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Abstract

The Hough Transform is a method for detecting
curves by exploiting the duality between points on a
curve and parameters of that curve. The initial work
showed how to detect both analytic curves [Hough 1962;
Duda and Hart, 1972] and non-analytic curves [Merlin
and Farber, 1975], in the case of binary edge images.
This work was generalized to the detection of some
analytic curves in grey level images, specifically

lines [O'Gorman and Clowes, 1973], circles [.imme et
al., 1975], and parabolas rWechsler and Sklansky,
1977].

Recently, the Hough technique has been extended to

the detectic of arbitrary non-analytic shapes in grey
level images LBallard, 1979]. This shape detection
scheme has been implemented and tested on a variety of
artificial images and has found application in the

analysis of real aerial images. Experlence to date
indicates that the technique is robust with respect to
occlusions, but requires reliable edge-element
orientation determination.
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1. Introduction

Shape is an important attribute of two-dimensional figures.
In simple figure-ground binary images, the shape of the boundary
of the figure is often the only interesting feature. We take
"shape" to be a property of the entire figure, i.e., it is a
global property.

Evidence about the shape of a figure is found at the
boundary between figure and ground. Such evidence can be
generated by the application of local edge-element detectors. An
edge-element detector typically reports on the presence of an
edge-element in a small window of an image, and on the
orientation of that edge-element. Finding shapes in the image
involves combining many pieces of local evidence into a global
judgment.

The Hough Transform is a method for detecting curves by
exploiting the duality betwqeen points on a curve and parameters
of that curve. The initial work showed how tc detect both
analytic curves [Hough, 1962; Duda and Hart, 1972] and
non-analytic curves LMerlin and Farber, 1975], in the case of
binary edge images. This work was generalized to the detection
of some analytic curves in grey level images, specifically lines
[O'Gorman and Clowes, 1973], circles [Kimme et al., 1975], and
parabolas [Wechsler and Sklansky, 1977].

Recently, the Hough technique has been extended to the
4. detection of arbitrary non-analytic shapes in grey level images

[Ballard, 1979]. Given an arbitrary shape, S, this generalized
* Hough technique provides a mapping from the orientation of an

edge-element to the set of instances of S (as modified by
location, rotation, and uniform scaling) which could have given
rise to that edge-element. This mapping allows all local
evidence for a Darticular instance of S to contribute to global
decisions about the figure.

This shape detection scheme has been implemented and tested
on a variety of artificial images and has found application in
the analysis of real aerial images. Experience to date indicates
that the technique is robust. Also, with appropriate "focus of
attention" mechanisms, which are present in our implementation,
the method is also efficient. However, the reliable
determination of edge-element orientation is crucial to the
success of this method.

2. Hough Techniques

All Hough techniques for shape detection consist of the
following basic elements:

a) a local edge-element detector, 3,
b) an n-dimensional parameter space, P,

quantized and represented by an n-dimensional
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Accumulator Array, AA,
c) a mapping, M, from the information provided

by E into P (and thus AA),
d) a voting rule, V, specifying how a particular

edge-element affects the values of AA,
e) a Detection rule, D, specifying the

conditions under which a particular shape has
been detected.

Given these basic elements, shapes are found by the
following proczOure:

a) zero AA,
b) apply E everywhere in the image,
c) for each edge-element found, apply M to

locate cells in AA. Then apply V to modify
the contents of these cells .(ie., vote for
all possible "causes" of this edge-element),

d) finally, apply D to AA (choose the most
popular shape).

Clearly, application of this technique depends on the
ability to parameterize the shapes of interest, and the
derivation of the mapping M from edge-element information to
possible shape parameters.

Lines

The original Hough transform capitalized on the observation
that straight lines can be completely specified by two parameters
(e.g., an orientation [theta], and a distance from the origin,
s). What is more, the mapping, from a particular edge-element
position to the set of straight lines it might be a part of, is
easy to compute [Hough, 1962; Duda and Hart, 1972]. The idea is
that an actual line in the image will give rise to many local
edge-elements, all of which will "vote" for that line.
Individual edge-elements will also vote for other lines, but the
"correct" line will receive the most votes.

if the edge-element operator, E, provides directional
information, then each edge-element maps to a unique line. Edge
elements which line up vote for "their" line, and the line with
the most visible edge-elements gets the most votes. Note that it
is not necessary for the edge-elements to be connected (or even
be near each other) in order that their votes reinforce one
another--they must simply be colinear.

Circles

The description of circular figures in an image requires
three parameters: x, 1, s. The location of the center of the
circle is given by <x,y> and the radius is given by the scale
parameter, s. Each edge-element in the image is evidence for a
set of <x,y,s> triples.

II
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If the direction of the edge-element is unknown, then the
locus of points in parameter space representing circles which
could have created this edge-element forms a right circular cone.
In the presence of direction information, this locus is reduced
to a line [Ballard, 1979]. As with line detection, circles which
actually appear in the image will receive many votes; those
which do not will receive few votes.

Arbitrary Shapes

The Hough technique can be extended to analytic shapes for
which the mapping from edge-element to a locus of points in
parameter space can be derived. Given certain assumptions about
the meaning of "shape," we can also extend the technique to
arbitrary, non-analytic shapes.

Consider a particular figure (e.g., an ellipse centered at
<1,2> with its major axis parallel to the x-axis and of length
10, and its minor axis of length 5). Now, consider the set of
figures which can be produced by translating, rotating, and
uniformly scaling the original figure. For our purposes, all of
these figures have the same shape.

The parameter space which captures this notion of shape is:

P = <x,y,s,[theta]>

where <x,y> is the origin of a local co-ordinate system, s is a
scale factor, and [theta] is a rotation about <x,y>. This is the
parameter space used in our generalized Hough Transform. Note
that the Hough-spaces developed above for lines and circles are
sub-spaces of P.

The key to all Hough techniques is the mapping from
edge-element information to a locus of points in P. We assume an
edge-element operator which provides directional information. As
seen above, this directional information can drastically reduce
the image of the edge-element in P. Our mapping, M, depends
strongly on the reliability of the edge-element direction.

Consider the hyperplane of P with

[theta] = 0, s = 1
I

We represent the mapping from edge-element location and
orientation to figure location directly in an "R-Table" (see
Figures 1 & 2). The orientation of an edge-element is used as an
index into this table, where are stored a set of <x,y> vectors.
When added to the <x,y> location of the edge-element in the
image, these vectors point to possible locations for the origin

of a figure's local co-ordinate system (its reference point).
This map is easy to build, given an original master shape.

I--
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The expansion of the R-Table mapping to cover the remainder
of P is performed dynamically by our voting procedure, V. This
involves rotating the edge-element orientation before using it as
an index into the R-Table, and scaling the R-Table entries thus
formed before calculating the figure's hypothesized reference
point.

3. Implementation and Experimental Results

The generalized Hough Transform described above has been
implemented and tested on a variety of artificial images and has
found application in the analysis of real aerial images.
Experience to date indicates that the technique is robust, given
that the edge-element operator used to generate local evidence
for the shape can provide reliable information about edge-element
direction.

R-Tables

The R-Table defines the mapping from edge-element
information (position and orientation) into a hyperplane of
parameter space. This mapping is derived from an explicit master
shape, in the form of a sequence of boundary points. Typically,
we sketch (or trace) a shape. In order to ease the pain of
carefully drawing a particular shape, we customarily sample the
master shape boundary rather coarsely and then fill ig a B-spline
fit to these points [Riesenfeld, 1973]. An arbitrary reference
point is chosen for the origin of the local co-ordinate system.

Now, for each point on the master shape boundary, we
calculate the orientation of the boundary edge-element at that
point and the vector from the boundary edge-element to the origin
of the local co-ordinate system. This is exactly an R-Table
entry. The current implementation of the R-Table consists of a
list of entries, tagged with the edge-element orientation,
containing a list of reference point vectors. Any scheme which
associates edge-element orientation with reference point vectors
will do.

Edge Detection

The examples shown below used a simple 3x3 Sobel
edge-element finder. In general, this is satisfactory. When, as
in one example below, this does not provide reliable edge-element
orientation, performance deteriorates seriously.

Detection Criteria

For the purposes of these examples, the shape found by the
generalized Hough Transform is determined by simply selecting the
maximum value found in a smoothed (over a 3x3x3x3 window)
Accumulator Array. This does the right thing when, as in most of
our examples, the maxima in the Accumulator Array are sharp
peaks. For more problematic, noisy situations, clustering in
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parameter space may be required.

Artificial Images

Figure 3a-3d illustrates a few of the features of the
experimental implementation of the generalized Hough Transform.
These artificial images provide controlled conditions for our
testing. In Figure 3a and 3b we see that, as expected, the
method has no difficulty in finding the central shape at
arbitrary scale and orientation (The black dots show the shape,
as drawn from the R-Table and the parameter choices which
received the most votes in the Accumulator Array, the central
black dot is the reference point.) In Figure 3c we see what
appears to be the same shape, obscured by another. Figure 3d
demonstrates that there is enough evidence for the desired shape
to correctly determine its location, orientation, and scale.

All of these images, of course, have very clean edges and
the 3x3 Sobel operator has no difficulty in correctly determining
edge-element orientation. By way of contrast, see Figure 4a. In
this image, which has been degraded by the addition of Gaussian
noise of mean zero and standard deviation ten, the edge-elements
found by the 3x3 Sobel operator are too short, and the noise
hopelessly jumbles the orientation information. As a result, the
generalized Hough Transform (which depends strongly on the
accuracy of edge-element orientation) is unable to locate the
shape. The guess shown is not much more than that--the
Accumulator Array has no very strong peak, and we simply show the
shape instance which received the most votes in a very close
election.

To ameliorate the effects of noise, the image can be
smoothed prior to applying the edge operator. As an experiment,
the noisy image of Fig. 4a was smoothed by convolving it with a
5x5 template of ones. Next, the Hough algorithm was applied as
before. Fig. 4b shows that, in this case, the edge estimates
have been improved enough so that the shape is now correctly
located.

Aerial Photographs

The location of arbitrary, non-analytic shapes is not merely
of interest in artificial images such as that shown above. The
original version of the shape found above came from the aerial
image shown as Figure 5a. Even the experimental version of the
generalized Hough Transform has no difficulty in locating the
pond in this image, as shown in Fig. 5b.

4. Focus of Attention

One of the difficulties encountered in the application of
this technique to real images, for the location of real shapes,
is that the area searched for evidence of boundaries (the
application of the edge-element detector and the mapping from
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edge-element information to parameter space) and the size of the
parameter space can quickly become very large. The solution to
these problems is, of course, to attempt to focus attention where
possible.

Where to Look

One way to focus attention during the application of this
shape-finding technique is to constrain the area searched for
evidence of the figure's boundary [Russell and Brown, 1978;
Russell, 1979]. In a system which routinely applies an edge
operator over the entire image, this may not seem to be a
solution (or even a problem). However, even after the
edge-elements have been found, it is still necessary to apply the
mapping to parameter space (one per desired shape). Our
implementation includes the usual "bounding rectangle" limitation
on the area in which edge-elements are to be found and mapped to
parameter space. This improves performance significantly.

What to Look For

The second obvious way to focus attention is to constrain
the objects being sought. Of course, a single application of the
generalized Hough Transform concentrates on the location of a
particular class of shape (that defined by the R-Table). In
addition, it is usually possible to constrain the permissible
values fcr some (if not all) of the parameters. Constraining the
location of the reference point is related to the question of
"Where to look." Constraining the parameters of scale or rotation
is also possible, and certainly worth doing. Sometimes, the
unconstrained search for a particular shape such as the pond in
Figure 5) will result in almost complete information about the
range of values to be considered in successive searches. For
example, once the pond has been located (in parameter space,
including location in the image, rotation and scale) map-like
knowledge about this particular part of the world would allow the
search fcr other shapes in the scene to be almost completely
determined. Thus, our technique can both generate and benefit
from such constraints.

Although our current implementation uses only a simple
"bounding rectangle" constraint on the area of the image to be
searched for boundary information, it is possible to combine
information about the range of locations for the reference point,
scale, and rotation. When all of these are sufficiently
constrained, then the R-Table itself provides pointers to the
locations to be searched in the image for edge-elements.

5. Conclusion

Shape is an important defining feature of many image
objects, often the only useful feature. The key ideas behind the
Hough Transform have been extended to produce a shape detection
technique which performs well in the presence of occlusion, even
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for completely arbitrary, non-analytic shapes. As has been
demonstrated, however, the technique depends strongly on the
reliable estimation of edge-element orientation.

Figure 1: Geometry for Generalized Hough Transform.
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Figure 2: R-Table Format.
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