
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



CMU-CS-84-113 

Experience with the ZOG 
Human-Computer Interface System 

Dona ld L. M c C r a c k e n a n d R o b e r t M. A k s c y n 

Computer Science Department 
Carnegie-Mellon University 

Pittsburgh, PA 15213 

February 1984 

A b s t r a c t . This paper is primarily a reflection on more than eight years of research with the ZOG 

human-computer interface system. During that t ime we have experienced extensive use of ZOG. We 

begin the paper with a short descript ion of the current ZOG implementation; then we proceed to a 

higher plane to describe a general ZOG philosophy that has evolved from our experience. Following 

the philosophy, we briefly describe the applications we have explored with ZOG, including a major 

application project for the Navy. Then we provide a cri t ique of the current ZOG implementation by 

elucidating its strong and weak points. We end the paper with a brief gl impse at our plans for ZOG in 

the future. 

This paper was presented at a workshop on Intelligent User Interfaces, 26-29 October, 1983, in 

Jackson, New Hampshire. The paper is also to appear in the July, 1984, issue of the International 

Journal of Man-Machine Studies. 



Table of Contents 
1. What is ZOG? 

1.1. The structure of ZOG frames 
1.2. Interaction with ZOG 
1.3. The ZOG editor 
1.4. Act ions and agents 
1.5. History of ZOG 

2. The Philosophy of ZOG 
2.1 . General tenets 
2.2. The database 
2.3. User interaction 
2.4. Funct ional extension 

3. Appl icat ions of ZOG 
3 .1 . Some appl icat ion areas we have explored 
3.2. The Z O G / USS CARL VINSON project 

4. A Crit ique of ZOG 
4 .1 . ZOG's strong points 
4.2. ZOG's weak points 
4.3. Evidence for our beliefs 

5. The Future of ZOG 
6. Acknowledgements 
7. References 



I I 

List of Figures 
Figu re 1 - 1 : A self-describing ZOG frame 1 
F i g u r e 1 - 2 : Second self-describing ZOG frame 2 
F igu re 3 - 1 : First example Pascal code frame 11 
F igu re 3 - 2 : Second example Pascal code frame 11 
F i g u r e 3 - 3 : Mail frame example 12 



1 

1. What is ZOG? 
ZOG is a general-purpose, human-computer interface system based primarily on the concept of 

menu-selection, with a large database of menus and rapid response to selections (Robertson, G., 

McCracken & Newell, 1981). ZOG is intended to be used by both novice and expert users, providing a 

single interface mechanism that integrates all the computer funct ions needed by the user. 

1 . 1 . T h e s t r u c t u r e of ZOG f r a m e s 

The basic unit of representation in ZOG is called a frame. Originally, the notion of a frame meant a 

"structured screenfu l " , i.e., everything the user could see on the terminal screen at one time. 

Nowadays, with the advent of high-resolution screens, implementations of ZOG provide for several 

frames to be displayed simultaneously on the screen. A ZOG frame consists of a set of items of 

different types, each of which carries its own posit ioning information. These item types are illustrated 

in the self-describing frame shown in Figure 1-1 below. A typical ZOG database may contain tens of 

thousands of interconnected frames. 

IUI107 This TITLE line summarizes the frame's contents 

This TEXT expands the frame's main point of Information, but 1s sometimes 
omitted. The OPTIONS below are used to point to subordinate sections or to 
provide an enumerated expansion of the main topic. LOCAL PAOS do not have 
the connotation of leading to deeper detail, but rather to tangential points 
such as related material 1n another document or database. Invoking programs 
1s another function typically reserved for LOCAL PAOS. At the bottom of the 
frame 1s a set of general functions called GLOBAL PADS, which are made 
available at every frame. 

1. This OPTION leads to another frame 

2. OPTIONS are often used like subpolnts 1n an outline 

3.-This OPTION leads nowhere (Indicated by the minus sign at the front) 

A.-LOCAL PAOS are used to point to 
peripheral Information, or to 
Invoke programs 

edit help back next prev top goto acc mark ret zog d1sp user find Info win xchg 

Figu re 1 - 1 : A self-describing ZOG frame 



2 

1.2. I n t e r a c t i o n w i t h ZOG 

There are three types of interactions with ZOG: navigation, invoking programs, and editing. The 

default mode of interaction is navigation, in which the user makes a selection via the keyboard or 

pointing device (mouse), and the system then responds by displaying the next frame. Most selections 

lead to other frames, but some have "ac t ions" , which perform a procedural funct ion such as running 

a particular program. Finally, the user can enter the frame editor at any frame and make changes to 

the frame (if he has the requisite privileges, protection being implemented at the level of the individual 

frame). 

To be concrete, suppose the user was faced with the frame shown in Figure 1-1 and wanted to know 

more. The user might select option 2, either by moving the mouse cursor to some part of option 2 and 

cl icking a mouse but ton, or by typing the character 2 on the keyboard. Immediately, the frame would 

be replaced by the frame shown in Figure 1-2. The user might then want to go on, for example, by 

selecting option 1 of that frame. Alternatively, he might want to go back to the frame of Figure 1-1, 

which he could do by selecting the global pad b a c k . 

OPTIONS are often used like subpolnts 1n an outline IUI132 

This TEXT expands on the point made above. 
Note that 1n keeping with ZOG convention, the TITLE above 1s the same as 
the text of the option that led here from the other frame. 

1. This OPTION 1s the first subpolnt — 1t leads to yet further Information. 

2.-This OPTION makes a second subpolnt, but leads no further. 

edit help back next prev top goto acc mark ret zog d1sp user find Info win xchg 

F igu re 1 - 2 : Second self-describing ZOG frame 



3 

1.3. The ZOG e d i t o r 

The ZOG frame editor, ZED, is the principal editor for making changes to the database. It does more 

than a standard text editor, since it must deal with the substructure on the frame. For example, there 

are commands for changing the position of a selection, changing the type of a selection, adding a 

new selection, and changing what frame a selection links to. 

1.4. A c t i o n s a n d a g e n t s 

A selection in a ZOG frame can have an action associated with it. An action is a sequence of 

commands in the ZOG action language a simple programming language. This language contains 

commands for traversing the network, invoking intrinsic utilities, and entering the editor. However, the 

language also enables the user to invoke an arbitrary program. We call the programs agents, since 

typically their purpose is to perform some service on behalf of the user. In the current system, agents 

are simply Pascal programs that fol low several conventions about how they receive input and return 

output, so that they can be integrated with the basic ZOG system. ZOG's functionality is extended by 

adding new agents. 

1.5. H i s t o r y o f ZOG 

Work on ZOG at Carnegie-Mellon University (CMU) dates back to 1972. We built a precursor to the 

current ZOG system for participants in a cognit ive science summer workshop, to allow them to easily 

use a wide variety of computer systems by providing a uniform interface. After the workshop, we 

shelved ZOG because 300 baud terminal technology was inadequate. We rekindled work on ZOG in 

1975, after we became familiar with the PROMIS system at the University of Vermont -- a menu system 

based on rapid-response terminal technology, applied to the task of hospital management (Schultz & 

Davis, 1979). Our research goal was to understand in some generality the characterist ics of large-

network, rapid-response menu systems. 

In 1980 we felt that ZOG was sufficiently mature to be tested in the real wor ld. So we embarked on a 

major ZOG application project -- to bui ld a computer-assisted management system for the Navy's 

newest nuclear-powered aircraft carrier, the USS CARL VINSON (Newell, McCracken, Robertson & 

Akscyn, 1981). This was a joint project between the ZOG Group at CMU and the officers of the CARL 

VINSON. It was unconventional because it attempted to transfer the results of university research 

directly into an operational environment. The development phase of the project ended in March, 1983, 

when the CARL VINSON left on her first deployment with a distr ibuted ZOG system running on a 

network of 28 powerful personal computers (PERQs). 



4 

2. The Philosophy of ZOG 
The ZOG system is based on a broad set of principles that we have come to call the ZOG Philosophy. 

This philosophy is a disti l lation of our experience with ZOG over the years. Some of the principles are 

general ones that we subscribed to before our work on ZOG, but most of them have evolved from our 

experience with ZOG. The principles provide a good descript ion of the essential features of ZOG. 

They also can be interpreted as requirements that must be satisfied by an ideal ZOG implementation. 

We begin with some general philosophical tenets about the design of a human-computer interface, 

and then describe the three major components of the philosophy: the database, user interaction, and 

functional extension. 

2 . 1 . Gene ra l t e n e t s 

T o t a l e n v i r o n m e n t . There should be a single environment with a single human-computer interface, 

in which the user can accomplish all of his various comput ing tasks. This avoids dealing with the 

idiosyncracies of many different user interfaces when switching from one program to another. 

F l e x i b l e , e f f i c i e n t t o o l . The human-computer interface should be a flexible, efficient tool , not an 

active intell igence. Thus, there is no mystery about the workings of the interface - it is under the total 

control of the user. Any intell igence the system may contain is in " f rozen" form, i.e., in the content 

and structure of the viewable knowledge base. The place in such a system for active intell igence is at 

the subsystem level (e.g., as ZOG agents), not at the top level. 

D i r ec t m a n i p u l a t i o n of d a t a . The user should be able to work with visual representations of data 

stored by the system, and be able to operate on that data incrementally with commands whose effect 

is immediately displayed (Shneiderman, 1983). 

S e m i - a u t o m a t i c o p e r a t i o n . When a user needs to do something with the system that it is not 

specifically adapted for, it should be always possible to fail back to manual use of its general-purpose 

facilities. This gives the system a real robustness as it is pressed into new uses. When funct ions are 

used frequently, they can be automated by adding special purpose programs. 

Low l e a r n i n g o v e r h e a d . It should be easy to learn how to use the system, so that it can be used by 

people for whom the computer is only a tool to help them perform their real job. Many people are 

subject to such time pressure in their jobs that they cannot afford a large investment in learning to 

operate a computer system, even if the system would prove very helpful once learned. 



5 

Sa fe , e x p l o r a t o r y e n v i r o n m e n t . The system should provide an environment where it is safe to 

explore and learn by doing - where there are no dangerous, irreversible actions that a user might 

stumble onto. The concept of an exploratory environment is described in some detail by Carroll 

(1982). 

2 . 2 . The d a t a b a s e 

A major component of a ZOG system is its database, which is somewhat different from the tradit ional 

notion of a database. The fol lowing principles govern the design of the database: 

La rge s i ze . The database architecture should be able to accomodate hundreds of thousands of 

frames without adversely affecting the responsiveness of the system. This translates into a 

requirement for large secondary storage devices with a minimum capacity of around one bill ion bytes. 

S h a r e d by m u l t i p l e u s e r s . The database should accomodate simultaneous use by many different 

users, so that it can provide a simple but r ich means of communicat ion among the users. Locking 

should be provided at the frame level to prevent users from editing the same frame at the same time. 

G e n e r a l i t y of r e p r e s e n t a t i o n . The database should be general in the sense that it can represent 

arbitrary textual and graphical information (though the current ZOG system supports only text). Thus, 

one can represent objects as varied as research articles, one-page letters, Pascal programs, and 

budgets. 

N e t w o r k s t r u c t u r e s . The database should have a network structure in which data items can be 

linked to other data items in the database. 

T r e e s t r u c t u r e s . Although the database can represent arbitrary network structures, there should be 

a strong preference for the representation of tree structures. This is largely a convention for the way 

frames are interconnected when built. However, the system should support a dist inction between 

selections on a frame that point to lower levels in a tree versus selections that are "cross-references" 

to frames not within the tree structure. In ZOG, there is such a dist inct ion: options are the "tree 

select ions", and local pads are the "cross-references". 

M e n u s . The use of menus of selectable items should be ubiquitous - the database should contain 

nothing but menus. Menus may contain "pu re " information items (like short paragraphs or points in 

an itemization) as well as items that lead to other frames or have associated actions. This allows 

graceful growth of the database, as pure information items are expanded to link to new frames 



6 

containing more detailed information. 

M u l t i - l e v e l o r g a n i z a t i o n . The database should have the fol lowing four levels of organization: 

• At the bottom level, there is substructure on single data items e.g., a name component 
or value component of a data item. (In ZOG this is supported only by embedded text 
conventions). 

• One level up from the bottom there are single data items a multi-line unit of text (a 
phrase or paragraph), or a graphical entity (line or picture). 

• One level up from single items are col lect ions (menus) of items. This is the unit of display 
to the user (a frame in ZOG). 

• At the top level, there are functional groupings of menus (called subnets in ZOG). The 
menus in the col lect ion often have a common structure taken from a schema menu that is 
copied when they are created. 

De fau l t v i e w . A default view of the data should be provided that organizes the tree structures in a 

breadth-first fashion, with a frame being a node in the tree. This view contains explicit posit ioning 

information that determines how the frame will be displayed to the user. Representation of the 

database on secondary storage is optimized for efficient access to the default view by storing all the 

items of one frame together. Other views of the data must be produced by processing the breadth-first 

representation. 

2 . 3 . User i n t e r a c t i o n 

The ZOG philosophy also makes a major commitment to a particular style of interaction between the 

user and the system, as indicated by the fol lowing principles: 

M e n u s e l e c t i o n . Almost all interaction with the system should be done by making selections from 

the currently displayed menus. The exceptions are using the editor, plus the few cases where the user 

is prompted for a simple response, such as the identifier of a frame to be displayed. Even creation of 

new frames is tr iggered by selection of menu items that do not yet lead to other frames. 

Fast r e s p o n s e . Response of the system to a user selection should be fast. For the normal case 

where the selection simply results in the display of another frame, response should be well under one 

second. For standard video display terminals, this means that transmission speeds must be 9600 baud 

or better. The fast response requirement has strong implications for the implementation: when a 

frame is retrieved and displayed, there is no t ime to dynamically compose the display by gathering 

data from many locations in the database. 



7 

B r o w s i n g . The default mode of the system should be browsing through the network of l inked menus. 

This dist inguishes the system from most other database systems, which require that a query be 

formulated to access data. 

A c t i v e s e l e c t i o n s . In addit ion to l inking to other frames, selections should have actions associated 

with them, which are executed whenever the user chooses the selection. There is a set of common 

utility funct ions provided by the system, along with a simple language to express sequences of these 

funct ions as selection actions. One of the functions provided is to call arbitrary programs that have 

been integrated within the system (see the discussion of functional extension below). 

No h i d d e n s e l e c t i o n s . The currently visible functions should be the only functions available to the 

user. For example, there should be no hidden keyboard commands that a user has to remember. This 

means that users can rely totally on their recognit ion memory, i.e., their ability to recognize that a 

particular selection they see displayed will provide the desired funct ion. 1 

C o m m o n c o m m a n d s . Some common commands are of such general use that they should be 

available on every frame. In the ZOG system these are called global pads. The ideal number of such 

command selections is probably around twenty. If there are fewer than twenty the user's efficiency 

may be impaired because of the extra time to access common functions; more than twenty and the 

frame becomes too cluttered and confusing to beginners. 

Ed i to r . There should be a general editor that operates on individual frames and is always available as 

one of the common command selections. 

No s c r o l l i n g . Frames should not be permitted to grow larger than the size of the available display 

space, and thus there should be no funct ions for scrol l ing the information within a single frame. This 

piece of philosophy is one that dist inguishes ZOG from most other systems that provide similar 

funct ions. It is motivated largely by a desire for simplicity and by the need for all available functions to 

be visible. There are, of course, occasions where one must represent a linear data structure that is 

too large to fit on a single frame (though in our experience these are rare). In these cases, one can 

either introduce extra levels of h ierarchy, 2 or simply link frames together in a linear sequence. 

1, 
e x c e ^ r ^ r—-y in the editor. But an editor may re t i re 

structure for efficient ex^r tu J 9 h ° ' ' n t e r a C , i ° n a n d 3 , a i r , y w i d e a n d f l a t c ° " ™ n d 



8 

2 .4 . F u n c t i o n a l e x t e n s i o n 

A ZOG system needs more than just a database with an interface it needs some mechanism for 

extending the system to provide new funct ions for the user. The fol lowing principles describe how 

this is done: 

M a p p i n g d a t a s t r u c t u r e s . The first step in adding a new application to the system should be to map 

the data structures of the new application into frame formats and interconnection structures within 

the database. Frames can be used as record structures, with individual items being fields in the 

record. The interconnection structure of frames can be used to represent hierarchical relationships, 

and to create access paths (indexes) to stored data. 

I m b e d d e d p r o g r a m s . Programs that are needed to implement new funct ions are written in a special 

way that allows them to be imbedded within the system, so that they can be used without having to 

leave the system. These agents can be invoked within the system via active menu selections. 

E n v i r o n m e n t f r a m e s . Agents are invoked and control led from special frames called environment 

frames, which contain slots for all the input parameters for the agent and slots for the agent to store 

output values. 3 There is a special editor (the slot editor) for environment frames that provides for 

efficient fil l ing-in of the agent's input slots. The slot editor does type-checking on input values and 

allows values to be selected from a menu where appropriate. There is a special menu item on the 

environment frame that, when selected, causes the agent to begin execut ion. 

F r a m e s fo r i n p u t / o u t p u t . Agents directly access frames in the database to get input data. (The 

environment frame would typically have an agent input slot that contains a pointer into the 

appropriate area of the database). When agents need to produce large data objects as output, they 

simply create frame structures in the database, which are then available to the user in permanent 

form. 

3. Applications of ZOG 
From the very beginning, our work on ZOG has often been driven by particular applications. We 

wouldn' t wish it any other way, because we believe that real applications are the best breeding 

grounds for new research ideas. In the early days, we attempted to apply ZOG to our own 

professional needs for project management and for teaching ZOG to new users. In recent years, we 

^ h i s scheme is an adaptation of the environment mechanism developed for the CMU Cousin system (Hayes & Szekely, 
1983). 



9 

have devoted most of our effort to developing the USS CARL VINSON application. Although it took us 

away from our norma, research lives, it proved to be an excellent source of new discoveries about 
ZOG 

3 . 1 . S o m e a p p l i c a t i o n a r e a s w e have e x p l o r e d 

Below we list some general categories of applications we have worked on, along with a brief 

descript ion of how ZOG has been used in each. 

D a t a b a s e s y s t e m s . One of the major funct ions that ZOG provides is storage and retrieval of 

information. ZOG can therefore be viewed as a database system that uses the "network" data model. 

On the storage side, ZOG allows users to grow the database one frame at a time, using any existing 

frame as a departure point (much like expanding a network of roads into the countryside). The 

databases that have been constructed using ZOG range from small personal databases to large 

project databases. Most of the frames in these databases were created directly by users, but in some 

cases agents were used to automate the frame-creation process. For instance, a frame development 

system called BROWSE partially automated the construct ion of a library database in ZOG frame form 

(Fox & Palay, 1979). 4 On the retrieval side, ZOG provides navigation commands (some of the global 

pads) which enable the user to traverse the network. These commands permit users to browse in an 

unfamilar database and progressively acquire a model of its contents and structure. 

M a n a g e m e n t i n f o r m a t i o n s y s t e m s . We have accumulated some meaty experience with ZOG as a 

management information system. For several years, we have been using a ZOG database to manage 

the ZOG project. This database contains all of our documents, software, reports, schedules and many 

other types of project-related information. The ZOG database for the CARL VINSON can also be 

viewed as a management information system, since its primary purpose is to help the Commanding 

Officer and his department heads administer the ship. 

I n s t r u c t i o n / t r a i n i n g . ZOG has been used as a training system in several capacit ies: (1) providing 

on-line help; (2) as a guidance system for using other on-line systems by shielding users from the 

idiosyncracies of a particular interface; and (3) as an index and control mechanism for a videodisc 

player. 

D o c u m e n t m a n a g e m e n t . We have used ZOG as a document product ion environment by mapping 

4 

BROWSE began with an already existing bibliography database separate from ZOG, and provided a way to automatically 
construct ZOG frames from the bibliography entries, along with indexing frames that provided access to the entries according 
to a standard classification scheme. 



10 

5This paper itself was created totally from within ZOG. As a result, its style is decidely more structured and "chunky" than is 
the normal case. Some of us believe this is a good thing; others may reasonably disagree. 

the natural hierarchical structure of documents into trees of ZOG frames. ZOG can then be used as a 

kind of tree-structured document editor. We also developed an agent that traverses the tree of frames 

and transforms the structure and content of those frames into a form suitable as input to a document 

formatting system (in this case Scribe). This provides a means for automatically producing high-

quality hardcopy documents from ZOG frames, without having to explicitly provide most of the 

formatting commands. 5 

S o f t w a r e m a n a g e m e n t . ZOG has also been used as a programming environment. The programmer 

represents code in frames, after which another special agent is applied to the frames to generate a 

compilable version of the code in a file. By equating the notion of a frame with the notion of a block in 

block-structured programming languages, ZOG provides a natural environment for a top-down, 

stagewise approach to developing code. Most of the code for the ZOG system itself is now in frames, 

along with various data structures associated with software development, such as change logs, bug 

reports, old versions, design notes, and user guides. Figure 3-1 shows a sample frame of Pascal code 

from the middle of an agent called AgOld. Note that each statement is a separate opt ion, and that 

options 3 and 4 both lead to other frames (no after the " . " ) . Figure 3-2 shows the frame that option 

4 leads to. Note that the B E G I N and E N D around the two statements are implicit - they are added by the 

agent that writes the code to a file for compilat ion. 



11 

{ Change/add 0. Old local pad on the ORIGINAL frame ) IUI133 

l.-OpnF(PushFn.FPX); { Open the original frame for Unking to copy } 

2.-SelP :- GPadF(FPX,'V,S1gPad); { Get pointer to \. Old 1f exists } 

3. IF SigPad THEN { Re-11nk existing local pad } 

4. ELSE { Add new local pad with COPY as next frame } 

5.-ClsF(PushFn,FPX); { close the frame for modification } 

t. Parent 

top of AgOld 

t help back next prev top goto acc mark ret zog d1sp user find Info win xchg 

F igu re 3 -1 : First examplePascal code frame 

lELSE { Add new local pad with COPY as next frame } IUI136 

1,-SelP :- CrPadF(FPX,'V,'Old*,22t2tS1gSpace); { Create needed local pad } 

2.-IF SlgSpace THEN RFnSel(FPX.SelP.CopyFn); { Set next frame to COPY } 

+ . Parent 

top of AgOld 

t help back next prev top goto acc mark ret zog d1sp user find Info win xchg 

Figu re 3 - 2 : Second example Pascal code frame 

E l e c t r o n i c c o m m u n i c a t i o n . We have used ZOG for various forms of electronic communicat ion 

such as electronic mail and bulletin boards. In ZOG, electronic communicat ion occurs in a manner 

quite different from conventional electronic communicat ion systems. "Ma i l " messages are placed on 



12 

ZOG frames according to topic, so that all messages on a certain topic can be viewed together. Each 

message does not have to re-establish context as it would if part of a series of unrelated messages. In 

other words, ZOG provides logical coherence for mail messages. Figure 3-3 shows an example of an 

actual interchange of several mail messages between two Navy officers ("cvmdf" and "cvml r " ) over a 

five day period. 

Mail: Flying time for mdf IUI134 

l.-M1ke: Please schedule max flying for Tuesday and Wednesday, and 
possibly Thursday afternoon. [cvmdf 9/8/81] 

2.-It turns out the best bet 1s to go with VR66, get your name 
on a yellow sheet and spend the day flying on a C-9 going 
from place to place. I may join you on one of these expeditions 
and we can spend the whole day working "in the air", [cvmlr 9/8/81] 

3.-Sounds great...will you please make arrangements with VR66? [cvmdf 9/8/81] 

4.-Scratch option 2 Its only for flight surgeons. It looks like 
VRC40 1s now best bet. There's no need to schedule 1n advance 
just show up.[cvmlr 9/9/81] 

6.-Mark, I just remembered, I will be 1n Maneuvering Board School 
next week.[cvmlr 9/9/81] 

6.-I will also be working an option at VA42 to go flying in the afternoons 
at Oceana after school. We'll see 1f we can't work something out where 
I pick you u0 and take you too. [cvmlr 9/12/81] [cvmdf 9/12/81] 

edit help back next prev top goto acc mark ret zog d1sp user find Info win xchg 

F igu re 3 - 3 : Mail frame example 

3 . 2 . The Z O G / USS C A R L VINSON p r o j e c t 

As mentioned in the introductory sect ion, the Z O G / USS CARL VINSON project was a joint project 

between the ZOG researchers at CMU and the Captain and crew of the USS CARL VINSON. The 

project officially began in early 1980. In early 1983, a complete ZOG-based application system was 

installed on board the ship, running on 28 PERQ computers connected via an Ethernet network. The 

system provided a transparent, distr ibuted database of ZOG frames (initially over 20,000 frames), with 

access times of about 0.6 seconds for frames residing on the local disk, and 1.2 seconds for frames 

on remote machines. There were over 30 agents (application programs) that provided, in conjunct ion 

with the basic ZOG system, four main application funct ions: 

Sh ip O r g a n i z a t i o n a n d Regu la t i on M a n u a l . One of the original project goals was to represent the 

Ship Organization and Regulation Manual (SORM) in a ZOG net, so that its contents could be 

accessed on-line. The CARL VINSON'S SORM had not yet been writ ten. Thus ZOG was used as a 



13 

document product ion environment for developing the SORM. A major objective for the SORM was to 

make its contents usable not only by human users, but also by agents (management application 

programs). 

I n t e r a c t i v e t a s k m a n a g e m e n t s y s t e m . Since the responsibilities section of the SORM is quite 

structured, agents can be used to support task management. In simple terms, tasks described in the 

SORM are copied and their generic portions are instantiated to reflect the particulars at hand (times, 

people, etc.). These specif ic structures are then used to track the status of these tasks and generate 

reports of various types. An example task is "gett ing underway"; this task resembles a space launch 

countdown, with hundreds of synchronized subtasks occurr ing over a three day period. 

T e c h n i c a l m a n u a l s . A function that was added to the original project agenda was the development 

of on-l ine technical manuals for the aircraft and weapons elevators. Here, as with the SORM, new 

manuals were needed. The manuals were produced within ZOG by personnel from the shipbuilding 

company, as well as members of the crew. In addit ion, the on-line version of the manual was 

integrated with videodisk material. Embedded in relevant places throughout the on-line manual are 

ZOG selections that control an adjacent videodisk player to play specific portions of the disk. 

User i n t e r f a c e f o r A i r P l a n . Another funct ion not in the original plan was an interface to an expert 

artificial intell igence system called AirPlan.6 AirPlan assists the Air Operations department in the 

launch and recovery of the ship's aircraft. One of AirPlan's functions is to alert decision makers when 

currently available options are soon to disappear (for example, that a given airborne plane will go 

below the requisite fuel for flying to an alternate landing site). ZOG provides an interface to AirPlan for 

both input and output. The slot editor provides an efficient means for updating AirPlan on the state of 

the wor ld. Output from AirPlan is sent to ZOG and displayed in frames that any workstation on the 

network may access. An incremental display feature was added to ZOG so that incremental changes 

to these output frames are highlighted; this reduces the cognit ive overhead of identifying what 

information on the display has actually changed. 

4. A Critique of ZOG 
In our long experience with ZOG, we have been on the lookout for strengths and weaknesses that 

have appeared as we have pushed ZOG in new directions. In the fol lowing two sections we present 

the major strong and weak points of ZOG, each with a brief elaboration. A third section summarizes 

the sources of evidence that support our analysis of strong and weak points. 

The expert system itself was developed by another group of researchers at CMU, headed by John McDermott. 



14 

4 . 1 . ZOG's s t r o n g p o i n t s 

We believe that ZOG has many strong points; in fact, it has often surprised us (even with our 

understandable optimism) how well ZOG has adapted to the many demands we have made of it. The 

most important of the strong points are described below: 

Robus t e n o u g h to be pu t i n to o p e r a t i o n a l use . Compared with other types of research interfaces, 

such as natural language interfaces, ZOG is extremely robust. This is because of its simplicity and its 

openness. Many new tasks can still be performed, though perhaps awkwardly at first, even if they lie 

outside the capabilit ies of existing ZOG agents. 

Easy fo r c o m p u t e r n o v i c e s to l e a r n a n d use . Computer novices can learn to do basic ZOG 

navigation in under a half hour. Learning enough of the ZOG editor to add new material in a 

reasonably effective manner takes about another two hours. 

• 

Use rs do no t o u t g r o w ZOG as t h e y b e c o m e e x p e r t . As users gain experience, they seem to 

become progressively more attached to ZOG. Several aspects of ZOG seem to account for this 

phenomenon: (1) the system's high response rate makes menu selection competit ive with a command 

language interface; (2) experts tend to use a much broader range of funct ions than novices, and thus 

appreciate the fact that ZOG eases their memory burden; and (3) the capacity of the database to 

absorb multiple indices allows experts to develop addit ional structures that make their use more 

efficient. 

Can a s s i m i l a t e and i n t e g r a t e m a n y d i f f e r e n t a p p l i c a t i o n s . ZOG has demonstrated that it is 

capable of assimilating and integrating a wide range of applications. We believe this is primarily due 

to the generality of ZOG frame structures for representing information of all kinds. 

S u p p o r t s d a t a b a s e b r o w s i n g . ZOG provides good support for browsing because of its rapid 

response and the network structure of its database. The ability to search a database by query 

methods is strongly dependent on having a model of what information the system contains. Browsing 

provides a means for a user to start searching with minimal a priori knowledge, yet the user can 

exploit what he learns about the database over t ime. In ZOG, the user's knowledge of the contents 

and structure of the database is cont inuously reinforced through use. 

S u p p o r t s l a rge d a t a b a s e s . The structure of the database is such that there is no limit to the size 

ZOG can operate with, except for those limits inherited from the hardware or operating system levels. 

Consequently, the maximum size of the database is a function of the collective size of secondary 



15 

memory. In a distr ibuted system with many nodes this size can be extremely large, but then the 

bandwidth of the network may begin to degrade system response. 

Can e x p l o i t s c h e m a s fo r b u i l d i n g d a t a b a s e s . A schema is essentially a chunk of ZOG data (e.g., 

a single frame or a tree of frames) that contains variable parts; a schema can be instantiated by 

copying it and then providing constant values for the variable parts of the copy. Schemas aid in the 

building of a number of data objects that have some common parts. In ZOG, a simple schema 

mechanism is provided through the ability to copy a schema frame when a new frame is created, or to 

copy whole trees of frames. Ramakrishna (1981) developed more elaborate schema mechanisms for 

ZOG and studied their use experimentally. 

Can be u s e d as t h e so le i n t e r f a c e (shel l ) f o r an o p e r a t i n g s y s t e m . ZOG has the capability to 

assimilate all the utility funct ions normally associated with an operating system shell. Single selection 

actions can invoke simple utilities, and environment frames can be used for utilities with several 

parameters (essentially revising the utilities to behave as ZOG agents). 

Has a s i m p l i f i e d m o d e l of w i n d o w use . In the PERQ version of ZOG, there are three windows 

(two for frames and one for messages), f ixed in size and in location. The need to maintain multiple 

active working contexts, which is often solved by al lowing arbitrary numbers of overlapping windows, 

is satisfied in ZOG by navigating among the different contexts in a single ZOG window. This simplified 

model may have some real virtues such as ease of learnability. 

Has a s i m p l i f i e d m o d e l of m u l t i p l e p rocesses . . There is only a single ZOG process that interacts 

directly with the user. All other processes are simply background processes running agents, which 

operate on the ZOG database but do not need to communicate directly with the user. This is a simpler 

model than the common one where each process has its own display window, and can potentially 

interact with the user independently of the other processes. 

Can be u s e d as an i n t e r f a c e m e c h a n i s m fo r v i deo d i s c s . Video discs are wonderful devices for 

storing visual material, but they lack any structured way of gaining access to the stored images 

there is simply a flat sequence of tens of thousands of images. ZOG frames can be built to provide 

structured access to the material, with special actions on ZOG frames that can call up particular 

images or motion scenes. 

Can m a k e good use of a p o i n t i n g d e v i c e (mouse) . Because of the high proport ion of selection 



16 

operations by the user, ZOG is well suited for using a pointing device such as a mouse. 7 This is 

especially true of ZOG's editor since posit ioning the cursor and reposit ioning items are frequent 

operations. 

Can e x p l o i t d i s t r i b u t e d s y s t e m s . We have come to appreciate ZOG's ability to exploit the positive 

features of distr ibuted systems while shielding the addit ional complexity from the user. ZOG's 

implementation of the distributed database allows a user to think in terms of a large, single database 

and not worry about which machine particular frames are on. Furthermore, the user need not be 

aware which machine on the network is actually executing an agent the user invoked. 

S u p p o r t s a c o m m u n i t y of c o m m u n i c a t i n g u s e r s . A large, shared database provides a 

"commons" in which users can jointly develop and share data, rather than simply exchange it. This is 

important to the individual user because his ability to assimilate information far outstrips his ability to 

generate it. Large, interesting databases can only be built by many hands. 

4 . 2 . Z O G ' s w e a k p o i n t s 

Below are the weaknesses of ZOG that we have become aware of: 

ZOG s a c r i f i c e s e f f i c i e n c y of p a r t i c u l a r a p p l i c a t i o n s to get i n t e g r a t i o n . Because ZOG is 

attempting to be all things to a user, compromises must be made when fitt ing an application into the 

ZOG structure. The ZOG data structures for an application are usually less efficient in both t ime to 

process and space than they would be for an application system built for that special funct ion. Also, 

accomplishing some application funct ions may take more steps in ZOG than in a specialized 

implementation, because more general, and hence less powerful, operators are being used. 

ZOG does no t s u p p o r t a f as t d a t a b a s e q u e r y l anguage . The ZOG database is represented on 

secondary storage as text files for flexibility parts of the database can be easily backed up or moved 

from one system to another, and standard text editors can be used on the database in emergency 

situations. There is thus a substantial overhead incurred in "pars ing" and "unpars ing" frames for 

internal system use. 

I n e x p e r i e n c e d u s e r s c a n ge t los t . When a user faces a large, complex ZOG database that he is 

unfamiliar with, there is a strong possibility that he may become disoriented. (See Mantei (1982) for a 

We explored the use of touch screens, but learned that users found them inaccurate and inconvenient. In our opinion, the 
mouse is a clear winner over all other positioning devices for use with ZOG. 



17 

study of disorientation in a ZOG database specially constructed for experimental purposes). 

However, it has been our experience that this problem is not nearly as severe as we once feared, 

partly because ZOG has adequate means to find your way again once you have become lost. 

B iased t oo m u c h t o w a r d b r e a d t h - f i r s t v i e w . ZOG frames store information in a "breadth-f irst" 

fashion, and thus the user is forced to operate exclusively with this form. There are, however, t imes 

when other views of the data (e.g., depth-first, as with typical hardcopy) would be more appropriate to 

the user's momentary needs. 

ZOG d e p e n d s too c r i t i c a l l y on t h e s p e e d of t h e d i s k t e c h n o l o g y . ZOG needs to access a few 

thousand bytes from secondary storage within every response cycle. This puts a stringent 

requirement on the access t ime of the disk hardware and the overhead of the file system software. 

Flexible disk (" f loppy") drives are too slow; inexpensive hard disks are barely adequate. 

C a n ' t r e p r e s e n t a l l s t a t e s of a c o m p l e x , u n o r d e r e d t a s k e n v i r o n m e n t . A complex, unordered 

task is the proper domain for a rule-based system, where the individual rules can freely apply in any 

order as the current situation dictates. Attempting to create a decision tree with ZOG frames to 

analyze some dynamic situation runs into diff iculty because of the unpredictable order of state 

changes, causing a combinatorial explosion in the size of the requisite ZOG structure. 

C a n ' t h a n d l e h i gh l y d y n a m i c d a t a . ZOG cannot cope with situations where many updates to the 

database are required every second, particularly if the updates are widely spread throughout the 

database. This is due to the fact that data is updated in frame-sized chunks, rather than in smaller 

units, and the overheads in reading and then rewrit ing a frame are substantial -- a second or two on 

the PERQ. 

Lack of g r a p h i c s a n d m u l t i p l e f o n t s . ZOG was originally developed for terminals that did not 

support graphics and multiple fonts. When we moved ZOG to PERQs for the CARL VINSON, we took 

the conservative route of emulating character terminals rather than exploit ing the PERQ graphics 

capability. There is no fundamental reason why these capabilit ies could not be added to ZOG. 

ZOG c a n n o t be u s e d ove r s t a n d a r d t e l e c o m m u n i c a t i o n l i nes . Transmission rates of 1200 baud, 

which are the norm for dialup phone connect ions, are simply too slow for proper use of ZOG 

-- experts become impatient at those speeds. Even 9600 baud is barely adequate for experts. 



18 

4 . 3 . E v i d e n c e fo r o u r b e l i e f s 

The strong and weak points listed above are of course not simple facts they are merely our beliefs. 

However, they are the product of a substantial body of experience with ZOG, both in the university 

environment and on board the USS CARL VINSON. Below, we discuss four different aspects of this 

experience: our own use of ZOG, use by the Navy, laboratory experiments, and instrumentation of 

the system. 

Our o w n use of ZOG. Our primary source of beliefs about ZOG is our own use of the system over 

the past six years. The early years saw rapid iteration on the ZOG design, with relatively little serious 

use of the system for applications. Then dur ing 1978 and 1979 we made a serious attempt to 

coordinate the management of the ZOG Project (involving about 10 people altogether) by using ZOG 

to hold status information, discussion of issues, meeting notices, and other information of general 

interest to project members. When we began the CARL VINSON project in 1980, we again attempted 

to use ZOG for project communicat ion, but this t ime with the added twist that some of the project 

members were located in Newport News, VA. We were more successful this t ime, partly because the 

remoteness of some project members made other means of communicat ion more difficult, and partly 

because we had more comput ing cycles available and faster communicat ion lines. During the course 

of the VINSON project, we expanded our use of ZOG into document and software management, and 

actually reached a point where several of us used ZOG for nearly everything we did throughout the 

workday. For the three-year period beginning in October, 1980, there were over 200,000 sessions of 

ZOG use on our VAX version - and by the middle of 1982, most ZOG use had shifted from the VAX to 

PERQs, for which we don' t have session counts. 

Use on b o a r d t h e C A R L VINSON. Use of ZOG by members of the CARL VINSON crew began in late 

1980 with the use of a VAX at CMU over leased phone lines. This usage cont inued fairly steadily for 

two years, with six terminal lines available for most of that period. The main activity, besides project 

communicat ion, was the building of databases that the ship would use dur ing cruise the SORM and 

the two elevator technical manuals. More than 20,000 frames were created on the ZOG VAX for later 

transfer to the ship's PERQ system. In early 1982, the ship used a prototype version of the 

management application software on the ZOG VAX to produce several large management schedules 

for the ship's operation, such as the Builders' Trials. Then, beginning in March, 1983, the ship had the 

completed ZOG system available, although there were still many hardware and software problems 

being ironed out. We know that there were at least 500 sessions of ZOG use on board dur ing April 

and May, but most of the usage was limited to a small subset of the total of 28 PERQs. By the end of 

September, usage had increased considerably, with about 30 serious users and involvement by 

85-90% of the ship's departments. 



19 

L a b o r a t o r y e x p e r i m e n t s . From the beginning, we have viewed ZOG as a vehicle for research in the 

psychology of human-computer interaction. We created a special laboratory where we could do 

control led experiments of people using ZOG. One of our main interests has been to study how people 

use ZOG to learn how to use ZOG, so we do have some basis for beliefs about ZOG being easy to 

iearn. We have also studied use of the ZOG editor extensively. One specific experiment evaluated the 

speed of expert use of the ZOG editor, with the result that ZOG compared unfavorably with several 

other commonly used editors, such as a Wang word processor (Robertson, C , McCracken & Newell, 

1981 ). 8 Another specif ic study compared the t ime to learn the ZOG editor against data on eight other 

editors, and showed that ZOG's editor is in the middle of the range of ease of learnability (Robertson 

& Akscyn, 1982). This study also compared different teaching tools: a human teacher, an on-line 

tutorial , an on-l ine manual, and an off-line manual; results indicated that on-line and off-line manual 

users take about the same time to complete a standard instruction sequence, but off-line manual 

users use the editor more effectively at the end of the sequence. 

S y s t e m i n s t r u m e n t a t i o n . Both the VAX and PERQ versions of ZOG have been instrumented to 

save statistics for each session of use. These statistics summarize the activity of the session with 

information such as number of frames viewed, number of frames edited, distr ibutions of t imes spent 

viewing each frame and edit ing each frame, which subnets were visited, and so on. Originally we 

planned to use the data to instruct the iterative development of the system; however, on the CARL 

VINSON the data is also being used for an official Navy evaluation of ZOG use on board the ship. 

Al though we have done some spot analysis of the statistics, a systematic attack on this great mass of 

data still lies ahead. 

5. The Future of ZOG 
There is now work going on outside CMU to create a fol low-on to ZOG called KMS (Knowledge 

Management System). KMS is designed to remedy many of the shortcomings of the ZOG 

implementations, and specifically to make full use of the potential of high-resolution display 

technology. Some of the features of KMS that represent improvements over ZOG are the fol lowing: 

• Graphics (lines, rectangles, curves, picture images) and multiple fonts. 

• Greater use of the point ing device to specify objects and parts of objects to operate on, 
and screen cursor images to provide feedback of the current system context. 

• Direct output of good quality hardcopy (no need for a separate formatting system that 

Q 

^ , h ^ ° G ' S C d i t 0 r i S d U e f ° r r e P | a c e m e n t - b a s e d ^ it is on old editor techology that is clearly inferior to the new oreCQ ot screen editors. 



20 

operates as a post-processor). 

• Copying material easily across frame boundaries. 

• Addit ional intrinsic views of the database - specifically, a depth-first view. 

• Closer integration of the editor with the rest of system, to make edit ing seem more 
natural, rather than a special mode that one is continually entering and leaving. 

Despite the years of work on ZOG, we still see many rich possibilit ies wait ing to be explored. We have 

only scratched the surface of some of the ZOG applications we have worked on, and there are many 

potential applications as yet untouched. We are particularly interested in advancing the use of ZOG 

as a high-quality documentat ion environment, and as a programming environment, since these are 

tools that can greatly enhance our own daily work. 

6. Acknowledgements 
We wish to acknowledge the contr ibut ions of many people over the years. Those who have been 

involved with ZOG at CMU: Allen Newell, George Robertson, Kamila Robertson, Elise Yoder, Sandy 

Esch, Patty Nazarek, Angela Gugliotta, Marilyn Mantei, Kamesh Ramakrishna, Roy Taylor, Mark Fox, 

and Andy Palay. Those officers from the USS CARL VINSON who worked with us at CMU: Mark Frost, 

Paul Fischbeck, Hal Powell, Russ Shoop, and Rich Anderson. Captain Richard Martin, Captain Tom 

Mercer, and other off icers and crew of the USS CARL VINSON. And finally, Marvin Denicoff f rom the 

Office of Naval Research, our original ZOG research sponsor. We would also like to thank Elise Yoder 

for her extensive comments on this paper. 

This work was supported by the Office of Naval Research under contract N00014-76-0874. It was also 

partially supported by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 

3597, monitored by the Air Force Avionics Laboratory under contract F33615-78-C-1551. The views 

and conclusions contained in this document are those of the authors and should not be interpreted as 

representing the official policies, either expressed or implied, of the Office of Naval Research, the 

Defense Advanced Research Projects Agency, or the U.S. Government. 

7. References 
Carroll, J.M. (1982). The adventure of gett ing to know a computer. IEEE Computer, pp. 49-58 

(November). 

Fox, M. & Palay, A. (1979). The BROWSE system: an introduct ion. Proceedings of the Annual 

Conference of the American Society of Information Science, Minneapolis (October), pp.183-193. 



21 

Hayes, P. & Szekely, P. (1983). Graceful interact ion through the COUSIN user interface. International 

Journal of Man-Mahine Studies, 1 9 , pp. 285-305. 

Mantei, M. (1982). A Study of Disorientation Behavior in ZOG, PhD thesis, University of Southern 

California. 

Newell, A., McCracken, D., Robertson, G. & Akscyn, R. (1981). ZOG and the USS CARL VINSON, 

Computer Science Research Review, Carnegie-Mellon University, pp. 95-118. 

Ramakrishna, K. (1981). Schematization as an Aid to Organizing ZOG Information Nets, PhD thesis, 

Computer Science Department, Carnegie-Mellon University. 

Robertson, C.K. & Akscyn, R. (1982). Experimental evaluation of tools for teaching the ZOG frame 

editor. Proceedings of the International Conference on Man/Machine Systems, Manchester, UK 

(July). 

Robertson, C.K., McCracken, D. & Newell, A. (1981). Experimental evaluation of the ZOG frame editor. 

Proceedings of the 7th Canadian Man-Computer Communications Conference, Waterloo, Ontario 

(June), pp. 115-123. 

Robertson, G., McCracken, D. & Newell, A. (1981). The ZOG approach to man-machine 

communicat ion. International Journal of Man-Machine Studies, 14 , pp. 461-488. 

Schultz, J . & Davis, L. (1979). The technology of P'ROMIS. Proceedings of the IEEE, 6 7 , (September), 

pp. 1237-1244. 

Shneiderman, B. (1983). Direct manipulat ion: a step beyond programming languages. IEEE 

Computer, (August), pp. 57-69. 


