of a limitation of Mur¢™": In the PVS de-
scription, the directory entry for a memory block maintained a count of sharers
(read-only cached copies of the memory block). There was no easy way to count
the number of actual sharers in Mur¢™—, so this was changed to be the set of
sharing nodes, instead of a count. ? In spite of these compromises, we believe
that the problem of invariant strengthening for the modified FLASH protocol is
quite difficult, and the ability to solve it with Mur¢~ " indicates that predicate
abstraction is an effective approach to this problem.

One of the interesting challenges presented by the FLASH protocol is finding
invariants for an unknown number of processes. As with the original description,
the protocol description is parameterized for unknown number of processes. The
caches are modeled as an unbounded array indexed by node indices. This tends
to lead to predicates and properties to prove that are quantified over all process
indices. For instance, the property that there should be no write-back request
when there exists any exclusive copy of the memory line in the whole system
can be specified with a universal quantifier as

Vp : (cachelp].state = exclusive = netwp = empty).

As explained in Section 2, Mur¢ ™~ is able to handle quantified predicates, albeit
sub-optimally, by trying many instantiations without human interaction. This
capability was critical for completing the proof with reasonable effort.

Overall, we estimate that finding the invariants with predicate abstraction
was at least an order-of-magnitude easier than finding them by trial and error
with PVS. It required no more than five days of user time and two hours of CPU
time to strengthen the invariants.

4 Garbage Collection Example

The most ambitious example we have attempted is the on-the-fly garbage collec-
tion algorithm, which was first proposed by Dijkstra, et al. [4]. The algorithm is
widely acknowledged to be difficult to get right, and difficult to prove. A more
detailed discussion of the subtlety of this algorithm and subsequent variations
can be found in a paper by Havelund and Shankar [11].

An extended version of this algorithm which can handle multiple concurrent
mutators was used as the garbage collector of Concurrent Caml Light. The proof
of the safety property required 58 invariants to be proved. Details of the modified
algorithm and its proof are discussed in [6] and [5].

The original algorithm was simplified by Ben-Ari [2] to involve two colors
instead of three. This also led to a simpler argument of correctness. Alternative

2 This problem could possibly have been addressed by writing a recursive function to
count the sharing nodes, then verifying some properties of it as in the proof of the
garbage collection algorithm. We haven’t tried this yet.

Experience with Predicate Abstraction 167

justifications of Ben-Ari’s algorithm were also given by Van de Snepscheut [18]
and Pixley [15]. However, these proofs were informal pencil and paper proofs.

Later, this modified algorithm was mechanically proved by Russinoff [16]
using the Boyer-Moore theorem prover. A formulation of the same algorithm
was also proved by Havelund and Shankar in PVS [10] and [11]. The proofs of
both [10] and [11] were of approximately the same size. The proofs needed 19
invariant lemmas and 57 function lemmas and [11] took about two months. So far
as we know, no one has mechanically proved the original algorithm of Dijkstra,
et al.

In the garbage collection algorithm, the collector and the mutator (which mo-
dels the behavior of the user program by nondeterministically changing pointers)
run concurrently with both processes accessing a shared memory. The memory
is abstractly modeled as a directed graph with each node having at most two
outgoing edges. A subset of these nodes are called roots; they are special in the
sense that they are always accessible (our proof of the algorithm assumes with-
out loss of generality that there is only one root node). Any node that can be
reached from one of the roots by following edges is also accessible. The mutator
is allowed to choose an arbitrary node and redirect one of its edges to an ar-
bitrarily chosen accessible node. Each memory node also has a color field which
the collector uses to keep track of the accessible nodes. The collector adds nodes
that are not accessible to the mutator, so-called garbage nodes, to a free-list for
recycling.

The mutator, which is described in pseudo-code in Figure 1, first redirects
an edge of an arbitrarily selected accessible node towards an arbitrary accessible
node (acc(j) says j is accessible). It then colors the second node gray if it was
white, or otherwise does nothing. Part of the subtlety of the algorithm is that
the collector can mark nodes between these two steps of the mutator.

The collector finds the nodes that are not reachable from the roots, so they
can be added to the free list. It begins by coloring the root nodes gray (“coloring
a node gray” is called shading, from now on). Then it iterates through all the
nodes; whenever it finds a gray node, it shades its successors and colors the node
black. After this the collector starts this iteration again. The collector algorithm
is presented in Figure 1.

The basic property to prove is that the collector does not free an accessible
node. An extra state variable called error was added to the collector, which is
set to true if the collector ever frees an accessible node, reducing the desired
property to an invariant that error is never true.

Most of the predicates were simply guards from the Mur¢~— description of
the algorithm or derived directly from the invariant to be proved. Some required
insight, however. Two predicates are needed because, when the collector is in
the marking phase, the mutator can change the color of a node to gray, in which
case there must already exist a gray node yet to be examined by the collector.

YV € [i, M) : color|z] # gray
Jy € [0, M) : colorly] = gray

S. Das, D.L. Dill, and S. Park

/* mutator */
while(true)

choose n, k € [0, M),
s.t. acc(k) = true
/* choose to change left or right */
[leftin] :=k; q:=k
O right[n] := k; q := k]
if color[q] = white —
color[q] := gray; fi

/* collector */
shade all roots;
error := false;
i:=0;k:= M;
/* marking phase */
do (k > 0) —

¢ := colorli];

if c=gray —

k:= M;
shade left[i], right[i];
color[i] := black;

Oc#gray — k:=k—1
fi;
t1:=(t+1) mod M

od
/* collecting phase */
Jj=0

end /* while */ do (j <M)—
¢ := color[jl;
if ¢ = white —
if acc(j) — error := true fi
append j to free list

Oc # white — color[j] := white
fi;
ji=it1

od

Fig. 1. Mutator and Collector Algorithms

The correctness of the algorithm also depends on the invariant that a black
node never has a white successor (except in the transitory case where the mutator
is about to shade the white successor).

Vx € [0, M) : (color[z] = black = (color|left|x]] # white V q = left[x]))
Yz € [0, M) : (color[z] = black = (color[right[z]] # white V q = right]z]))

Verifying Properties of Graphs

A major difficulty with verifying the garbage collection algorithm using predi-
cate abstraction is that its correctness depends on some simple properties of
graphs that are not easy to prove by simple instantiation of quantifiers (induc-
tion is actually needed). These properties are given as axioms to the verifier
when verifying the algorithm, and are proved by using predicate abstraction on
“auxiliary” Mur¢~~ programs that compute the graph properties.

Experience with Predicate Abstraction 169

For example, the following property about the function acc is necessary:

(color[0] = black)

A(Vp € [0, M) : color[p] = black (1)
= (color|left[p]] = black A color[right[p]] = black))

= (Vg € [0, M) : acc(left, right)(q) = (color|q] = black))

(The function acc is actually a function of the graph structure of the nodes, so
left and right are its arguments.)

Another axiom is says that redirecting an edge to point to an already accessi-
ble node never makes a previously inaccessible node accessible. In the following,
write(left, g, p) represents an array which is the same as left except that it has
the value p at index ¢. There is a similar equation for redirecting the right side.

Vp,q,r € [0, M) : (acc(left, right)(p) A acc(write(left, q, p), right)(r))
= acc(left, right)(r) (2)

The most difficult property required some insight. It states that if the root
node of the graph is gray in color and all other nodes are either gray or white
then, for every accessible white node, there exists a path from a gray node to it,
entirely through white nodes.

(color[0] = gray AVz € [0, M) : color|z] = white A acc(left, right)(z))

= Jy € [0, M) : color[y] = gray A reachable_white(left, right)(y, x) (3)

where reachable_white is a similarly recursive definition that says there is a path
of all white nodes from left to right.

It is frequently possible to write an auxiliary Mur¢™ ~program that compu-
tes a graph property, then verify some predicates on this algorithm. The verified
properties are then used as axioms in the main verification effort. These auxili-
ary programs are not tricky to write, because they do not require concurrency.
Although this method is currently ad hoc, it seems that the properties we en-
countered, and many others, could be written as simple recursive definitions and
then translated by some provably correct algorithm to a Mur¢™ " program that
computes the same property.

For example, starting with a simple recursive definition of accessibility,

acc(0) A (Vz € [0, M) : acc(z) = (acc(left(x)) A acc(right(z))),

it is simple to write a Mur¢~ ~program that sets the entries of an array acc[i] to
true or false depending on whether node i is accessible.
To prove property 1, we assume that the array color is initialized so that

(color]0] = black)

A(Vp € [0, M) : color[p] = black
= (color]left[p]] = black A color[right[p]] = black))

and then check the abstract state space with the predicate Vz : acclz] =
color|x] = black.

170 S. Das, D.L. Dill, and S. Park

A similar approach was used to prove property 2. This property was slightly
more complex, since the function needed to be computed twice: once on the
original memory structure and once after the mutator has redirected an edge in
the memory graph.

As might be expected from its complexity, property 3 was somewhat more
difficult to prove. We provided an auxiliary Mur¢~~program that, given a white
accessible node, finds the witness to the existential quantifier in the consequent.

We were able to prove this algorithm correct in about seven days. The ma-
chine time required to prove the final version of the garbage collection algorithm
is about three hours. Finding appropriate abstraction predicates took much of
the time, and required an understanding of the algorithm. Typically we would
start with some invariants which seemed should hold in the system as part of
the abstract state. More often than not, the proof process would generate traces
where the candidate invariant would fail. This mostly happened because of two
reasons:

— We left out some “obvious” axiom about acc.

— The invariant does not hold under some situations and needed to be tweaked
to get it right. This either needed changing the predicate or adding other
predicates.

During the proof process we also discovered some bugs which were accidentally
added while coding the algorithm. Of course, much of the human time was spent
figuring out what the axioms should be and how to prove them.

5 Conclusions

Based on the experiences reported here, we believe that predicate abstraction
can be a very cost-effective verification technique for non-finite problems such
as parameterized systems.

Predicate abstraction could be regarded as an infinite-state alternative to
model checking. However, we believe it would be most valuable in as a method
for checking or strengthening invariants in a larger verification effort involving
other tools, especially interactive theorem provers.

The Mur¢~~ verifier is a prototype for evaluating ideas, not a polished tool.
To be generally useful, every aspect of the Mur¢~~ system needs additional
work (including a name change). In particular, there is a need for better support
for quantifiers, and more generally efficient and powerful decision procedures.

6 Acknowledgments

We are grateful to Mahadevan Subramaniam for suggesting the use of predicate
abstraction, Hassen Saidi for his help in understanding the abstraction metho-
dology, Klaus Havelund for telling us about the concurrent garbage collection
algorithm, Clark Barrett for his help in integrating SVC libraries, and Shankar
Govindraju for his help with the CMU-BDD package.

Experience with Predicate Abstraction 171

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theories
with equality. In M. Srivas and A. Camilleri, editors, Formal Methods In Computer-
Aided Design, volume 1166 of Lecture Notes in Computer Science, pages 187-201.
Springer-Verlag, November 1996. Palo Alto, California, November 6-8.

. M. Ben-Ari. Algorithms for on-the-fly garbage collection. ACM Transactions on

Programming Languages and Systems, 6(3):333-344, July 1984.

M. A. Colén and T. E. Uribe. Generating finite-state abstractions of reactive
systems using decision procedures. In Conference on Computer-Aided Verifica-
tion, volume 1427 of Lecture Notes in Computer Science, pages 293-304. Springer-
Verlag, 1998.

E. W. Dijkstra, L. Lamport, A. Martin, C. S. Scholten, and E. F. M. Steffens.
On-the-fly garbage collection: An exercise in cooperation. Communications of the
ACM, 21(11):966-75, November 1978.

D. Doligez and G. Gonthier. Portable, unobtrusive garbage collection for multi-
processor systems. Proc. ACM Symp. on Principles of Programming Languages,
January 1994.

D. Doligez and X. Leroy. A concurrent, generational garbage collector for a multi-
threaded implementation of ML. Proc. ACM Symp. on Principles of Programming
Languages, January 1993.

E. A. Emerson and K. S. Namjoshi. Reasoning about rings. Proc. ACM Symp. on
Principles of Programming Languages, 1995.

. S. M. German and A. P. Sistla. Reasoning about systems with many processes.

Journal of the ACM, 39(3), July 1992.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grum-
berg, editor, Conference on Computer Aided Verification, volume 1254 of Lecture
notes in Computer Science, pages 72—-83. Springer-Verlag, 1997. June 1997, Haifa,
Israel.

K. Havelund. Mechanical verification of a garbage collector. Unpublished ma-
nuscript, 1996.

K. Havelund and N. Shankar. A mechanized refinement proof for a garbage collec-
tor. Unpublished manuscript, 1997.

D. Lessens and H. Saidi. Automatic verification of parameterized networks of pro-
cesses by abstraction. Electronic Notes of Theoretical Computer Science (ENTCS),
1997.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, 1995.

S. Park and D. L. Dill. Verification of cache coherence protocols by aggregation of
distributed transactions. Theory of Computing Systems, 31(4):355-376, 1998.

C. Pixley. An incremental garbage collection algorithm for multi-mutator systems.
Distributed Computing, 3(1):41-50, 1988.

D. M. Russinoff. A mechanically verified incremental garbage collector. Formal
Aspects of Computing, 6(4):359-390, 1994.

A. P. Sistla and S. M. German. Reasoning with many processes. Symp. on Logic
in Computer Science, Ithaca, pages 138-152, June 1987.

J. van de Snepscheut. Algorithms for on-the-fly garbage collection revisited. In-
formation Processing Letters, 24(4):211-16, March 1987.

	Introduction
	Predicate Abstraction
	FLASH Cache Coherence Protocol Example
	Garbage Collection Example
	Conclusions
	Acknowledgments

