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) Abstract

.- i

The Hough Transform is a method for detecting
curves by exploiting the duality between voints on a
) curve and parameters of that curve. The initial work
' showed how to detect both analytic curves [Houghr 1062;

- Duda and Hart, 1972] and non-analytic curves [Merlin
;' and Farber, 1975], in the case ¢f binary edge images.
g This work was generalized to the detection ¢f scme
. analytic curves in grey level images, specifically

lines [O'Gorman and Clowes, 1973], circles Yimpne et
3 _ al., 1975], and ©parabolas [Wechsler and Sklansky,
.?‘ 19771.

: Recently, the Hcough technijue has been extended to
e the detecticn of arbitrary non-analytic shapes in grey
P level images [Ballard, 1979]. This shape detecticn
scheme has been implemented and tested on a variety of
artificial images and has fsund apglication in the
analysis <f real aerial images. Zxperience to date
indicates that the technique is robust with respect o
occlusions, but requires reliable edge-clement
crientation determination.

Y

/ /5
The preparaticon ¢f this prodr, wasg- supported in
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1. Introducticn

Shape is an important attribute of two-dimensional figures.
In simple figure-ground binary images, the shape of the boundary
of the figure is often the only interesting feature. We take
"shape" to be a property of the entire figure, i.e., it is a
global property.

Evidence about the shape of a figure is found at +the
boundary between figure and ground. Such evidence can be
generated by the application of local edge-element detectors. An
edge-element detector typically reports on the presence of an
edge-element in a small window of an image, and on the
orientation of that edge-element. PFinding shapes in the image
involves combining many pieces of local evidence into a global
judgment.

The Hcough Transform is a method for detecting curves by
exploiting +the duality betwqgeen pecints on a curve and parameters
of that curve. The initial work showed how tc¢ detect Dbecth
analytic curves EHough, 1962; Duda and Hart, 1972] and
non-analytic curves [Merlin and Farber, 1975], in the case of
binary edge 1images. This work was generalized to the detection
¢f some analytic curves in grey level images, specifically _lines
[(0'German and Clowes, 1973], circles [Ximme et al., 1975], and

"parabolas [Wechsler and Sklansky, 1977].

Recently, the Hough technique has been extended +tc the
detection of arbitrary non-analytic shapes in grey level images
[Ballard, 1979). Given an arbitrary shape, S, this generalized
Hough technique provides a mapping from the orientaticn of an
edge-element to the set of instances of S (as modified by
location, rotation, and uniform scaling) which could have given
rise to that edge-element. This mapping allows all 1local
evidence for a particular instance of S to contribute to glcbal
decisions about the figure.

This shape detecticn scheme has been implemented and tested
on a variety of artificial images and has found application in
the analysis of real aerial images. Experience to date indicates
tnat the technique is rocbust. Also, with appropriate "focus of
attenticn” mechanisms, which are present in our implementaticn,
the methed is also efficient. However, the reliable
determinaticn of edge-element orisntation Is crucial tc¢ the
success of this method.

2. Hough Technigues

All Hough techniques fcr shape detection consist ¢f the
fcllewing basic elements:

a) a local adge-element detector, Z,

b) an n-dimensicnal parameter space, P,
quantized and represented by an n~dimensional
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Accumulator Array, AA,

¢) a mapping, M, frem the information provided
by E into P (and thus AA),

d) a voting rule, V, specifying how a particular
edge-element affects the values of AA,

e) a Detection rule, D, specifying the
conditions under which a particular shape has
been detected.

Given these basic elements, shapes are found by the
following procsiure:

a) zero AA,

b) apply E everywhere in the image,

c) for each edge~element found, apply M +to
locate cells in AA. Then apply V to modify
the contents of these cells. i.e., vote for
all possible "causes" of this edge-element),

d) finally, appl D to AA (choose +the most
popular shape{.

Clearly, application of +this +technique depends on the
ability to parameterize the shapes of interest, and the
derivation ¢f the mapping M from edge-element information to
pcssible shape parameters.

Lines

The original Hough transform capitalized on the observation
that straight lines can be ccmpletely specified by two parameters
(e.g., an orientation [theta], and a distance frem the origin,
s) . What 1is more, the mapping, from a particular edge-element
position to the set of straight lines it might be a part of, is
easy tc ccmpute [Hough, 1962; Duda and Hart, 1972]. The idea is
that an actual line in the image will give rise %o many 1lccal
edge-elements, all of which will "vote" for that 1line.
Individual edge-elements will also vote for other lines, but the
"correct" line will receive the most votes.

If %he -edge-element operater, E, provides directional
information, then each edge-element maps to a unique line. Edge
elements which line up vote for "their" line, and the 1line with
the most visible edge-eclements gets the most votes. WNote that it
is not necessary for the edge-elements to be connected (er even
be near each cther) in order that their votes reinforce one
another--~they must simply be colinear.

Circles

The descripticon of circular figures in an image requires

three parameters: X, ¢, S. The location of the center of the
circle is given by <x,y> and the radius is given by 4the scale
parameter, s. Zach edge-element in the image is evidence for a

gset of <{x,y,s> triples.
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If the direction of the edge-element is unknown, then the
locus of points in parameter space representing circles which
could have created this edge-element forms a right circular cone.
In the presence of direction information, this locus is reduced
to a line [Ballard, 1979]. As with line detection, circles which
actually appear in the image will receive many votes; +those
which do not will receive few votes.

Arbitrary Shapes

The Hough technique can be extended to analytic shapes for
which the mapping from edge-element to a locus of points in
parameter space can be derived. Given certain assumptions about
the meaning of '"shape," we can also extend the technique to
arbitrary, non-analytic shapes.

Consider a particular figure (e.g., an ellipse centered at
<1,2> with 1its major axis parallel to the x-axis and of length
10, and its minor axis of length 5). Now, consider +the set of
figures which <can be produced by translating, rotating, and
uniformly scaling the original figure. For our purposes, all of
these figures have the same shape.

The parameter space which captures this notion of shape is:
P = <x,y,s,[theta]>

where <x,y> is the origin of a local co-ordinate system, s is a
scale factor, and [theta] is a rotation about <x,y>. This is the
parameter space used in our generalized Hough Transform. Note
that +the Hough-spaces developed above for lines and circles are
sub-spaces of P.

The key to all Hough %techniques is +the mapping from
edge-~clement information to a locus of points in P. We assume an
edge-~element operator which provides directicnal information. As
seen above, this directional information can drastically reduce
the image of the edge-element in P. Our mapping, M, depends
strongly on the reliability of the edge-element direction.

Consider the hyperplane of P with
(theta] = 0, s = 1.

We represent the mapping from edge-element locaticn and
orientation to figure 1locaticn directly in an "R-Table" (see
Figures 1 & 2). The orientation of an edge-element is used as an
index into this %table, where are stored a set of <x,y> vectcrs.
When added to the <x,y> 1location of the edge-element in the
image, these vectors point to possible locations for the origin
of a figure's local co-ordinate system (its reference point).
This map is easy to build, given an original master shape.

N ST
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The expansion of the R-Table mapping to cover the remainder
of P 1is performed dynamically by our voting procedure, V. This
involves rotating the edge-element orientation before using it as
an index into the R-Table, and scaling the R-Table entries thus
formed before calculating the figure's hypothesized reference
point.

3. Implementation and Experimental Results

The generalized Hough Transform described above has been
implemented and tested on a variety of artificial images and has
found application in the analysis o¢f real aerial images.
Experience to date indicates that the technique is robust, given
that the edge-element operator used to generate local evidence
for the shape can provide reliable information about edge-element
direction.

R-Tables

The R-Table defines the napping from edge-element
information (position and orientation) into a hyperplane of
parameter space. This mapping is derived from an explicit master
shape, in the form of a sequence of boundary points. Typically,
we sketch (or trace) a shape. In order to ease the pain of
carefully drawing a particular shape, we customarily sample the
master shape boundary rather coarsely and then fill ig a B-spline
fit to these points [Riesenfeld, 1973]. An arbitrary reference
point is chosen for the origin of the local co-crdinate systenm.

Now, for each ©point on the master shape boundary, we
calculate the orientation of the boundary edge-element at that
point and the vector from the boundary edge-element to the origin
of the 1local co-ordinate system. This is exactly an R-Table
entry. The current implementation of the R-Table consists of a
list of entries, tagged with the edge-element orientation,
containing a list of reference point vectors. Any scheme which
associates edge-element orientation with reference point vectors
will do.

Edge Detection

The examples shown Dbelow used a simple 3x3 Sobel
edge-element finder. In general, this is satisfactory. When, as
in one example belew, this dces not provide reliable edge-element
orientation, perfcrmance deteriorates seriously.

Detection Criteria

For the purposes of these examples, the shape found Yy the
generalized Hough Transform is determined by simply selecting the
maximum value found in a smocothed (cver a 3x3x3x3 windcw)
Accumulator Array. This does the right thing when, as in most of
our examples, the maxima in the Accumulator Array are sharp
peaks. For more problematic, noisy situations, clustering in

R
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parameter space may be required.
Artificial Images

FPigure 3a-34d illustrates a few of the features of the
experimental implementation of the generalized Hough Transform.
These artificial images provide controlled conditiens for our
testing. In PFigure 32 and 3b we see that, as expected, the
method has no difficulty in finding the central shape at
arbitrary scale and orientation (The black dots show the shape,
as drawn frem the R-Table and +the ©parameter choices which
received the wmost votes in the Accumulator Array, the central
black dect is the reference pcint.) In TFigure 3¢ we see what
appears tc¢ be the same shape, obscured by another. Figure 34
demonstrates that there is enough evidence for the desired shape
to correctly determine its location, orientation, and scale.

All of these images, of course, have very clean edges and
the 3x3 Sobel operator has no difficulty in correctly determining
edge-element orientation. By way of contrast, see Figure 4a. 1In
this image, which has been degraded by the addition of Gaussian
noise of mean zero and standard deviation ten, the edge-elements
found by the 3x3 Sobel operator are toc short, and the noise
hopelsssly jumbles the crientation information. As a result, the
generalized Hough Transform (which depends strongly on the
accuracy of edge~element orientation) is unable to 1locate the
shape. The guess shown is not much mere than that--the
Accumulator Array has no very strong peak, and we simply show the
shape instance which received +the mwmost votes in a very close
electicn.

To ameliorate the effects of noise, the image can be
smecthed prior to applying the edge operator. As an experiment,
the ncisy image of Fig. 42 was smccthed by convolving it with a
5x5 template of ones. WNext, the Hough algorithm was applied as
vefore. Fig. 4b shows that, in this case, the edge estimates
have been impreved enough so that the shape is now correctly
lecated.

Aerial Photographs

The loscation ¢f arbitrary, non-analytic shapes is nct merely
¢cf interest in artificial images such as that shnown above. The
original version ¢f the shape fcund above came from the aerial
image shown as Figure 5a. EIven the experimental version of the
generalized Heough Transform has nc difficulty in 1locating the
pond in %this image, as shown in Fig. S5b.

4. Focus cf Attention

One 2f the difficulties enccuntered in the application of
this technique to real images, for the leocation of real shapes,
is that the area searched for evidence o0f bcundaries (the
application of the edge-element detector and the mapping from
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edge-element informaticn to parameter space) and the size of the
parameter space can quickly become very large. The solution to
these problems is, of course, to attempt to focus attention where
possible.

Where to Look

One way to focus attention during the application of +this
shape-finding +technique is to constrain the area searched for
evidence of the figure's boundary [Russell and Brown, 1978;
Russell, 1979]. In a system which routinely applies an edge
operator over the entire image, this may not seem to be a

sclution (er even a problem). However, even after the
edge-elements have been found, it is still necessary to apply the
mapping tc parameter space (one per desired shape). Our

implementation includes the usual "bounding rectangle" limitation
on the area in which edge-elements are to be fcund and mapped to
parameter space. This improves performance significantly.

What to Loock Fer

The second obvious way to focus attenticon is to constrain

the objects being sought. f course, a single application of the
generalized Heugh Transform cencentrates cn the locaticon of a
particular class of shape (that defined by the R-Table). In

addition, it is usually possible +o constrain the permissible
values for some (if not all) of the parameters. Constraining the
location of the reference point is related +to the questicn of
"Where to look." Constraining the parameters of scale or rotaticn
is alsc possible, and certainly worth doing. Sometimes, the
unconstrainad search for a particular shape (such as the pond in
Figure 5) will result in almost complete informaticn about the
range of wvalues tc be considered in successive searches. For
example, once the pond has been located (in parameter space,
including location in the image, rotation and scale) map-like
knowledge about this particular part of the world would allcw the
search Zfor other shapes in the scene to be almost completely
determined. Thus, cur technigue can both generate and Ybenefit
frem such constraints.

Although our current implementation uses only a simple
"beunding rectangle" constraint on the area of the image to be
searched for boundary information, it is pcssible to cembine
information abcut the range of locations for the reference point,
scale, and rctation. When all of these are sufficiantly
constrained, then the R-Table 1itself provides pointers 1o the
leccations to be searched in the image for edge-elements.

5. Conclusion

Shape is an important defining feature o¢f many image
objects, often the only useful feature. The key ideas behind %he
Hough Transform have been extended to prcduce a shape detection
technigque which performs well in the presence of ocelusion, even
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for completely arbitrary, non-analytic shapes. As has Dbeen
demonstrated, however, the technique depends strongly on the

reliable estimation of edge-element crientation.

Figure 1: Geometry for Generalized Hough Transform.

L] B

0l 0 {r[;t—v; =%, X in B ¢(5)=0}
L | A8 {tlg.-!‘_=z<_,§inB, ¢(5)=A¢}
2 | 288 | {r[a-r=x, xinB, B)=2A8}

Figure 2: R-Table Format.
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