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ABSTRACT
Algorithmic solutions to the packet classification problem in net-
work equipment have long been a subject of study in academia
and industry and with increases in network speeds they are be-
coming even more important. Since general purpose processors
cannot meet performance and cost requirements, researchers have
been assuming that ASICs or FPGAs are necessary for hardware
implementation.

Industry and academia have been working on SRAM-based plat-
forms specialized for tables used in network equipment, but exist-
ing publications only describe the mapping of simpler exact match
or prefix match lookups to such platforms. In this paper we adopt a
software-hardware co-design approach mapping the EffiCuts algo-
rithm to the PLUG platform. Our work confirms that this solution
achieves high throughput (142 million packets per second) and low
power (3.1 Watts). It identifies and evaluates changes to the origi-
nal algorithm and to the platform that can improve throughput and
memory utilization.

Categories and Subject Descriptors: B.4.1 [Data Communica-
tion Devices] Processors; C.1 [Computer Systems Organization]System
Architectures; C.2.2 [Network Protocols]Protocol Architecture (OSI
model)

General Terms: Design, Algorithms, Performance

Keywords: Packet Classification, Network processing, Lookups,
TCAM

1. INTRODUCTION
The processing of each packet in routers and switches involves

matching fields from the packet’s headers against multiple tables
to decide how to treat it (the direction towards the destination, the
level of service, conformance with security policies, etc.). The type
of data in such tables (MAC addresses, IP prefixes, access control
lists, etc.) determines the type of matching operation the network
equipment must implement. Packet classification is the most chal-
lenging type of table matching operation.

In packet classification, entries are matched against multiple fields
of the packet headers and each entry can specify a mix of exact val-
ues, wildcards, prefixes and ranges that must match. Such match-
ing of packets against tables at line rates is a central challenge for
the architecture of routers and switches. In the past, DRAM-based
solutions were feasible and attractive because of the low cost of
commodity DRAM. For current and future line rates that are hun-
dreds of gigabits per second, such solutions are infeasible. This is
because of the low random read rate of commodity DRAMs and
the bad temporal locality of the memory accesses. This bad local-
ity occurs because the traffic stream mixes packets of many flows,

with little overlap in the sets of table entries matched by the packets
of different flows.

Industry’s answer to this challenge is the adoption of architec-
tures storing the tables in fixed locations and integrating table pro-
cessing and storage onto the same chip. An example of one such ar-
chitecture is ternary content addressable memories (TCAMs) which
have been widely adopted by industry for packet classification. By
using extreme hardware parallelism (one comparator for each ternary
bit), today’s TCAMs achieve packet processing rates required by
interfaces running at hundreds of gigabits per second.

Despite TCAMs’ success, academia and industry alike have sus-
tained a long-lasting line of work on algorithmic solutions to the
packet classification problem [2, 12, 7, 15, 19]. Such solutions can
use SRAMs to store the tables giving them two potential advan-
tages over basic TCAMs: lower power and higher density. Com-
pared to DRAMs, SRAM solutions provide lower latency and can
sustain higher bandwidth. A recurring problem with various al-
gorithms is that the data structures they need to build can become
orders of magnitude larger than the original table, negating their
appeal. Hence much of the academic effort has been on improving
algorithms to limit or eliminate the memory overhead as compared
to raw tables with recent algorithms such as EffiCuts [19] achieving
good results.

The research on algorithms for packet classification has been
largely separated from the work on platforms to deploy these al-
gorithms on, as authors typically assumed deployment on FPGAs
or ASICs implementing the algorithm. FPGAs have the problem of
high power consumption and low density as SRAMs are a relatively
small fraction of the chip area (between 2% to 15% depending on
the FPGA1). Hard-coding algorithms in ASICs has the problem of
low flexibility which makes the chip volumes lower as individual
ASICs can satisfy only small sub-segments of the overall market
for high-speed lookups in tables used by network equipment.

An alternative direction is to develop flexible lookup processors.
These are programmable SRAM-based platforms that can perform
various types of lookups in a wide variety of tables. Such flexi-
ble lookup processors can then be deployed on line-cards as stand-
alone chips or as modules within network processors. This direc-
tion has been adopted by both proprietary technologies within net-
work equipment manufacturers and academic proposals such as the
PLUG system [4, 11]. The PLUG platform has high memory band-

1We acknowledge this is hard to quantify accurately as FPGA die-
sizes are not public. Our estimate is based on considering the
largest of Xilinx FPGAs. XC5VFX200T at 65nm allows about 2.5
MB total of SRAM (with BRAM and distributed RAM). It has,
mostly likely, the largest possible die-size in the 25mm × 25mm
range. Using CACTI or other tools, the area of an equivalent
2.5MB dedicated SRAM is 50 mm2 at 65nm. Comparing these
two die areas, we can estimate that SRAM is 8% of the FPGA.



width, the flexibility required to accommodate packet classification
algorithms, and its SRAM density exceeds 70%. Initial workloads
for PLUG have focused on tables requiring the simpler exact match
and longest prefix match lookups.

This paper investigates an implementation of the hardest match-
ing operation – packet classification – on the PLUG architecture.
Specifically, we implement a recent packet classification algorithm
– EffiCuts – on PLUG. Contrasting with the algorithm-centric work,
we adopt a co-design approach. This co-designed implementation
involves three major steps.

• Implementing the EffiCuts algorithm in PLUG’s dataflow graph
programming model (Section 3)

• Modifying and extending PLUG’s execution rules, compiler,
and hardware such that this complex application can be mapped.
(Section 4)

• Evaluation of our final solution to understand how well the
architecture is used and comparison to the state-of-art in packet
classification. (Section 5)

Our co-designed approach and analysis confirms that the PLUG
architecture and its dataflow-graph-based programming model are
flexible enough to easily accommodate a new complex lookup al-
gorithm such as EffiCuts. But we go much beyond the original
mapping. We explore changes to both the original algorithm and
the original platform that make the combination of the two a more
compelling solution for packet classification. We believe our find-
ings can also inform the design of other algorithms and architec-
tures targeting high throughput. The three main findings are:

1. The initially proposed simple heuristics for mapping data
structures to the memories of the PLUG tiles cannot achieve
good memory utilization. We found efficient solutions by
formulating the memory mapping as an integer linear pro-
gramming problem and using off-the shelf tools to solve it.

2. Constraining the node sizes in the EffiCuts data structure to
powers of two eliminates the need for expensive integer di-
visions reducing latency by 30% (from 1.37µs to 0.95µs)
with little effect on memory requirements.

3. Significant internal fragmentation problems arise for mem-
ories because of PLUG’s fixed bank-size leading to under-
utilization of the memories.

The rest of the paper is organized as follows. Section 2 provides
background and discusses the EffiCuts algorithm and the PLUG ar-
chitecture. Sections 3 and 4 describe our co-designed implementa-
tion. Section 5 presents our evaluation results, Section 6 discusses
lessons learned, Section 7 discusses related work. Finally, Sec-
tion 8 concludes.

2. BACKGROUND

2.1 Packet Classification Using Decision Trees
Packet classification rules contain ranges for five different fields:

source IP, destination IP, source port, destination port and proto-
col. Classifying packets by iterating through the entire set of rules
is too slow, therefore decision-tree based solutions are common.
Each rule can be viewed as a 5-dimensional hypercube that may
overlap with other rules. A decision tree is constructed by divid-
ing the rule space into a hierarchy of regions. The root of the tree
represents the entire rule space. This space is divided amongst its
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Figure 1: An Example Decision Tree

children, which are further subdivided. The subdivision process is
carried out until the number of rules contained in each region is
small enough. Figure 1 shows an example decision tree

Each packet is a point in the rule space. Classifying a packet
means finding the region to which this point belongs and reporting
the highest priority matching rule. As the tree is traversed from
top to bottom, the region to which this packet belongs is narrowed
down. At the leaf node, the packet is matched against the rules
within the region associated with the leaf node.

Gupta and McKeown introduced the idea of using a decision tree
for packet classification [7]. Singh et al. improved upon this tech-
nique to reduce the memory space required [15]. Other optimiza-
tions have been explored in the literature and in general on the order
of 1 GB of space is required for storing 100K rules.

2.2 State-of-the-art Algorithm: EffiCuts
Vamanan et al. have recently introduced an algorithm named

EffiCuts based on two observations [19]. Their first observation
is that, as the rule space is divided into a hierarchy of regions, it is
very likely that rules span multiple regions and hence are replicated
amongst leaf nodes. EffiCuts avoids this problem by partitioning
the rule set. Rules with different patterns of wildcards are assigned
to different subsets and each subset has its own separate decision
tree. This optimization cuts down rule replication and reduces the
total memory required.

Their second observation is that rule distribution is uneven over
the rule space. Due to this unevenness, a large number of nodes rep-
resenting empty regions are created which unnecessarily increase
the size of the decision tree. To mitigate this problem, EffiCuts
fuses such nodes together into a smaller set of nodes. In partic-
ular, EffiCuts use two types of intermediate nodes: equi-size and
equi-dense. As shown in Figure 2 (a), an equi-size node divides
its rule space equally amongst its children. On the other hand, an
equi-dense node, which is shown Figure 2 (b), tries to assign the
same number of rules amongst its children.

A packet is classified by traversing the decision tree and per-
forming lookup operations on nodes along the path. For each type
of node, the first step is to calculate the position of the packet rela-
tive to the region associated with the node. This relative position is
translated into an offset which is used to locate the child to be vis-
ited next. Since an equi-size node divides its region equally among
its children, the offset can be used to index directly into the array
storing the child pointers. In the case of an equi-dense node, every
child’s region size is different. An interval array stores the bound-
ary of each child’s region. Therefore, a linear scan through the
interval array is required to locate the corresponding child.

Figure 2 shows an example of the lookup process. In this ex-
ample, the incoming packet is represented as a point (2,1) relative
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Figure 2: Types of Nodes in EffiCuts

to current node’s region. For the equi-size node, the next node to
be looked up is the 7th child. For the equi-dense node, scanning
through interval array identifies the 3rd child as the next node.

Vamanan et al. [19] focused on algorithmic evaluation. They ab-
stracted away hardware implementation details and implicitly as-
sumed a specialized ASIC that controls SRAM.

2.3 Pipelined Lookup Grid: PLUG
PLUG is a recently proposed lookup processor with a novel tiled

architecture, dataflow based programming model, and a compiler
toolchain that maps lookup algorithms written as C++ programs to
the hardware. Its goal is to achieve low-power and performance
like an ASIC while being easily programmable. We describe its
salient features below, while details are in other papers [4, 11].

Programming model: The PLUG architecture is programmed us-
ing the data flow programming model. The algorithm associated
with the lookup operation is divided into steps which are linked to-
gether to form a data flow graph. Each node in the graph represents
a portion of the data structure being looked up. The edges of the
graph represent the communication pattern. In PLUG terminology,
a node in the data flow graph is referred to as a logical page. A log-
ical page contains data and code-blocks. The code-blocks are the

methods acting on the data as part of the lookup operation. Mes-
sages, which are sent along the edges of the graph, are used for
communication between the code-blocks. The execution of a code-
block starts when the logical page receives a message which also
indicates which code-block to execute.

Hardware Architecture: PLUG is a tiled hardware architecture.
Each tile has a set of in-order µcores, SRAM banks, and routers for
communicating with other tiles. An overview of the architecture is
shown in Figure 3.

Task scheduling: Compared to a conventional multicore proces-
sors, where different cores process different packets in parallel,
PLUG tiles are used in a pipelined fashion. Different steps of a
packet processing task are mapped to different tiles, and packet in-
formation flows from one tile to the next one as steps are completed.
Logical pages are broken into physical pages that can fit within the
local memory available in a tile.

A consequence of this execution model is that the processing
performed by each tile is expected to be both simple and short.
This allows the architecture to be statically scheduled, which in
turn simplifies processor design and reduces power consumption.
There is no arbitration when multiple cores access the network or
the memory banks. Hence, programs must statically guarantee that
their accesses to resources are contention-free. These guarantees
are referred to as the execution rules of the architecture and they
allow the architecture to sustain a guaranteed throughput of one
lookup every cycle.

Execution Rules:

1. Due to static scheduling, all code-blocks in a tile must exe-
cute the same number of instructions. Each execution flow
can go through a different path in the data flow graph, but the
execution time for each path should be the same.

2. To have contention-free resource access, instructions in all
code-blocks can access networks or memory banks only at
the same number of instructions (cycles) from the start of
the code-block. This allows cores to interleave their accesses
with one another.

3. Only one memory access is allowed per code-block to so we
can statically ensure that there will be no conflicts for access-
ing memories.



4. Code-blocks cannot have more than 32 dynamically executed
instructions.

5. The scheduling of code-blocks’ network instructions and the
mapping of the physical pages to tiles must statically ensure
that there is no contention amongst messages arriving at a
tile.

Performance and Capabilities: With a clock frequency of 1 GHz,
the PLUG processor can sustain a throughput of a billion decisions
per second provided that all the above rules can be enforced. Con-
sidering 40-byte packets, PLUG can therefore sustain 320 Gbps
throughput on packet classification. In case of EffiCuts, the com-
plexity of the algorithm requires relaxation of some constraints,
which in turns leads to a throughput of less than one decision per
cycle.

In the next two sections, we describe how the EffiCuts algorithm
is implemented on the PLUG programming model and then discuss
algorithm and architecture extensions.

3. ALG. & PROG. MODEL CO-DESIGN
In this section we describe our design of EffiCuts for the PLUG’s

dataflow programming model.

3.1 Decision Tree Construction
One of the insights of EffiCuts is to generate multiple decision

trees to achieve memory reduction. Each level in a decision tree
forms a logical page. Messages between the decision tree’s logical
pages encapsulate all the information required to decide on which
child node to access in the next level. The data portion of the logical
page consists of the nodes occurring at that level. The code-blocks
implement the processing required to determine the next child. The
logical data flow graph of a single decision tree is a linear sequence
of logical pages as shown in Figure 4b. Multiple decision trees are
combined with an input node at the head and an output node at
the tail to form the full dataflow graph. Figure 5 shows an actual
example of five decision trees combined together into a physical
data flow graph.

We now describe the details of the data contained in the nodes.
We had to carefully consider what is allowed in the programming
model to successfully map the algorithm. Each non-leaf node con-
sists of three fixed-size sections – (i) header , (ii) boundary, and
(iii) interval. Table 1 describes the contents of these sections. The
node also contains pointers to the children present in the next level.
The number of children of a node is dependent on the node itself
and hence its size is not fixed. To simplify the lookup process, the
logical page’s memory layout is as follows. The fixed portions are
first laid out contiguously. Then, we layout the children pointers
(the addresses for children in the next logical page) for each node.

All the leaves in the tree are stored in a separate logical page.
We made this choice to simplify the design. A leaf node consists
of two sections – a header and a fixed length array of indices of
rules associated with the leaf. The rules are stored contiguously in
the rule array after all the leaf nodes. Table 1 also shows how leaf
nodes are laid out.

3.2 Lookup Process
The lookup operation starts when a message containing the packet

header arrives at the 1st level logical page of a decision tree. In this
logical page there is only one node to lookup. On other non-leaf
logical pages, the index of the node to be looked up is extracted
from the message and is used to load the node’s header, boundary

and interval sections from the memory. This requires three memory
accesses. Then, the index of the child to be looked up next is calcu-
lated using the packet header and boundary of the region associated
with the node. After that, one more memory access is required to
read address of the child which is to be looked up next. This address
and the packet header are sent to the next logical page. However,
one of PLUG’s execution rules requires all executions paths to be
equal. Packets which are rejected early in the lookup process need
to be forwarded through all the levels in order to guarantee that
every packet is processed in equal amount of time .

When the packet reaches the leaf logical page, the leaf header
and rule IDs are read. Then, the packet is matched against every
rule associated with this leaf node. Finally, the index of the highest
priority rule that matched the packet or no-match is returned as the
final result. The output node combines matching results from all
decision trees.

4. IMPLEMENTATION, COMPILER, HARD-
WARE CO-DESIGN

Previously we described how EffiCuts algorithm is mapped to
the PLUG programming model. We now describe implementation
of the algorithm which had to be co-designed with the execution
rules in mind. To this end, we describe the implementation of the
dataflow graph and the code-block. We then describe extensions to
the compiler and hardware to map the implementation. While the
original PLUG compiler and hardware were too rigid to allow the
mapping of EffiCuts, some simple extensions were sufficient.

4.1 Implementing the Logical Dataflow Graph
The abstract programming model specifies pages at arbitrary sizes.

To implement this on the PLUG architecture, the pages must be
converted into so-called physical pages. Since each PLUG tile has
limited amount of memory, we need to break the logical pages into
physical pages small enough to fit within a single tile. After such
a breakup, we obtain what is called the physical data flow graph.
This transformation is shown in Figures 4b-c and an example for
ACL with 100K rules is in Figure 5. Unlike the simple matching
applications that were previously investigated, automatically gener-
ating the physical pages from the logical pages proved intractable.
This is because the nodes contain information on the next page. On
the logical dataflow graph this is just a label, but on the physical
dataflow graph, this must be converted into a tile coordinate. Our
current software toolchain and compiler does not perform this step
automatically. Hence, we used a two-step process. We directly
specified the physical dataflow graph by breaking pages into opti-
mal sizes. However, at programming time, we do not know where
pages will be mapped. After scheduling has been done, the contents
of the nodes are re-written according to the schedule.

4.2 Implementing the Code-blocks
Removing Division Operations

Implementing the code-blocks was straightforward, but the orig-
inal algorithm results in extremely long code-blocks. On detailed
investigation, we observed that the original EffiCuts algorithm re-
quired the use of division operations during the lookup process.
The code below illustrates the need for division operation –

c u t _ s i z e = ( boundary . s o u r c e _ i p _ h i g h −
boundary . s o u r c e _ i p _ l o w + 1) / num_cuts ;

d im_index = ( pkt−>s o u r c e _ i p − boundary .
s o u r c e _ i p _ l o w ) / c u t _ s i z e ;

Listing 1: Code showing use of Division Operation
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Figure 4: Mapping EffiCuts to PLUG

Data Size Content
Structure (bytes) Equi-size Internal Node Equi-dense Internal Node Leaf

Header 4 Type, Interval count, node type,
cuts, dimension number of rules

Boundary 28 Range of each dimension -

Interval 16 Pointer to 7 intervals, Rule IDschild pointers Pointer to child pointers
Child Pointers 4 per pointer Up to 1024 pointers Up to 7 pointers -

Table 1: Node Format

The size of a cut is calculated by subtracting the high and the
low boundary values and then dividing with the number of cuts.
The number of cuts is a power of two, so this division can be done
using shifts. But in the next line, the index of the child that needs
to be looked up next is computed. But this requires division by the
cut size, which may not be a power of two. Hence, the need for the
division operation. There were two places in our implementation
of the packet classifier where division operation was required.

But division operations are costly in terms of number of cycles
required per operation. In fact, the two division operations ac-
counted for about 1/3 of the total cycles required for execution
of a non-leaf code-block. Hence, we decided to eliminate these di-
vision operations converting them to shift operations. The starting
range of any field (IP, port, protocol) is a power of two. As the
number of cuts being made over the range is always a power of
two, so even the children node will always have a range which is
a power of two. The original EffiCuts algorithm tries to squeeze
this range by looking at the rules themselves, so as to optimize on
the memory space required. After the range of a node is adjusted,
we expand this range so that it is a power of two. Depending on
the dataset, this results in an increase in memory from 0 to 12%.
This co-designed algorithm/implementation optimization results in
about 30% reduction in code-block length (from 200 cycles to 130
cycles). Depending on the dataset, this can translate to total latency
reduction from 1.37µs to 0.95µs.

4.3 Extending the Execution Rules
To ensure contention-free execution within a tile, the current

PLUG architecture imposes several restrictions on the code-block.
As described in Section 2.3, these are referred to as the execution

rules (ER). The two relevant ones here are: ER-3 - a code-block
can make at most one memory access, and ER-4 - code-blocks can
be at most 32 instructions long. With these execution rules, packet
classification cannot be implemented on PLUG. Even the division
optimization did not get instruction counts to under 32.

Examining the architecture’s constraints, we observed that these
rules are more strict than necessary and reduce PLUG’s ability to
support applications like packet classification that need many ac-
cesses to memory. In this section we describe our extension for
allowing arbitrary number of memory accesses in a code-block and
arbitrarily long code-blocks.

First, we present a method called Modulo Interleaving that the
PLUG compiler can adopt to ensure contention-free execution for
these large code-blocks that may make more than one memory ac-
cess. Note that these memory accesses can appear anywhere in the
code-block. We then discuss the relaxing of code-block length.

Modulo Interleaving: Consider the example shown in Figure 6a.
There are three memory accesses in cycles X, Y and Z. A naive way
of ensuring contention-free execution would be to separate two suc-
cessive executions of the code-block by enough number of cycles
so that by the time a code-block execution accesses the memory for
the first time, the previous execution has already completed all the
required memory accesses. In the given example, we can separate
the two executions by at least Z-X+1 cycles to ensure that the two
memory accesses never overlap; however, this is far from optimal.

In modulo interleaving, we intelligently interleave memory ac-
cesses when they happen in an irregular fashion across the code-
block. The compiler generates instructions for a code-block in a
manner such that memory accesses from different executions of



Figure 5: Physical Data Flow Graph for ACL 100k rule set

the code-block never contend. The compiler can ensure this by
reordering instructions and/or by adding no-op instructions. We
provide two conditions which the compiler can impose on the code-
block to ensure contention free execution. Assume, the total num-
ber of memory accesses within a code block is m and that the in-
struction slots occupied by the memory accesses are s1, s2, · · · , sm.
Then the conditions are:

1. Two different executions of the code-block are separated by
a multiple of m, the number of memory accesses.

2. si mod m 6= sj mod m for all i 6= j.

With this approach, more than one memory access can be al-
lowed but the throughput reduces from one lookup every cycle to
1/m lookups every cycle. Next, we prove that these conditions
ensure contention-free execution of code-blocks.

PROOF. Consider two executions of a code-block on a PLUG
tile. We refer to the first execution as A and the second execution
as B. We assume that instruction slots for memory accesses have
been scheduled as per the conditions listed above and that these
code-blocks are separated by k ∗m cycles, where m is number of
memory accesses in the code-block and k is any natural number.
Suppose A is executing the ith instruction and B is executing the
jth instruction. Then, using the fact that the separation between
code-blocks is k ∗m, we get

i =j + k ∗m

⇒i mod m =(j + k ∗m) mod m

⇒i mod m =j mod m

Since i ≡ j mod m, therefore the second condition forces that at
most one of these is a memory access. Hence, the memory accesses
are contention-free.

In our example in Figure 6a, m = 3, s1 = X , s2 = Y and
s3 = Z. To ensure contention-free execution, the first condition
states that any two executions of this code block need to separated
by three cycles. The second condition states that si mod 3 6= sj

mod 3. The assignment X = 0, Y = 2 and Z = 7 satisfies this
condition. Hence in Figure 6b, there is no contention in memory
accesses.

a) Naïve Scheduling b) Modulo Interleaving 
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Figure 6: Modulo interleaving with m = 3

Code-block Length: ER-4 is enforced together with ER-3 in or-
der to ensure that 32 µcores are enough to sustain peak through-
put. Code-block length cannot exceed 32 instructions so that we
have enough µcore to initiate a new lookup every cycle. The first
µcore must finish executing its code-block when the 32nd µcore
starts execution. By relaxing ER-3 to allow m memory accesses
and starting a new lookup every m cycles, we can also relax ER-
4. The code-block can have a length of up to 32 ∗ m instructions
(cycles) while retaining 1/m of peak throughput. This extension
requires some simple hardware extensions to PLUG as discussed
in Section 4.5.

4.4 Compiler Extensions: Optimization Based
Scheduler

Using the implementation strategies and the ER extensions dis-
cussed thus far, we obtain legal code-blocks that can execute on a
tile of the PLUG architecture. Next, we need to schedule the phys-
ical pages on to PLUG. The greedy scheduler that is part of the
PLUG compiler [11] does not scale to the size and type of com-
plex graphs that EffiCuts produces. Manual scheduling was also
infeasible and ad-hoc greedy heuristics did not work. We instead
developed a solution using formal optimization frameworks.

We modeled the problem of scheduling physical pages onto PLUG
as an Integer Linear Program. An Integer Linear Program consists
of an objective function whose value is minimized (or maximized)
provided certain constraints are fulfilled. The key fact to note is
that each variable in the program is constrained to take only integer
values. The problem is known to be NP-hard, but algorithms and
tools exist that can solve practical instances very quickly.

Before describing the objective and the constraint functions for
our Integer Linear Programming formulation, we introduce certain
notations. We assume that the PLUG chip contains n×n tiles. We
label each tile as (i, j) where i and j are the x- and y- coordinates



minimize n

subject to
X

k

Xi,j,k ≤ 1 ∀i, j ≤ nX
i,j

Xi,j,k = 1 ∀k

xpos(u)− xpos(v) ≤ 0

ypos(u)− ypos(v) ≤ 0

where u and v are nodes in the graph and u is parent of v

xpos(u) and ypos(u) denote the x and y coordinates
of the tile u is mapped to

xpos(output) ≤ n

ypos(output) ≤ n

where output represents the output node in the graph

Figure 7: Integer Linear Program for Scheduling

of the tile. Note that 1 ≤ i, j ≤ n. We label each node in the data
flow graph with an index. Then, for each node k in the graph, and
each tile (i, j), we introduce a Boolean variable Xi,j,k which is 1
if kth node occupies the (i, j) tile, 0 otherwise.

The formulation is shown in Figure 7. We model the objective
function as minimizing the size of the PLUG chip required for map-
ping the physical pages. Since the chip is assumed to be a square,
so we minimize n. We have four different types of constraints.
The first constraint in Figure 7 limits to one the number of physical
pages that can be scheduled on a single PLUG tile. The second
constraint forces each code-block to be scheduled on some PLUG
tile. Then follow two constraints that together enforce the south-
east rule (i.e. all child nodes are to the south and east of parent
nodes). This constraint ensures that all the paths in the data flow
graph have equal lengths, thus taking care of ER-1. Note that these
two constraints are present for all (parent, child) pairs. The last
constraint forces the output node to have coordinates as small as
possible.

We have further formulated a variant of this where more than
one physical page gets mapped to the same physical tile, but the
combined memory and cores required for these physical pages are
capped to the total memory and cores that a tile supports. We devel-
oped this variant to increase the utilization of the tiles and reduce
the size of the chip required. While reporting the results in this
paper, we will use the scheduling obtained from this variant of the
originally stated formulation.

Network Assignment: In the PLUG architecture, each edge in the
physical data flow graph needs to be statically mapped to one of the
on-chip networks. Note that the edges which do not overlap (i.e.
that do not have any common point-to-point link between tiles) can
reuse the same network. We manually applied graph coloring to
our data sets to obtain network assignments for them. None of the
members in our data sets required more than the 6 networks pro-
vided in PLUG. This part of the compiler currently requires manual
intervention and automating the procedure for network assignment
is on-going work. For the rest of the paper, we assume that we
have enough networks available to ensure contention-free commu-
nication.
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Figure 8: Schedule of physical pages onto 6x6 PLUG

4.5 Extending the Hardware
The extensions to the hardware are relatively straightforward.

The scheduling logic in each tile must be extended to allow longer
code-blocks, which is essentially the changing of some decoding
bits. For complex application like EffiCuts, the lookup rate is no
longer one request per cycle. Therefore, we can introduce an in-
terface controller which accepts lookup requests at the rate that the
chip can sustain.

5. EVALUATION RESULTS
We obtained an implementation of the EffiCuts algorithm used

in [19] from its authors. We modified their implementation as out-
lined in Section 4.2. We used the PLUG toolchain to implement
decision tree based packet classification algorithm on PLUG, as de-
scribed in Section 3. We modeled our Integer Linear Program for
scheduling code-blocks on to PLUG using GAMS [5], a tool for
mathematical programming and optimization. The PLUG frame-
work which includes a simulator and power-modeling framework
(based on physical design estimates from a prototype implemen-
tation in Verilog and synthesis) is used for obtaining performance,
area, and power estimates.

We evaluate our design on several metrics including throughput,
latency, power consumption and resource utilization. In this eval-
uation we have used ClassBench [18] for generating synthetic rule
sets. We use ClassBench to generate three types of classifiers: Ac-
cess Control List (ACL), Firewall (FW) and IP Chain (IPC). We
also vary the number of rules in a classifier, in particular we gener-
ated classifiers with 10,000 and 100,000 rules.

We first present the throughput, latency and power consumption
results for our PLUG-based implementation of the packet classifi-
cation application. Then, we show on-chip resource utilization. Fi-
nally, we compare our design against a couple of state-of-art packet
classification systems.

5.1 Throughput, Latency and Power
Our implementation has two different blocks: one code-block

deals with non-leaf nodes (hence forth referred to as the internal
code-block), other one deals with the leaf nodes. We determined
the number of instructions that would get executed on the longest



Category ACL FW IPC
Active Physical Pages 19 29 39

Power Consumption (W) 1.5 2.3 3.1

Table 2: Power consumption

code path between the entry and exit points of the code-blocks. We
used these numbers to determine the throughput and latency for
packet classification achieved by our design.

Internal Code Block. The critical path in the internal code-
block consists of about 130 single cycle instructions. It also re-
quires four memory accesses which are scheduled as per the de-
scription in section 4.3. This allows a new µcore to start execut-
ing the internal code-block (in other words, start processing a new
packet) every four cycles.

Leaf Code Block. The longest path in the execution of the leaf
code block is dependent on the number of rules associated with
leaf. Every two rules require three accesses to the memory. Each
rule requires 30 instructions for processing. On the basis of the
memory accesses and processing requirement per rule, we con-
cluded that it would be best to have at most four rules per leaf.
This means that a leaf code-block requires six memory accesses
for accessing four rules. One more access is required for reading
the indices of the rules. Hence, in all seven memory accesses are
required. By using modulo interleaving to schedule memory ac-
cesses, a µcore can start processing a new leaf code-block every
seven cycles, i.e. a new packet can be processed every seven cy-
cles.

Throughput. The peak throughput of a PLUG chip operating at
a frequency of 1GHz is one billion lookup per seconds regardless
of the size of PLUG chip or the number of tiles used. To achieve
this throughput a new lookup must be initiated every cycle. In our
case, the leaf code-block can start a new lookup every seven cycle
due to the number of memory accesses required. Hence, we can
achieve a throughput of 142 million packets per second. Assuming
a minimum packet size of 40 bytes, we can process packets at the
rate of 45.4 Gbps. If we consider packet sizes of 64 bytes, through-
put is 71 Gbps.

Latency. The latency per packet is dependent on the height of
the decision tree (h), the maximum number of rules associated with
a leaf (r) and the length of path (l) from the input node to the output
node. h decides number of internal code-blocks that executed. r
decides the length of the leaf code-block. l decides the time spent
in network traversal.

In our design, an internal code-block requires 130 cycles to pro-
cess which child node to visit next. The leaf code-block needs
30 cycles to perform matching with each rule. Another 30 cy-
cles are required for overhead involved in execution of a leaf code
block such as processing input/output messages and loading its data
structure. Therefore, the overall latency is given by: latency =
130h + 30r + 30 + l. For h = 6 and r = 4, l = 16, we get the
latency as 0.95µs. These h, r, and l represent the worst case values
among all the classifiers we considered.

Power Consumption. We use PLUG’s power model [11] to
compute the power consumption (excluding interface power). The
model calculates power consumption based on the average num-
ber of physical pages required to process a packet. It is based on
worst-case power estimates for a tile by considering the synthe-
sized netlist of the PLUG’s RTL implementation and the output of
Synopsys Design Compiler. The model uses CACTI for calculating
power consumed by the memories. Table 2 shows the power con-

sumption for classifiers with 100K rules. We used a 7 × 7 PLUG
chip for FW and IPC and a 6× 6 for ACL.

5.2 Resource Utilization
In this section, we explore on-chip resource utilization. We con-

vert EffiCuts trees to PLUG’s data flow graph and use the optimizer
to schedule them on the PLUG chip. Table 3 shows utilization of
on-chip resources (The numbers in parenthesis correspond to actual
size). We also report the minimal dimension of PLUG chip needed
to accommodate the data flow graph of each classifier. This shows
that the scheduling optimizer is able to minimize the dimension of
PLUG chip and achieve very high tile utilization in most cases.

From the results of the previous experiment, we also calculate
percentage of CPU core, and memory utilization. The percentage
is calculated over the actual number of tiles used by the classifiers.
Table 3 shows that we are able to achieve good CPU core utiliza-
tion. However, memory bank utilization numbers are much weaker
and since most of the PLUG’s area consists of memories (each tile
has 256KB of memory), this could be a concern. The very poor
memory utilization numbers for the 10K rule cases are due to the
small size of the data structures. But even for the 10 times larger
100K cases, utilization is still only between 53% and 64%. The
reason is that even when decision trees are large, the first few lev-
els are typically too small to fill a memory bank. Since there are
enough small logical pages, the overall memory utilization is low.

This result highlights a generic problem with the PLUG archi-
tecture: the fact that creating fine-grained logical pages incurs high
memory overhead. We can minimize this problem through changes
to the algorithm or to the programming model. The first approach
is to change the decision tree algorithm to perform more cuts at the
root thus increasing the size of the root and decreasing the size of
other levels. The second approach is to share memory banks be-
tween multiple logical pages using our modulo interleaving tech-
nique to ensure that no conflicts for memory accesses arise. We
leave the evaluation of these techniques as future work.

5.3 Comparison Against Other Designs
We now compare the performance of our design to three other

state-of-art packet classification systems: Storm [13] which repre-
sents a completely software-based approach, Jiang and Prasanna’s
work [9] which represents an FPGA-based solution, and TCAM’s
based on Netlogic’s state-of-the-art NLA9000 family.

Storm. Ma et al. developed Storm [13], a system for packet
classification on software routers. On a 8-core Intel Xeon machine,
Storm achieves a throughput of 15 Gbps for 64 byte packets. As-
suming 40 byte packets, Storm’s throughput is likely to fall be-
low 10 Gbps. This is much below the throughput that our system
achieves. Given Storm’s performance, we believe that software
routers are not suitable for packet classification. Further, Storm
is driven by the principle of exploiting locality, which industry
has had reluctance to embrace. Power consumption of Storm is
also higher than that required by our design. We acknowledge that
Storm consists of the full system, while our design only carries out
packet classification.

FPGA-based Design. Jiang and Prasanna [9] presented an FPGA-
based pipelined architecture for packet classification using decision
trees. Their design can sustain 80 Gbps throughput for 40 bytes
packets. This throughput was achieved for ACL 10K ruleset. On
this 10K ruleset, PLUG’s performance is about 10% worse. Exact
power numbers are not available from their system. But since theirs
is an FPGA implementation, we expect power consumption to be
worse than PLUG’s. This is because FPGA’s synthesize their func-



Category ACL FW IPC
Rule Size 10k 100k 10k 100k 10k 100k

Minimal Dimension 5 6 4 7 6 7
Tile Utilization 76% (19) 86% (31) 100% (16) 92% (45) 97% (35) 82% (40)
Core Utilization 66% (400) 56% (560) 72% (368) 56% (800) 81% (912) 63% (816)

Memory Utilization 13% (668 KB) 63% (5,122 KB) 14% (606 KB) 64% (7,537 KB) 7% (611 KB) 53% (5,540 KB)

Table 3: Tile, core and memory utilization

tionality from logic-slice, while PLUG uses specialized but simple
processors.

The more interesting case is to look at larger rulesets. We believe
that FPGA design is not scalable to 100K rules. This is because FP-
GAs are highly area inefficient in terms of SRAM storage. A PLUG
chip with 64 tiles provides 16MB of storage, thus supports 100K
rule sets easily, and occupies a die area of 232mm2. Considering
the platform they used which is Xilinx Virtex-5 XC5VFX200T. The
maximum amount of SRAM storage it provides is 2.5MB and is
unlikely to support 100K rules. Since Virtex-5 is one of the largest
FPGAs2, we assume its die size is the maximum possible (25mm
x 25mm). Scaling its die size to the 55nm technology node gives
a die size of 446mm2. Such a chip still has only 2.5MB SRAM
and cannot support 100K rules, even though the die-size is twice
of that of a PLUG chip. We acknowledge here that there are vari-
ous reason for poor SRAM density on FPGAs. And FPGAs are a
commodity part compared to PLUGs which are specialized lookup
processors.

TCAM. The NLA9000 family of processors from Netlogic [1]
represent state-of-the-art TCAM-based solutions for packet classi-
fications. They provide support for 250K rule-sets and can sustain
a throughput of 400 million decisions per second. Their power con-
sumption is about 7 Watts and likely to be higher if operated like a
“basic” TCAM. In comparison, our PLUG-based system to support
similar rule-sets, provides 1/3rd the throughput at 1/5th the power
consumption. The more important distinction is that, the PLUG
chip’s die area is projected to be 131 mm2. The TCAM die area is
hard to exactly quantify - but is likely to be larger, since a TCAM
cell is larger than an SRAM cell.

5.4 Limitations and extensions
Our work does not address incremental updates to the packet

classification database. We note that the original EffiCuts software
does not support incremental updates. If such code for updating
the database were available, it could be adapted to work with the
PLUG which supports multiple code blocks for each page: not just
the code block for lookups, but also others for updates. This allows
PLUG update operations to flow through the pipeline without any
conflicts with lookups. One update to the database would be broken
into multiple smaller PLUG updates submitted to the pipeline. Yet,
two challenges remain: coherency between control plane and data
plane and the allocation of memory for new nodes. Coherency re-
quires that lookups that are mixed with the many PLUG updates
that make up the database update return valid results: the cor-
rect answer with the old database or the correct answer with the
updated database. Some operations such as updating the interval
boundaries for an equi-dense node are too complex to perform in a
single PLUG update and leaving the node in an inconsistent state
between PLUG updates can lead to incorrect results for the inter-

2As mentioned in the introduction, this is inherently hard to es-
timate. But there is widespread consensus that the largest FPGA
parts are reticle limited and in this ballpark for die size.

vening lookups. We can avoid this problem by building a separate
inactive copy of the node being updated through as many PLUG
updates as needed and atomically flipping the pointer to it in the
parent ensuring coherency. The second challenge is incremental
memory allocation. As long as there is enough unused memory in
the tiles holding the siblings of a new node, creating a new node is
not a problem. But if an update requires adding new physical pages,
we need to do incremental scheduling to find a suitable place for the
new physical page. We leave it to future work to evaluate to what
extent this can be done without stopping the lookups while the new
database is being placed onto PLUG.

Building on our work with EffiCuts we can forecast with some
level of confidence how well other packet classification algorithms
would map to PLUG. The challenges imposed by other decision-
tree-based algorithms [6,14,13] are similar to those of EffiCuts and
we estimate that the porting effort would be similar. Cross-producting-
based algorithms [5,16] require hash tables which have been used
in the original PLUG applications, so we anticipate that they would
not pose significant challenges. The original Lucent bit vector algo-
rithm [11] relies on hardware parallelism to solve the packet clas-
sification problem: 5 bitmaps of size equal to the number of rules
need to be and-ed together to find the matching rule (when classifi-
cation is on five fields). PLUG is an architecture with large memory
bandwidth and the bitmaps could be distributed among the tiles.
Assuming a 6 by 6 PLUG with say 30 of the 36 tiles available for
these bit vectors, by reading five 16-bit bitmap chunks from each of
the 4 memories in these tiles, we could support databases of up to
30*4*16=1,920 rules at 1GHz/5 = 200 million packets per second.
More advanced bit vector algorithms [1] that reduce the memory
bandwidth requirement by adding hierarchy would be able to ac-
commodate larger databases. As long as the number of memory
reads from each portion of the data structure can be bounded stat-
ically, we do not foresee any major difficulties mapping to PLUG.
It is hard to estimate the memory utilization efficiency of other al-
gorithms without doing the actual mapping to PLUG.

6. LESSONS LEARNED

Co-design Lessons Designing algorithms without keeping any eye
on the hardware on which the algorithm would be executed can
result in sub-optimal performance. In our case, we changed the Ef-
fiCuts algorithm so that the regions in rule space have dimensions
that are a power of 2. This simple change to the algorithm had
a significant payoff. The original code-block length was 200 cy-
cles which got reduced to 130 cycles, saving 35% cycles per code-
block.

We started off mapping decision trees to PLUG chip. During this
process, we realized that PLUG’s scheduling constraints are overly
conservative and can be relaxed with out losing the guarantees on
static scheduling. This is true not only for our application but for all
PLUG-based applications. Our integer linear programming formu-
lation for scheduling physical pages to PLUG tiles can be applied



to data flow graph for any application. The algorithm can decide
whether a given data flow graph can be mapped to a given PLUG
chip.

With minor changes to the hardware and lowering the through-
put, we can perform more complex processing. Despite this fact,
our design for packet classification still compares favorably against
the FPGA-based solution as illustrated in the evaluation section.
This suggests, the PLUG architecture has the appropriate set of
primitives for lookup processing.

Architecture Lessons Decision trees are highly irregular in nature.
This is an artifact of uneven distribution of rules in the rule space.
Some trees are very deep, others are very wide. Even within a tree,
variations can be seen. But still the PLUG architecture is success-
fully able to absorb all irregularities. This highlights flexibility of
the architecture i.e. PLUG can efficiently support a wide spectrum
of applications. The caveat is that each application may require
some intelligent design choices before the architecture can be ex-
ploited to the fullest.

This also means that PLUG has a balanced architectural design.
We analyzed the set of hardware changes required to provide a sig-
nificant boost to the throughput of the application. Our analysis
showed we would need to beef up all the available resources i.e.
memory ports, µcores, and on-chip network routers. Thus no sin-
gle resource is a bottleneck in the design.

Applications Lessons All applications supported by PLUG thus far
have been small and hence were amenable to the dataflow program-
ming model. Decision-tree based packet classification is the first
major application which resulted in very complex dataflow graphs.
But it only took 90 person-hours to move from nothing to a logi-
cal dataflow graph for the application with all the code-blocks pro-
grammed. This shows that dataflow programming is as easy (or
hard) as any other paradigm.

The memory utilization for the tiles on PLUG chip is not uni-
form. It is especially low for tiles that map to the upper levels
of the decision trees. We outlined specific algorithm design tech-
niques and changes to the programming model that alleviate this
problem (Section 5.2), but we leave the evaluation of these tech-
niques as future work.

7. RELATED WORK
Over the years, the problem of packet classification has been

studied in great detail. It is still an open problem because solutions
need to scale with increasing traffic rates and sizes of rules sets.
Power is also increasingly becoming a first class constraint. Many
solutions have been proposed in the literature. From hardware per-
spective, these can be classified based on storage technology into
two distinct classes: SRAM-based and TCAM-based.

SRAM-based solutions use different algorithmic approaches for
solving the problem. We use the taxonomy used by Song and
Turner [16]. As per their classification, algorithms like HiCuts [7],
HyperCuts [15], HyperSplits [14] and EffiCuts [19] split the rule
set to construct decision trees. Earlier in the paper, we discussed
this approach in detail.

Approaches like Bit Vector [12] and Aggregated Bit Vector [2]
classify packets by producing bit vectors for each dimension which
are intersected together to produce the final result. Combining bit
vectors requires storage proportional to the square of the number of
rules. Hence, these algorithms do not scale with the size of the rule
set. Cross-producting approaches like RFC [6] and DCFL [17] also
combine results from different dimensions using cross- product ta-

bles. They also suffer from the problem of prohibitive memory
required as the rule set size grows.

Present day routers use TCAMs for packet classification for pro-
viding very high throughput. But basic TCAMs are very expensive
in terms of power, area and dollar cost. Improvements have been
proposed in several works [20, 3, 21].

Finally, we discuss some of the approaches taken in recently pro-
posed implementations. Kennedy [10] presented a SRAM-based
implementation of HyperCuts on FPGA. Similar to ours, they mod-
ified the original algorithm to make it more efficient on hardware.
However, they rely on custom logic and achieve low power by re-
ducing clock frequency to match traffic flow. On the other hand,
we rely on PLUG platform and are able to achieve low power
while retaining high throughput. LOP [8] is an SRAM-based im-
plementation which utilizes an exhaustive search technique similar
to TCAM. It utilizes custom logic to compare multiple packets with
parts of all rules simultaneously. It consumes lesser power com-
pared to basic TCAM due to reduced number of memory accesses.
Similar to our work, it showed that TCAM can be replaced by cou-
pling multiple computation logics with SRAM. However, PLUG is
more flexible as it can handle other types of lookup processing as
well.

8. CONCLUSION
This paper presented a report on our experiences in designing a

new packet classification solution. Its not a customized FPGA solu-
tion or an implicitly customized ASIC, or an algorithm. Instead we
report on a co-design exercise of looking at a lookup processor and
algorithms simultaneously to realize the final platform. Our system
uses decision-trees generated by the EffiCuts algorithm and maps it
to the PLUG architecture. The paper describes novel mechanisms
developed at the algorithm, programming model, compiler, and
hardware level. Our final results show we can sustain a through-
put of 143 million decisions per second with a mere 3 Watts of
power.

Our design experience leads to concluding remarks and thoughts
along two directions. i) Viability of PLUG as a lookup processor.
ii) Co-designing and the necessity for a platform-level view of al-
gorithms through hardware design details for packet classification
for lookup processors.

When we started the PLUG project we used some intuitive and
reasonably complex examples to flesh out the design and drive
our search for what primitives should go into the architecture of
a lookup processor. We intentionally avoided overly complex ex-
amples so that we could make progress on several fronts simultane-
ously. Previous papers described the architecture and showed it can
perform well on simple matching problems [4, 11]. In this paper,
we report on our experience in mapping perhaps the most chal-
lenging matching problem - packet classification. It was initially
demoralizing to learn the original PLUG architecture simply could
not support EffiCuts. Simple modifications to its execution rules,
some novel improvements to its programming model and compiler
toolchain, and simple changes to the hardware allowed the mapping
of packet classification. In the end, the impressive combination of
performance and power results, was surprising to us. We now con-
fidently believe, the PLUG system is indeed balanced and has the
right set of primitives. A commercial deployment of such a system
will undoubtedly have to tweak some parameters, but the overall
architecture appears sound and truly capable of handling complex
workloads.

For the architecture and its programming model, the fact that
we were able to implement and map the newest and best packet
classification algorithm on the architecture shows it does live up to



its promise of flexibility. The fact that, we are able to beat perhaps
the best customized algorithmic packet classification solution in the
literature [9], shows the entire platform is efficient.

When we started the study our goal was to also understand if
algorithmic efforts that abstracted away details of the hardware or
implicitly assumed an ASIC, would require significant rethinking
for implementing on a lookup processor. Looking at the entire plat-
form meant several person-hours. We had to look at implementa-
tion at a level of detail and breadth in terms of algorithm, compiler,
and architecture. While time consuming, it allowed us to quanti-
tatively understand the implications of algorithms. We feel most
of the algorithmic work, while abstracting away hardware details,
implicitly makes the right set of assumptions. Algorithmic work
can abstract away all computation and SRAM as a black-box. Un-
derstanding the implications of SRAM line-width, size of accesses,
number of accesses, complexity of the computation and its poten-
tial impact on hardware area and complexity can help simplify the
process of migrating the algorithmic work to eventual platforms.
In the end, we feel lookup processor can flexibly provide the prim-
itives that these algorithms desire.
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