Experiences Gamifying Developer Adoption
of Practices and Tools

Will Snipes
ABB Corporate Research
Industrial Software Systems
Raleigh, NC USA
will.snipes@us.abb.com

ABSTRACT

As software development practices evolve, toolsmiths face
the continuous challenge of getting developers to adopt new
practices and tools. We tested an idea with industrial soft-
ware developers that adding game-like feedback to the devel-
opment environment would improve adoption of tools and
practices for code navigation. We present results from a pre-
study survey of 130 developers’ opinions on gamification and
motivation, usage data from a study with an intact team of
six developers of a game on code navigation practices, and
feedback collected in post-study interviews. Our pre-study
survey showed that most developers were interested in gam-
ification, though some have strong negative opinions. Study
results show that two of the six study developers adjusted
their practices when presented with competitive game ele-
ments.

Categories and Subject Descriptors

D.2.9 [Software]: Software EngineeringManagement [Pro-
ductivity]

General Terms

Management, Economics, Human computer interaction

Keywords

Development, Productivity, Code Navigation

1. INTRODUCTION

Sascha is a developer with years of experience maintaining
code, who knows how to navigate through code fairly well.
Sascha heard about some other navigation tools, but kept us-
ing the built-in features of the Visual Studio Integrated De-
velopment Environment (IDE) mainly out of habit. When
Sascha’s company started a game around code navigation in
Visual Studio, he became interested in being a part of the

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ICSE °14, May 31 — June 7, 2014, Hyderabad, India

Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2768-8/14/06 ...$15.00.

Anil R. Nair
ABB Corporate Research
Industrial Software Systems
Bangalore, India
anil.nair@in.abb.com

Emerson Murphy-Hill
NC State University
Computer Science
Raleigh, N.C. USA

emerson@csc.ncsu.edu

fun. Sascha tried the code navigation tools and practices
that were part of the game and soon found himself at the
top of the game’s leaderboard. After participating in the
game, Sascha used the new practices more often and felt
recognized for his achievement.

Toolsmiths and researchers are continuously finding ways
to improve the work of software developers. However, as new
practices and tools become available, developers like Sascha
may not be motivated to start using them unless they in-
teract with a peer developer who promotes them [14]. Of
course they are intrinsically motivated to improve, but ur-
gent demands interfere with experimenting using new tools
and they become less efficient than otherwise possible. Thus,
we need to both communicate with and motivate developers
like Sascha to start using new tools.

One option for motivating people to adopt new practices
is to apply elements of game mechanics or “gamify” the prac-
tice. Gamification is the incorporation of game elements into
an activity that people do not typically consider a game [1].
We envisioned a tool in our prior work that would moti-
vate developers by providing constant feedback and allow-
ing them to compare their improvements to how their peers
are doing [22]. This tool, called Blaze, creates a competitive
game with continuous feedback on how well the developer
adopts the improved practice. The more they change their
practices to adopt new techniques or tools, the higher they
score in the game.

Would software developers writing serious software be mo-
tivated by this gamification concept? To answer this ques-
tion, this work contributes an assessment of developers’ re-
sponse to game-like elements tied to their use of new tools
and practices. We assess 130 developers’ response and rele-
vant concerns about the idea of gamification through a web-
based survey. As a research study, we piloted the Blaze
tool that introduces game elements focused on improving
navigation practices to developers using Visual Studio. De-
velopers’ reactions to gamification were mostly positive with
a few detractors, and results of the study show that game
elements influence some developers, but have no effect on
others’ use of tools and practices.

The rest of this paper is organized as follows: Section 2 re-
views results from the pre-study survey validating the accep-
tance of gamification with developers, Section 3 contains the
design considerations for developing the Blaze tool/game,
Section 4 gives the study design for attempting to influence
developers‘ work patterns with Blaze, Section 5 results from
the study and post-study survey, Section 6 covers related

work, Section 7 discusses threats to validity, and Section 8
has our conclusions.

2. PRE-STUDY SURVEY
2.1 Pre-study Background

We conducted an assessment survey questionnaire to de-
termine whether the developer community in ABB would
be receptive to a gamification approach to software devel-
opment. ABB is a multi-national corporation and estab-
lished leader in power and automation technologies that en-
able utility and industry customers to improve performance
while lowering environmental impact. The developer sur-
vey received over 130 responses from software developers at
ABB.

2.2 Pre-study Survey Results

A consulting firm, Saatchi and Saatchi, use a question in
a survey that is often cited in gamification initiatives. This
study reuses this question [18] tailoring it to software devel-
opment by asking “How interested they would be in working
for a company that incorporated some aspects of games into
software engineering tools as a way to increase productiv-
ity in the workplace”? Results are segmented by country in
Figure 1 and found gamification of software engineering is
more interesting to developers in India, Poland, and Finland
than in other major countries. The responses indicate 74%
of developers in India, Poland, and Finland were at least
somewhat interested, while the US, Sweden, and Switzer-
land had slightly lower interest in applying gamification to
their work.

Comments from participants reflected a more interesting
controversial reaction than these measurements might oth-
erwise indicate. A developer from India said “Gamification
is a juvenile way of getting programmers to do something
that you want.” A different respondent expressed a general
concern that “Gamification of best practices can have nasty
side effects.” Another participant said “there is already high
a level of competition between software development teams.”
indicating they are under considerable pressured to get the
work done. Another developer reacted with a statement
that expresses a positive intrinsic motivation “I am using
practices and tools because I want to do my job well’,” indi-
cating that gamification was unnecessary to motivate people
to improve.

On the positive side, a developer from Poland said, “In
a previous work place we had a ’game’ between develop-
ers - scoring broken/unbroken builds and new /passed/failed
tests. It was helping to improve quality and it worked well.
[It is] recommended especially for junior developers. ” Other
comments indicated competition or points are acceptable “as
long as it doesn’t interrupt or slow down my work. ”

The Figure 1 compares the overall response from our sur-
vey to the Saatchi and Saatchi survey [18] upon which this
question was based. Our results land on both sides of the
75% mark reported by the Saatchi and Saatchi study.

We asked developers how likely they would be to try tools
and practices recommended to them through an automated
usage tracking system. Answers showed 95% of the devel-
opers surveyed are likely to try the recommended tools and
practices. Thus, a recommendation system would positively
impact the deployment of software engineering tools and
practices at ABB.

Interest in Working for a Company That Uses Gamification

|
SE
us B Not Interested at All
CH H Not Very Interested
FI ® Somewhat Interested
PL Very Interested
Extremely Interested
IN ‘

-50% 0% 50% 100%

Figure 1: Acceptance of gamification

Comfort with Sharing Data

Non-Anonymous
B Anyone

= My Company
B My Team
Selected People

Anonymous
Nobody

T T T T T 1

0% 20% 40% 60% 80% 100%

Figure 2: Comfort with sharing usage information

Another question was whether sharing detailed usage in-
formation with colleagues and the company as a whole would
be a concern for developers. The question provided a grad-
uated scale for the scope of who data was shared with and
divided the questions between whether sharing was anony-
mous or not. Figure 2 shows, as the community with which
the data is shared gets smaller, more developer are comfort-
able with sharing the data. If we take scope as the main
concept, and limit the sharing to “My Team”, we can say
that 90% of respondents are comfortable with sharing ei-
ther anonymous or non-anonymous data if the scope of data
were limited to “My Team”. Developers were less comfort-
able sharing with anyone (the category for people outside
ABB) particularly if the data was not kept anonymous. The
first conclusion from these questions on sharing data is that
people are very willing to share information that could help
their team. Second, sharing within the company is accept-
able with anonymized data.

We asked developers what would motivate them to use
tools and practices and gave them four choices to rank. In
Figure 3, we see that 75% of respondents ranked coworker
recommendation in 1st or 2nd place. Of several comments,
a developer in Sweden captured the following scene, “[The]
most motivating [thing] is when a new practice / tool is
discussed during a continuous improvement meeting or even
coffee break, where one co-developer tells about the benefits
and there is a joint discussion on where it (tool or practice)
could be best applied.”

The second ranked motivator for using tools and practices,
“Team Goal”, shows the survey response of “It elevated my
team'‘s achievement level in a game among software engi-

Ranking Motivators for Using Tools and Practices

Coworker ‘ ‘
Recommendation ‘ ‘

Team Goal = Ist place

1 ‘ ‘ ‘ ® 2nd place

Management Mandate 3rd place
1 ‘ ‘ ‘ 4th place

Badges
\ | | |

0% 20% 40% 60% 80% 100%

Figure 3: Motivation for using tools and practices

neering teams at ABB.” This response indicated that 47%
of developers would be motivated to use new tools and prac-
tices if that helped their team in a competition between de-
velopment teams.

Just behind team competition is management mandate
where developers would be asked to follow specific practices
by the organization. The lowest was having badges posted
on their social network profile where 32% ranked this in 1st
or 2nd place. Badges and management mandate received the
most negative written comments in the survey. A developer
from the United States captured the lower opinion of badges
that several participants expressed “I am motivated because
ABB allows me to choose the tools that best work for me.
A badge will not really do anything for me.”

The respones on this question, supported by findings in
[4,13,14], influenced the development of the studied game
to include a competitive leaderboard and a common recom-
mendation contest to influence ABB developers to change
their practices.

In another question, developers ranked several actions that
they would like to receive awards for. Overall 68% of devel-
opers ranked receiving an award for consistently performing
quality practices as either 1st or 2nd place. Thus, providing
awards to developers for using good practices would moti-
vate developers to do them consistently.

To summarize, the high-level conclusions from each key
question are:

e 95% of developers responding would try tools and prac-
tices suggested by an automated recommendation sys-
tem

e Developers are motivated by collaboration and team
goals more than mandates and individual awards

e Awards for good quality development practices ranked
highest

e Over 90% of respondents approved of sharing data
with their team members

Thus, this pre-study survey provided a positive indicator for
going forward with a software engineering tool focused on
sharing developer data and rewarding developers for using
good practices and tools.

3. GAME DESIGN

Learning from the pre-study findings, we implemented a
game-like tool for developers to use in Visual Studio. The

tool focused on motivating the adoption of good practices
by including elements of games in the development environ-
ment. This section describes the selection of a practice suit-
able for gamification, considerations for designing the game,
and competitive elements in the game.

3.1 Select a Practice

We defined the first criteria for selecting a practice based
on prior work applying gamification to other domains out-
side software development. In their paper on game design
patterns, Hamari et al. stated that assigning achievements
to required tasks reduces intrinsic motivation because player
autonomy is reduced by the achievements [6]. Thus we
avoided selecting practices like bug fixing or task comple-
tion because they are simply requirements of the job.

Another criteria imposed by the instrument limits us to
practices performed entirely in the IDE so they can be mon-
itored using Blaze. Potential practices for gamification in-
clude test-driven development, refactoring tool use, debug-
ging practices, navigation practices, eliminating static anal-
ysis bugs, and frequent configuration management submis-
sions.

Frequent configuration management submission and static
analysis bug elimination are highlighted in this paper’s re-
lated work section with prior gamification studies in class-
room environments. Johnson and Kou achieved automated
monitoring of test-driven development practices with Zorro
[8] thus may provide a candidate for future gamification ap-
plication. Refactoring tool use also has studies that make it
a good candidate for gamification [11,15].

Studies of developer effectiveness by Robillard et al. [17]
(discussed in Related Work 6) identify structured navigation
as a practice more effective developers use when maintain-
ing programs. Structured navigation is the use of navigation
commands and tools that follow or represent the structure
of the code. Using structured navigation provides a shortcut
that confirms the existence of and affirms the mental model
the developer has of the code. Robillard et al.‘s experi-
ment [17] showed developers who maintain mental models
and navigate structurally are more effective than other de-
velopers when given the same maintenance task and code
artifacts. Structured navigation fits the requirements of a
practice contained in the IDE, shows benefits, and is not
specifically assigned task for a developer. Thus we selected
structured navigation as the practice to demonstrate gami-
fication.

3.2 Design the Game

To setup the game, the Blaze tool provides an XML config-
uration file where the researcher can configure Blaze to cate-
gorize and assign points to the commands that are part of a
software engineering practice. Blaze allows the researcher to
define multiple command category levels. Thus we can cat-
egorize commands as navigation then further classify them
into structured and unstructured navigation.

To evaluate whether developers improved their practices
for structured navigation we established a metric, Naviga-
tion ratio, as the number of structured navigation events in
a session or period of time over the number of unstructured
navigation events. Our hypothesis is that instant feedback
from points combined with game information would result
in an increase in the navigation ratio for developers in the
study.

Structured navigation events included:

e Navigate To (Ctrl+,) is a fuzzy search interface that
lists identifiers matching the selected string

e Go To Definition (F12) brings up the code that defines
the selected identifier

e View Call Hierarchy (Ctrl+K Ctrl+T) provides a two
way analysis of an identifier’s dependencies and uses

e Class View (Ctrl+W, C) provides a browser and search
function for classes and class hierarchy

e Find All References provides a list of lines that refer-
ence an identifier

e Navigate to Event Handler in the XAML editor shows
the event handler for an object

e View Class Diagram generates a class diagram

e View Object Browser is a search tool and browser

Unstructured navigation events included selecting a file
in an explorer window or selecting the tab for a file, using
arrow and page up/down keys to go up/down through a file,
scrolling, clicking on a file element, and using any of the
built-in find commands such as “Find in Files” or “Quick
Find”.

To evaluate developers® use of recommended tools in Vi-
sual Studio, we categorized them by their tool name. As part
of the study, we wanted developers to learn about and adopt
the Sando search tool. Sando is part of the recommended
developer tool suite for ABB and supports structured navi-
gation using code search [19].

Gamification practices consider the feedback of achieve-
ments and points as critical to a successful outcome. The
design of achievement awards should gradually encourage
the participant to reach higher and higher levels of success
in the activity. Achievements must feel earned to the par-
ticipant so they recognize the effort to get the award was
significant and feel satisfied [6]. Hamari and Eranti describe
a general relationship between achievements in games and
regular game play. Achievements in games typically create
a parallel scoring system to the main game play. They make
the game more engaging by providing multiple ways to in-
crease your score and multiple challenges in one interface.

Considering these guidelines, we assigned one point for
each use of structured navigation commands while unstruc-
tured navigation commands received zero points. We gave
additional emphasis to using the Sando search tool by as-
signing ten points for each use. To create levels following
the guidance from Hamari [6], we applied an exponential
curve based on points scored. Users initially “level up” after
working a day or two; the next level may require a week’s
work to achieve as the difficulty increases. We designed the
points and levels so above average developers can pass all
levels during the study period.

By selecting an intact team for the study, we hope to lever-
age aspects of motivation such as the Leaderboard to spur
feelings of competition between teammates. The leader-
board allows developers to see their own score in relation
to the top five people on the team. However, the other
participants’ identifiers are auto-generated as three capital
letters assigned based on their position on the leaderboard.
Not knowing who of your colleagues was ahead of you could
reduce motivation, but this avoids one potential source of
conflict in an intact team.

Blaze Window s w M 3 N Blaze Window
Leaderboard

Your Info Your Info |}

Player Scove
Points 2331 AAL 1890 -

Info
. Level 2 BEE 45=

My || ooe 2as o

Figure 4: Blaze Tool Window

4. STUDY DESIGN

Utilizing the continuous monitoring capabilities of Blaze,
we designed the study to conduct a longitudinal study of
the effect of Blaze on developers’ navigation practices. The
Blaze tool revealed information about navigation in three
stages of one week duration each. A post-study survey gath-
ered developers’ opinions of Blaze and some confounding
factors that could influence results.

4.1 Intervention Staging

The key research objective was to determine whether we
can drive adoption of a practice through gamification. As
previously discussed, we designed the game in Blaze to in-
fluence developers towards using more structured navigation
practices. We constructed the interventions during the study
to roll out in stages each week they use the tool. This al-
lowed us to establish a baseline and determine the changes
as the study continued.

In the initial stage, participants were informed of the pur-
pose of the study, and what to expect from the Blaze tool.
The participants installed the tool in their Visual Studio
environment. During this stage, Blaze did not present a
window for them to see and simply collected data in the
background.

After a week’s data collection marking the end of the
first stage, Blaze started to automatically pop-up a win-
dow containing a button for a web page with information.
The page included a link to download Sando and informa-
tion about using Sando in a video demo. The sub-page on
navigation contained a page of tutorial on the built-in struc-
tured navigation commands in Visual Studio. The “About
Blaze” page contained details of the point scoring system
and background on Blaze’s purpose. The usefulness of the
communication site is rated as part of our post-study survey.

In the third stage, developers received instant feedback
from Blaze on the points they accumulated during the de-
velopment session. The tool’s appearance at this stage is
shown in Figure 4. The “Info” button provides a level in-
dicator via colored contents and activates a chart display
window when clicked. Points shows the points accumulated
for the developer’s history. Level is the level of the game
achieved based on an exponentially growing curve. The de-
veloper could click on the Leaderboard tab to see how their
scores compared with the others in the study. This final
configuration remained as the display until the end of the
study.

4.2 Study Participants

As mentioned in Figure 1 from our survey, the acceptance
of gamification is highest in India. Hence, we conducted
this study with an intact team of 6 developers working in an
R&D facility in India on a large industrial software system.

Initially, we met the whole team along with the management
staff to explain the research project and the Blaze tool we
developed. We explained the aim of the study, what data is
collected, and how the data would be processed and man-
aged.

It was important to gain the confidence of the partici-
pants that their data were kept confidential so their activi-
ties would be as close as possible to real-world. If the par-
ticipants felt like they are being tracked and the data would
identify them to their peers or managers, then they may
refuse to participate or deviate from their normal develop-
ment style.

We assured the team about the confidentiality of the data,
and the management reassured them that the data collected
by the research group will not be used for any other purpose
other than the study. Developers were asked to volunteer for
the study by their management, however, managers did not
know who participated in the study. Their names and data
were kept confidential to ensure that no one apart from the
research team knows he/she is participating in the study.
To distinguish individuals in the data each user is assigned
a generated unique ID. Developers could chose to share the
unique ID with us or keep it confidential. All were willing to
share their unique ID with us during the follow-up feedback
sessions.

Management wished to have no knowledge of who was par-
ticipating and took great care to remain detached from the
study proceedings. Data at this level of detail has not been
collected in ABB development organizations. Researchers
were careful to create the system where developers controlled
whether we could associate their identity with their data,
and fortunately management bought into the necessity for
participant anonymity.

4.3 Study Survey

The goal for the study follow-up survey was to collect
feedback on the tool and the effect it had on the developers’
navigation practices and knowledge. The survey questions
were segmented into portions that evaluate prior and post
knowledge of navigation practices, key steps in the study
itself, the influence of game elements on their navigation
practices, typical tasks and demographic information.

To find out whether Blaze increased developers’ knowl-
edge of structured navigation commands, we asked them
to rate their knowledge of structured navigation commands
prior to the study on a 1-10 scale. Then we asked them to
contrast their knowledge after the study to assess what they
learned.

The other key question is did Blaze have a perceived ef-
fect on their navigation practices. Here too we asked them to
rate how much they used structured navigation prior to the
study using a 4 choice rating of “not at all”, “some”, “many
times”, and “as much as possible”. Then we asked whether
they used structured navigation commands “about the same
amount”, “more”, or “a lot more” during the study. These
two questions assessed their perceptions of structured nav-
igation command use. We compared the answers with the
usage data collected from Blaze.

The final assessment questions tested whether using Blaze
influenced their attention to navigation commands by asking
how much specific game elements influenced their practices.
The responses available were “not at all”, “a little”, “some”,
and “a lot”.

Influence of Game Elements

Navigation Indicator

) mALot
Point Score
‘ H Some
A Little
Lederboard
Not at All

J
0 1 2 3 4 5 6
Number of Participants With Rating

Figure 5: Influence of Feedback Elements

The other questions included whether they reviewed the
training materials on structured navigation commands, in-
stalled the Sando code search tool, and what types of de-
velopment tasks they would consider using structured navi-
gation for in general. Another demographic question asked
how well they know the code they work in rated from “I work
in code that I wrote”, “I maintain code that I am familiar
with”, to “I recently learned the code”.

5. RESULTS
5.1 Study Survey Results

We conducted an in-person post study survey in order
to cross check the quantitative data from Blaze with devel-
opers’ perception of their practices and their demographic
information.

The study survey queried developers’ relevant demographic
data to help understand some differences in results. We
asked developers to provide their years of experience so we
could evaluate any effects experience might have. The devel-
opers in the study had between 7 and 14 years experience.
One developer who dropped out of the study said their lower
level of experience compared to their peers influenced their
decision to stop participating.

We asked developers to rate their knowledge of the code
they maintain. Four of the six developers reported they
maintain code that they wrote, while the two most experi-
enced developers maintain code that they recently learned.
One developer reported during our individual feedback ses-
sions that working in code they know well affects their navi-
gation practices leading them to use more unstructured nav-
igation.

On the assessment of prior structured navigation knowl-
edge, half of the participants replied they had very good
prior knowledge about structured navigation and they use
structured navigation “as much as possible”. The other half
of the participants rated their prior knowledge of structured
navigation as good and reported that they use it “some”
of the time. Of the three developers who rated their prior
knowledge and use of structured navigation higher, two of
them had the highest point scores of the group.

The chart in figure 5 shows how the individual feedback
features influenced developers to think about using struc-
tured navigation. Four out of six developers said the leader-
board influenced them “a lot”, and all rated the leaderboard
as having at least “a little” influence. Three out of six said

their individual point score influenced them “a lot”, and all
said the score had at least “a little” influence. The element
with mixed ratings was a graphical indicator on whether
they were improving over past use of structured navigation
commands. The indicator received the influencing “a lot”
rating from two participants and a “not at all” influence rat-
ing from one participant with the rest having at least “a
little” influence. The results indicate the more obvious and
more clearly comparative information in the leaderboard was
the strongest influence for developers.

The participants requested that Blaze provide more feed-
back on tips to help them increase their score. They indi-
cated that more obvious feedback, such as hints that pop-up
when they launch the tool, would help them more than pas-
sively provided information. Their desire for personal met-
rics and historical views of the data encourages us that this
detailed level of measurement and analysis is perceived as
helpful. Features to meet these requests are part of future
work.

5.2 Study Data Observations

Blaze logs events from actions the developer takes or ac-
tions from Visual Studio itself. The event is basically a GUI
event managed with Visual Studio by event handlers reg-
istered with the application to listen for the event. Blaze
becomes a global event handler listening for all events by
registering for them in Visual Studio.

Blaze records key attributes along with each event in vi-
sual studio. The log captures a time-stamp for each event
normalized to GMT. The name of the event provides a low-
level classification. The event type reflects an internal clas-
sification in Blaze. An optional field for Artifact Reference
captures data such as the fileename being edited and the
currently selected line number. An anonymized unique iden-
tifier for each Blaze user allows us to investigate differences
between developers.

To assist in log analysis, Blaze classifies the events into
categories for related activities such as navigating, editing,
building, debugging, testing, and using a known tool. Each
event name maps to a category from the list and sub-division
of the navigation category separates structured navigation
from unstructured navigation.

In another processing step, Blaze aggregates events along
the time-line into sessions. A session, similar to episodes
defined by [9], is an abstract concept grouping multiple
events into a sequence with a beginning and an end. Of the
many possible ways to define sessions, we chose to define edit
sessions to contain all the events that transpire between edits
of different files. When the developer edits a file different
from the file last edited, all the events after the last edit to
the previous file are included in the new session for the new
file. For example, the developer edits file A, then navigates
through files B and C finally landing at line 100 of file D
where they make another edit. All the events between the
edit of file A and the edit of file D are considered part of the
edit session ending with the edit of file D. When this edit
is followed by multiple edits to file D, the additional edits
are included in the same session ending with the edits to file
D. Events transpiring between edits may involve activities
not considered as edit related such as building and testing.
This session definition allows us to quantify how much time
in each category of events elapses before the developer edits
another area of code. Although not at the method level,

this way of generating sessions is similar to how Robillard
et al. generated sessions based on located methods for their
study [17].

5.2.1 Observations About Drivers of Edit Session Du-
ration

We selected navigation as the subject of the Blaze study
because it was identified by Robillard et al. [17] as correlated
with developers who effectively completed a maintenance
task. In this analysis, we ask whether we are focusing on
the right area of developers’ activity in Visual Studio.

In order to test whether navigation is an important area to
address, we construct a hypothesis that using unstructured
navigation is an important factor in developer productivity.
Edit session duration, we assert by opinion, is a factor re-
lated to developer productivity though there are many other
factors we could consider. With the data available from
Blaze, we can explore the categories of events correlated
with the duration of edit sessions over the study period.

Using Weka [5], we performed an attribute selection pro-
cess to identify the most significant attributes related to edit
session duration. The attribute search method we chose was
Greedy Step-wise search, which selects attributes based on
their correlation with the target, and stops adding attributes
when the next attribute decreases the correlation. Defining
the attributes as the sum of developer time spent by cate-
gory in each edit session, the top 5 out of the 15 possible
categories ranked by this process are as follows:

1. Unstructured navigation

2. Debug - events from running the debugger
3. Edit - events that modify the code
4

. Other Actions - other events in visual studio that we
do not sub-classify

5. Build - events from running a build

To determine the correlation with edit duration, we used
R [16] to construct a linear regression model for unstruc-
tured navigation. The linear model found a positive cor-
relation with unstructured navigation with a p-value <.001
on 1694 degrees of freedom. The model had an Adjusted
R-squared of 0.64 showing a good portion of the variation
in edit duration is explained by the unstructured navigation
category.

This analysis shows we cannot disprove that unstructured
navigation is correlated with edit duration, thus we conclude
it is an important factor in developer productivity.

5.2.2 Observations on Navigation Ratio

During the study, we staged the deployment of informa-
tion feedback to developers so they would first have access to
learn about structured navigation and then get instant feed-
back in the form of points for using structured navigation
commands.

To evaluate whether developers use more structured nav-
igation when they receive instant feedback, we monitor the
change in navigation ratio over the study period. We ex-
pected developers learning about navigation commands and
tools that count towards the score would begin using the
practices more during the second week. In the third week,
we turn on points feedback and the leaderboard expecting
this will encourage developers to use more structured navi-
gation.

Navigation Ratio Across Developers by Week

<
S
S o
- '
o
o :
il
&
<8 |
Lo
@ R
2 |
>
@
=z
S
IS
o '
o —_— —_
o
T T T T T
1 2 3 4 5
Week
Developers n=6 n=4 n=4 n=4 n=5

Figure 6: Navigation Ratio by Week

We observe visually in Figure 6, that the navigation ratio
did not increase significantly from the beginning to the end
of the study. We evaluated the week over week differences
using a Wilcoxon Rank sum test [7] comparing week one to
week two and week one to week three. In week two, when
the developers were able to learn about structured naviga-
tion commands, there was no significant change. Also in
week two, two developers were not providing data. One was
working in another environment and returned to the study,
while the other dropped for the rest of the study. In week
three there was a slight increase in the mean, however the
increase is not significant. Weeks four and five follow the
formal period of study show the navigation ratio continues
in a similar range. Overall, we did not see a significant ef-
fect towards increasing navigation ratio for the interventions
Blaze provided to the environment.

5.2.3 Observations on Points

The developers using Blaze received feedback in the form
of points given for using structured navigation commands
and using the Sando search tool [19]. Per the study design,
the points display was disabled until the third week following
installation to establish the effect of instant feedback apart
from other information. The points display and the naviga-
tion arrow were enabled in the third week to test whether
the instant feedback was successful in driving increased use
of the targeted features. During the first two weeks shown
in Figure 7, developers were fairly consistent in their use
patterns. With the introduction of the points feedback, two
developers’ points accumulation spiked in week three due
mostly to increased use of Sando. We informed develop-
ers at the beginning of the study that Sando usage would
receive ten points and using built-in structured navigation
commands would receive one point.

In these results, we see an effect from the points display
in Blaze in week three when the developers could see their

Points Per Week Across Developers

100
1

Points
60
|

40
o

o _|
N '
i

o - i

T T T T T

1 2 3 4 5

Week
Developers n=6 n=4 n=4 n=4 n=5

Figure 7: Average Points per Day by Week

points feedback for the first time. We conducted a Wilcoxon
Rank sum test on points similar to the way we did for nav-
igation ratio to determine significance. Across developers,
the difference is not significant at the .05 level. The p-value
for week two against week three is .19, and for week one
against week three it is .31. We do know from feedback dis-
cussions and usage data that two developers took notice of
the points and used Sando more in the third week. Their
use of Sando continued at a lower level in weeks four and
five. The effect of points feedback is greater than navigation
ratio during week three because of the additional emphasis
of the ten point bonus given for Sando usage. Results from
our post-study survey where at least half the developers said
the points and leaderboard influenced them “a lot” also sup-
ports our conclusion that two developers were influenced by
the game elements in Blaze.

5.2.4 Post-Study Feedback Discussions

Following our data analysis, we conducted one-on-one feed-
back sessions with the participants. Before initiating the dis-
cussion, we assured the individual developer that the data
shared with them is confidential and we will not share the
same with management. The participants received the feed-
back in the form of one-on-one presentations of quantitative
charts and written analysis of the information. The key
quantitative chart shown in Figure 8 compared their distri-
bution of time in each category to the median for the group.
The categories were identified based on what would be most
relevant to the developer where some categories match find-
ings in the Weka analysis in section 5.2.1. The “Actions”
category identified by Weka is omitted in the chart because
it is a collection of events not categorized at a level useful
for developers. The category for structured navigation shows
the practice we are trying to encourage as the opposite of
the more common unstructured navigation practice.

We discovered during these feedback sessions that devel-

Time per Edit Session by Category

] I]
Unstructured
> Structured L
@ .
% Edit _ Median | |
© Debug _ =D
Build h
0 0.2 0.4 0.6 0.8

Percent of Time

Figure 8: Developer Analysis Against Median

opers did not spend the entire time in their desktop environ-
ment because they had a virtual machine environment avail-
able for testing. Thus categories like testing and debugging
were affected by whether they used the virtual environment
or their desktop for these activities. Because those categories
are not part of navigation, they are not discussed here. Due
to this, there are some instances where developers have no
activity recorded on some days.

One developer’s build effort and the underlying build fre-
quency was much higher than the group median, see Figure
8. We asked the developer to explain how building more
frequently helps them. By doing more frequent build, (s)he
is trying to ensure the correctness of the work completed so
far. The developer feels like (s)he resolves the bugs faster
with frequent builds because the code and logic is fresh in
her memory. If they build less frequently, even though it re-
duces the build effort, there are more bugs each time and the
developer often spends more time in identifying the problem
area than fixing it. Hence the developer feels more frequent
builds improves her productivity.

In another case, we observed a higher level of unstruc-
tured navigation than median and asked the developer to
explain. Even though they agree structured navigation is
better than unstructured navigation, (s)he prefers unstruc-
tured navigation in some specific instances. The developer
is the author of the code and (s)he knows the code com-
pletely. “I know that the line I need to fix is in XYZ method
and it is four blocks down from where I am currently. It
takes much less time for me to reach the fix location using
unstructured navigation. If the code is not written by me,
I will prefer structured navigation.” This instance cautions
us to gather information on aspects such as code familiarity
and developer experience with the product when assessing
the results of a navigation study.

Developers also reiterated how they expected a different
experience from Blaze such as immediate prompts to suggest
navigation commands within the context of what they are
working on. This contradicts some developers’ comments
from the pre-study survey that indicated interruptions from
a game would be distracting and unwelcome.

In the feedback, we shared a set of achievement badges
tied to specific navigation commands with developers. De-
velopers said badges would both inform and motivate them
to use some specific tools or commands. This contradicts
a result from the pre-study survey where respondents rated
badges last in their influence motivating them to improve.

The difference in this opinion may result from the context
where developers, when presented with badges, see how badges
serve as both a feedback mechanism and guidance on the
commands for improving their score and practices.

6. RELATED WORK

The two areas of related work we discuss are research stud-
ies using other monitoring methods and studies applying
gamification to other areas.

6.1 Monitoring Practice Studies

Robillard, Coelho and Murphy explore hypotheses around
how developers can be more effective at performing a main-
tenance task [17]. Robillard et al. say developers are more
successful finding and fixing bugs when they create a de-
tailed plan for implementing a change, use structured nav-
igation with keyword search or cross-reference search, and
only review methods once during their search. We build
on their work by testing methods for increasing the use of
structured navigation in developers’ everyday practice.

Johnson and Kou defined Zorro [8], a system for detect-
ing whether developers use Test Driven Development tech-
niques based on data from Hackystat, a monitoring frame-
work developed by Johnson. Zorro divides development ac-
tivities into episodes delimited by events such as configu-
ration management code check-in, start of a unit test run,
or start of a build. Using the distinct events developers
follow within these episodes, Zorro determines whether the
episode followed Test-Driven Development practices in their
prescribed order or a different order. In two student-based
studies comparing Zorro classifications with a simultaneous
observational screen video, Zorro achieved between 70% [9]
and 89% [8] accuracy when classifying episodes into their
proper TDD scenarios. Data from our study also classifies a
series of events into sessions (a similar concept to episodes)
enabling us to determine the most significant factor for edit
session duration.

Murphy-Hill, Parnin, and Black [15] use the Mylyn Moni-
tor to explore whether or not developers use the automated
refactoring tools present in Eclipse. They look for specific
refactoring commands in Eclipse and determine the amount
of time developers use tools versus hand refactoring the code.
For this study, we focus on code navigation as a high-value
area for improving developer efficiency.

The Pro Metrics (PROM) tool provides a framework for
collecting data for further analysis from tools used by devel-
opers. [3] It provides a flexible data model and a plug-in ar-
chitecture to facilitate collection from different data sources.
Studies conducted using PROM include studying benefits of
refactoring on productivity [11] and impact of refactoring
on re-usability [12]. Studies using the PROM tool correlate
the time spent editing with code metrics obtained through
source code analysis. Taking a different focus on techniques,
this study uses more detailed events captured from the IDE
to detect commands used to navigating through the code in
addition to knowing duration of edit sessions for code mod-
ules.

Murphy-Hill et al. study a large usage history data set and
apply several different algorithms to accurately suggest IDE
commands to novice users [13]. The “Most Widely Used”
algorithm recommends commands based on the collective
usage profile of the team and performed nearly as well as
the more sophisticated algorithms. This work takes the idea

of making recommendations into a game context to influence
how recommendations in a game influence developers to use
recommended commands.

6.2 Gamification

When discussing gamification, concerns are raised about
replacing an activity like software development, which is in-
trinsically motivated, with extrinsic motivation provided by
points and achievements.

Beecham and colleagues provide a thorough analysis of
existing literature on studies of motivation in Software En-
gineering [2]. They claim that the most common motiva-
tor found in cited references is “the work”. The list of de-
motivators is also useful with common job satisfaction items
like stress and inequity in recognition, plus poor quality soft-
ware (low accomplishment) and lack of influence in decision
making. The paper also lists characteristics of people in the
professions including need for independence (autonomy), de-
sire to learn new skills and tackle new challenges.

Maehr proposes an affirmative theory whereby individuals
achieve as a member of a social group, choosing the behavior
that meets the expectations and values of the group that are
significant to them [10]. A key factor in raising achievement
motivation is establishing a social group where the person is
motivated to belong and excel.

Hamari et al. analyze achievement patterns in game sys-
tems and provide guidance on defining successful achieve-
ment systems [6]. They recommend achievement awards be
setup as a secondary form of scoring so players have multi-
ple objectives available for a particular game. Players should
feel like they earned achievements in the game instead given
trivial tasks.

Singer and Schneider demonstrate the use of a message
board and points for encouraging students to increase their
frequency of commits to the source code repository [21].
The communication mechanism enabled students to see each
other’s progress and resulted in more frequent commits than
baseline. Participants valued the communication and col-
laboration aspect and some valued the competition enough
to change their opinion on optimum commit frequency. The
subsequent thesis by Singer [20] describes results of an exper-
iment conducted across two iterations of a class where active
feedback on commits was deployed to one course and another
course served as the control group where commit frequency
was simply monitored. Results show an increase in the fre-
quency of commits at a statistically significant level. This
study uses fine grained instrumentation to identify practices
used between commits such as structured navigation.

Dubois and Tamburrelli discuss theoretical concepts be-
hind applying gamification to software development [4]. Their
approach is to consider how gamification could be applied
throughout the software development life-cycle to motivate
many practices in different phases. They provide guidance
on assessing gamification in the software development do-
main including analyzing the actors and game mechanics,
defining integration with existing tools and processes, and
designing the evaluation of results. Dubois and Tamburrelli
demonstrate this guidance using a study of students work-
ing on a class project. The study results indicate that gam-
ified environments for software engineering practices may
improve results by incorporating competitive elements like
leaderboards.

7. THREATS TO VALIDITY

The threats to construct validity occur when measure-
ments may not reflect the intended operational definition.
The key measures of navigation ratio and points in our study
could have results differing from their definition.

Measuring navigation ratio involved categorizing events
into structured and unstructured navigation. The catego-
rization of events is specific to this study and documented
herein, however, it may not be accurate to the intent of
the operational definition of structured navigation depend-
ing on how the developer uses some commands like Find.
Another factor affecting this measurement may occur when
developers repeat a command such as hitting the down ar-
row key many times, which may be something other than
navigation (though it is classified as such for this study). In
feedback, we learned developers were reviewing and reading
code which may account for these repetitive actions.

The points measurement is more susceptible to influences
of simple developer activity compared to navigation ratio.
Thus, a very busy developer could accumulate more points
using a lower navigation ratio than a developer who has less
activity performed more efficiently.

Threats to internal validity are those conditions that cre-
ate alternative reasons for the conclusions, or confound the
conclusion. The Hawthorne effect, where improvement oc-
curs because we are seeking a change in a particular prac-
tice, could impact our results because participants received a
presentation on the study objectives prior to the start of the
study. By making the purpose of our measurement and con-
test known, we may have triggered the participants to think
about navigation commands they use before establishing a
baseline. This threat is mitigated by the data showing four
participants did not improve over the course of the study
while two demonstrated some improvement.

Participants in the study were not randomly selected, they
are all volunteers from one intact team chosen due to their
advanced practices and understanding of metrics. Therefore
the participants may be predisposed to have an interest in
the kind of tool and methodology we are studying and have
bias towards a favorable opinion.

The intact team may be more familiar with the code they
maintain thus be less likely to change their navigation prac-
tices. The post-study survey responses confirmed developers
are less inclined to use structured navigation when they work
in code they are very familiar with.

Threats to external validity include the fact that the study
was conducted in one development location of one company.
Other companies and locations may have different cultures
incompatible with this type of monitoring activity.

Threats to generalizable results exist because we conducted
the study with six developers thus the population size is too
small to draw statistically significant inferences from.

The study was conducted in India, the country with the
most positive response in our pre-study survey, perhaps where
this activity was most acceptable. Thus, other countries who
rated their view of gamification lower may be less receptive.

Participants in the study were professional software en-
gineers with at least seven years of experience. In other
settings where developers have different levels of experience,
the results may differ. In the pre-study survey, experience
was not part of the question set, thus it could have results
skewed to a particular age group.

8. CONCLUSIONS

We set out to demonstrate whether gamification of soft-
ware development practices could succeed in the industrial
environment at ABB. Through a series of three steps we con-
ducted a pre-study survey with 130 developers, a study of a
gamified navigation practices with six developers in an intact
team using the Blaze tool, and post-study survey with the
same six developers. A common thread of findings through
all three steps is developers are interested in the idea of us-
ing games to help them learn and improve their practices.
On average, 74% of developers were interested in gamified
workspace in our pre-study survey, and five out of six de-
velopers indicated elements like points and leaderboards in-
fluenced them in our post-study survey. The recorded us-
age data shows two out of six developers in our study re-
sponded positively when they started receiving points feed-
back. We learned developers need more detailed and imme-
diate feedback from Blaze on ways to improve their prac-
tices. Some developers also appreciated charts providing a
historical view of how they spend their time by category
compared with the median for the team. This compliments
their feedback on the game showing developers want more
information on how to become more effective at their job.
Future work includes providing a mechanism that shares tool
recommendations between developers, and allowing develop-
ers to share their data with a mentor for feedback.

9. ACKNOWLEDGMENTS

The authors wish to thank ABB and the study partici-
pants in India for their support of this research. Thanks
specifically to Vinay Augustine, David Shepherd, Suzanne
Snipes, and Balaji W for your support and contributions to
Blaze.

10. REFERENCES

[1] Ozford Dictionaries Online - American English (US).
Oxford University Press, 2013.

[2] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and
H. Sharp. Motivation in Software Engineering: A
Systematic Literature Review. Inf. Softw. Technol.,
50(9-10):860-878, Aug. 2008.

[3] I. D. Coman, A. Sillitti, and G. Succi. A Case-study on
Using an Automated In-process Software Engineering
Measurement and Analysis System in an Industrial
Environment. In International Conference on Software
Engineering, ICSE, pages 89-99. IEEE, May 2009.

[4] D. J. Dubois and G. Tamburrelli. Understanding
Gamification Mechanisms for Software Development.
In Foundations of Software Engineering. ACM, 2013.

[5] M. Hall, E. Frank, G. Holmes, B. Pfahringer,

P. Reutemann, and I. H. Witten. The WEKA Data
Mining Software: An Update. SIGKDD Explorations,
11(1), 2009.

[6] J. Hamari and V. Eranti. Framework for Designing
and Evaluating Game Achievements. In Digra
Conference, Sept. 2011.

[7] T. Hill and P. Lewicki. Statistics: Methods and
Applications. StatSoft, Inc, 2007.

[8] P. M. Johnson and H. Kou. Automated Recognition of
Test-Driven Development with Zorro. In Agile
Conference (AGILE), pages 15-25. IEEE, Aug. 2007.

[9] H. Kou, P. Johnson, and H. Erdogmus. Operational
Definition and Automated Inference of Test-driven
Development with Zorro. Automated Software
Engineering, 17(1):57-85, 2010.

[10] M. Maehr. Culture and Achievement Motivation.
American Psychologist, 1974(29):887-896, 1974.

[11] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti,
and G. Succi. A Case Study on the Impact of
Refactoring on Quality and Productivity in an Agile
Team. In B. Meyer and et al., editors, Balancing
Agility and Formalism in Software Engineering,
volume 5082 of Lecture Notes in Comp. Sci., pages
252-266. Springer|, 2008.

[12] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi.
Does Refactoring Improve Reusability? In M. Morisio,
editor, Reuse of Off-the-Shelf Components, volume
4039 of Lecture Notes in Comp. Sci., pages 287-297.
Springer Berlin Heidelberg, 2006.

[13] E. Murphy-Hill, R. Jiresal, and G. C. Murphy.
Improving Software Developers’ Fluency by
Recommending Development Environment
Commands. In Foundations of Software Engineering.
ACM, Nov. 2012.

[14] E. Murphy-Hill and G. C. Murphy. Peer Interaction
Effectively, Yet Infrequently, Enables Programmers to
Discover New Tools. In ACM Conference on Computer
supported cooperative work, CSCW. ACM, 2011.

[15] E. Murphy-Hill, C. Parnin, and A. P. Black. How We
Refactor, and How We Know It. IEEE Transactions
on Software Engineering, 38:5-18, Jan. 2012.

[16] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2013.

[17] M. P. Robillard, W. Coelho, and G. C. Murphy. How
Effective Developers Investigate Source Code: an
Exploratory Study. IEEE Transactions on Software
Engineering, 30:889-903, Dec. 2004.

[18] Saatchi and Saatchi S. Gameification for business
brands and loyalty, June 2011.

[19] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz.
Sando: an Extensible Local Code Search Framework.
In Foundations of Software Engineering. ACM, 2012.

[20] L. Singer. Improving the Adoption of Software
Engineering Practices Through Persuasive
Interventions. PhD thesis, Gottfried Wilhelm Leibniz
UniversitACAd’t Hannover, 2013.

[21] L. Singer and K. Schneider. It was a Bit of a Race:
Gamification of Version Control. In Second
International Workshop on Games and Software
Engineering: Realizing User Engagement with Game
Engineering Techniques (GAS). IEEE, June 2012.

[22] W. Snipes, V. Augustine, A. R. Nair, and E. M. Hill.
Towards Recognizing and Rewarding Efficient
Developer Work Patterns. In International Conference
on Software Engineering, ICSE. IEEE, 2013.

