
Scientific Programming 18 (2010) 127–138 127

DOI 10.3233/SPR-2010-0308

IOS Press

Experiences using hybrid MPI/OpenMP in

the real world: Parallelization of a 3D CFD

solver for multi-core node clusters

Gabriele Jost a,∗ and Bob Robins b

a Texas Advanced Computing Center, The University of Texas, Austin, TX, USA
b NorthWest Research Associates, Inc., Bellevue, WA, USA

Abstract. Today most systems in high-performance computing (HPC) feature a hierarchical hardware design: shared-memory

nodes with several multi-core CPUs are connected via a network infrastructure. When parallelizing an application for these ar-

chitectures it seems natural to employ a hierarchical programming model such as combining MPI and OpenMP. Nevertheless,

there is the general lore that pure MPI outperforms the hybrid MPI/OpenMP approach. In this paper, we describe the hybrid

MPI/OpenMP parallelization of IR3D (Incompressible Realistic 3-D) code, a full-scale real-world application, which simulates

the environmental effects on the evolution of vortices trailing behind control surfaces of underwater vehicles. We discuss per-

formance, scalability and limitations of the pure MPI version of the code on a variety of hardware platforms and show how the

hybrid approach can help to overcome certain limitations.

Keywords: Hybrid MPI/OpenMP, CFD solver, scalability, performance

1. Introduction

Most of today’s HPC (High Performance Com-

puting) platforms are highly hierarchical and asym-

metric. Multiple sockets of multi-core shared-memory

compute nodes are coupled via high-speed intercon-

nects. For the scientific software developer, who aims

to achieve high scalability, it seems natural to em-

ploy a programming model which matches the hier-

archy of the underlying hardware platform: shared-

memory programming within one node and a message

passing-based approach for parallelization across the

nodes. The de-facto standard for message passing is

MPI (see [11]). The interface is standardized and im-

plementations are available on virtually every distrib-

uted memory system. OpenMP (see [13] and [2]) is

the currently most common shared-memory program-

ming model. Combining MPI and OpenMP is therefore

the path most often taken by the scientific program-

mer when trying to exploit shared-memory parallelism

within one node on multi-core node clusters. While the

idea seems good, what happens in practice is that very

*Corresponding author: Gabriele Jost, Texas Advanced Comput-

ing Center, The University of Texas, Austin, TX, USA. Tel.: +1 831

656 3321; E-mail: gjost@tacc.utexas.edu.

often a pure MPI implementation will outperform the

hybrid MPI/OpenMP code. This situation has led to the

general opinion that pure MPI is just more efficient.

The purpose of this paper is to describe how we im-

proved the performance of a full-scale CFD application

by combining MPI and OpenMP. The rest of the paper

is structured as follows. In Section 2 we give a brief

description of the PIR3D application, which is the ba-

sis of our case study. We describe the physical problem

solved and review the MPI-based parallel implemen-

tation of the code. In Section 3 we discuss the perfor-

mance of the pure MPI code, describe our approach to

adding OpenMP directives and we compare the perfor-

mance of the pure MPI and MPI/OpenMPI versions.

In Section 4 we discuss related work. In Section 5 we

draw our conclusions and provide a set of best prac-

tices for successful hybrid parallelization based on our

experience.

2. The 3D CFD solver PIR3D

The MPI-based parallel code PIR3D was evolved

from the existing sequential code, IR3D, which had

been optimized for vector processing. Details about

the development of the MPI-based parallel version,

1058-9244/10/$27.50 2010 – IOS Press and the authors. All rights reserved

128 G. Jost and B. Robins / Parallelization of a 3D CFD solver for multi-core node clusters

Fig. 1. Data structures used in PIR3D. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2010-0308.)

PIR3D, are described in [15]. In this section we review
the material.

2.1. The physical problem and numerical
methodology

Control surfaces of underwater vehicles generate
trailing vortices and it is often important to under-
stand how the evolution of these vortices is affected
by ambient turbulence, density stratification and un-
derwater currents. To study this problem, NorthWest
Research Associates, Inc. developed an application
that simulates environmental effects on trailing vor-
tices. This code (called IR3D – Incompressible Realis-
tic 3D) solves the Boussinesq flow equations (see [3])
for an incompressible fluid. One or more pairs of trail-
ing vortices are specified as initial conditions for the
flow equations and the computed solution of the flow
equations provides a simulation of the vortices’ evo-
lution. The numerical solution to the flow equations
is obtained using an explicit second-order Adams–
Bashforth time stepping scheme (see [3]). The horizon-
tal derivatives on the right-hand side of the equations
are computed using fast Fourier transforms and vertical
derivatives are computed using higher-order compact
methods. The incompressibility of the flow is main-
tained by using a projection method, which requires
solution of a Poisson’s equation at every time step. We
use a Poisson solver specially developed to solve the
specific Poisson’s equations that arise as the solution
proceeds. The solver works by computing 2D FFTs
in horizontal-planes, numerically solving the resulting
ODEs for Fourier coefficients and then doing Fourier
inversion. In order to control the build-up of small
scale numerical noise, we do periodic smoothing of
the evolving flow. Horizontal smoothing is done using
FFT’s and vertical smoothing is done with higher-
order compact methods. Sub-grid scale viscous dissi-
pation is represented by a model developed by Holza-
epfel (see [6]). In addition, IR3D provides diagnostics
such as timing information and normalized root-mean-
square divergence to check the incompressibility of the
flow.

2.2. Code implementation and parallelization

approach

The data structures used for the calculations are em-

bedded in 3D arrays, each holding NZ × NY × NX

floating point numbers. The algorithm computes mul-

tiple z- and y-derivatives in x-planes, and multiple

x-derivatives in y-planes. The Poisson solver utilizes

z-planes. The first step in the parallelization process

is to decide how to distribute the data among multi-

ple processes. By adopting a one-dimensional domain

decomposition that uses slabs to replace the planes in

the vector version of the code, we were able to re-

tain most of the original code structure. Thus, every

three-dimensional array is distributed so that each MPI

process now owns three slabs of the computational do-

main. The size of these slabs is given by NZ × locny ×

NX, NZ × NY × locnx and locnz × NY × NX, where

locn[yxz] = N [YXZ]/nprocs, nprocs being the number

of MPI processes. In Fig. 1 we symbolically represent

the data structures used in our domain decomposition.

As a default we assume a distribution in the y-direction

(using NZ × locny × NX slabs) and each MPI process

updates one y-slab. This is the configuration in which

the initial conditions are defined. Since some routines

need to perform updates in x- or z-slabs, it is necessary,

within these routines, to redistribute the data among

the MPI processes in such a way that data structures

are being swapped from y-slabs into x- or z-slabs. This

requires global communication among the processes.

Listing 1 outlines the structure of the source that exam-

plifies the interaction of computation and computation

when data swapping is required.

3. Combining MPI and OpenMP in PIR3D

Initial tests of our MPI-based PIR3D were run on

various architectures, each of them a cluster of multi-

core nodes. In this section we present timings obtained

on a Cray XT5, SGI Altix and a Sun Constellation

G. Jost and B. Robins / Parallelization of a 3D CFD solver for multi-core node clusters 129

! In main program :

a l l o c a t e (vx_y (nz , locny , nx)) ! y−s l a b a r r a y

a l l o c a t e (vx_x (nz , ny , l o c n x)) ! x−s l a b a r r a y

! In r o u t i n e DCALC:

swap vx_y to vx_x ! swap from y−s l a b t o x−s l a b

swap dvx2_y to dvx2_x ! swap from y−s l a b t o x−s l a b

u p d a t e dvx2_x u s i n g vx_x ! u p d a t e x−s l a b a r r a y

swap dvx2_x to dvx2_y ! swap back t o y−s l a b

! p r i o r t o e x i t i n g DCALC

Listing 1. Swapping example.

Cluster. We describe the limitations to scalability of

our pure MPI based parallelization approach. Further-

more, we describe our strategy to add OpenMP direc-

tives to the MPI code and present timings comparing

pure MPI vs MPI/OpenMP.

3.1. Hardware and system software

The Cray XT5 we used in our experiments pro-

vides 1592 compute nodes. Each node consists of two

AMD Opteron Barcelona 2.3 GHz quad-core proces-

sors, connected to a 3D torus by HyperTransport

links, forming an 8-way shared-memory node. There

is 16 GB of shared memory per node. The nodes are

connected via the Cray Seastar2 Interconnect systems.

A total number of 12,736 cores is available. The MPI

implementation is based on MPICH2 [1]. For com-

piling the code we used the Cray ftn compilation

script. The ftn command invokes the PGI Fortran

compiler with the Cray specific runtime environment.

We used the compiler options ftn -fastsse -tp

barcelona-64 -r8. FFTW 3.2.2.1 and Cray xt-

libsci 10.4.3 were employed as numerical libraries.

The SGI Altix ICE system we used contains 1920

compute nodes (15,360 compute cores). Each com-

pute node contains two 2.8 GHz Intel Xeon 64-bit

quad-core Nehalem processors and 24 GB of dedicated

memory, forming an 8-way shared-memory node. The

nodes are connected to each other in a HyperCube

topology DDR 4X InfiniBand network. We used MPI

version 1.26 from the SGI Message Passing Toolkit

and the Intel compiler version 11.1 with the flags

ifort -O2 -r8 for compiling the code. We used

FFTW 3.2.2 and Intel’s Math Kernel Library (MKL)

as numerical libraries. Results on both systems were

obtained by the courtesy of the HPCMO Program,

the Engineer Research and Development Center Ma-

jor Shared Resource Center, Vicksburg, MS, USA. The

Sun Constellation Cluster results were obtained on the

Ranger system, a high-performance compute resource

at the Texas Advanced Computing Center (TACC),

The University of Texas at Austin. It comprises a DDR

InfiniBand network which connects 3936 nodes, each

with four 2.3 GHz AMD Opteron “Barcelona” quad-

core chips and 32 GB of memory. This allows for 16-

way shared-memory programming within each node.

MVAPICH (see [12]) was used for MPI communica-

tion. For compilation we used the Intel compiler ver-

sion 10.1 with the flags ifort -r8 -O2 and the li-

braries FFTW 3.2.1 and GotoBlas (see [4]).

All of these systems are clusters of multi-core nodes,

connected via a high-speed network. The nodes con-

sist of two or more processors, which are also referred

to as sockets. Each socket has multiple computational

cores. The sockets within each node can directly access

each others’ memory, without going through the net-

work, thereby forming a shared-memory system. Data

located on different nodes needs to be explicitly com-

municated via the network. The systems expose a hi-

erarchy of cores, sockets and nodes. They show dif-

ferent characteristics for intra-socket, intra-node and

inter-node communication. This has an impact on MPI

communication. The effect of communication hierar-

chies on MPI and application performance is discussed

in [5,8,10]. The performance of the application will be

affected by how processes are mapped onto processor

cores. There are different ways to place MPI processes

onto the nodes. For example, when running a code us-

ing 4 MPI Processes on Cray XT5, they could all reside

within one socket, or be placed on cores on different

sockets within one node, or be spread out across cores

on different nodes. These possibilities are depicted in

Fig. 2.

3.2. Timings and scalability of pure MPI PIR3D

We tested the performance of the parallel code on

two sets of input data. One case is of size NX = 256,

NY = 512 and NZ = 256 (case 1), the other is other

130 G. Jost and B. Robins / Parallelization of a 3D CFD solver for multi-core node clusters

Fig. 2. Different process placement strategies. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2010-0308.)

Fig. 3. Test case 1 employing different process placement strategies.

of size NX = 1024, NY = 512, NZ = 256 (case 2).
We ran each case for 100 steps employing 2 different
process placement strategies by using 4 and 2 cores
per socket. The timings for 32, 64, 128 and 256 MPI
processes are shown in Figs 3 and 4. Timings on all

three platforms indicate a significant performance in-
crease when using only half of the cores per socket for
MPI processes. On the one hand, this offers an easy
way for the user to reduce the total execution time.
The flip side is, that by using only 2 cores per socket,

G. Jost and B. Robins / Parallelization of a 3D CFD solver for multi-core node clusters 131

Fig. 4. Test case 2 employing different process placement strategies.

half of the computational power is left idle. Also, it

may increase the actual turnaround time for the user,

as the job may have to wait longer to request the large

amount of resources. An application-inherent limita-

tion to scalability of our MPI implementation is that

the maximum number of MPI processes is limited to

the size of the shortest of the 3 dimensions. This is due

to the 1D domain decomposition and the need to swap

the data in all 3 dimensions. For the input data sets

under consideration this restricts the number of MPI

processes to 256 in both cases.

3.3. Adding OpenMP parallelization

The OpenMP Application Programming Interface

(API) is standardized for Fortran and C/C++. It con-

sists of a set of compiler directives, runtime libraries,

and environment variables. These facilities allow the

user to direct the compiler to generate multi-threaded

code for suitable sections of the code, for example par-

allelizable DO-loops. Threads are being forked at the

beginning of parallel regions and joined at the end. The

execution proceeds on a single thread outside of paral-

lel regions.

We have noticed that we get better performance

when not saturating the sockets with MPI processes.

To take advantage of the idle cores within the nodes

and the available shared memory we employ OpenMP

shared-memory parallelization. This enables an MPI

process to use multiple streams of execution during

computational intensive phases. We have employed

the following strategy for inserting compiler directives

into the MPI code:

• Identify most time consuming routines using pro-

filing information.

• Place OpenMP directives on parallelizable time

consuming loops.

• Place directives on loops across undistributed di-

mensions.

• Place the directives so that no MPI calls occur

within parallel regions: no thread-safety is re-

quired for the MPI library.

An example is csfftm which we identified as one

of the time consuming routines. The source code is

shown in Listing 2. The routine performs multiple one-

dimensional ffts, by calls to csfft, which, in turn, calls

routines from the FFTW library. Since we are now is-

suing calls to a runtime library routine, we do have

to concern ourselves with the issue of thread-safety.

A library routine is thread-safe, if it functions correctly

when called simultaneously by multiples threads. The

transforms are independent of each other and can be

performed in parallel. To achieve this, we inserted the

132 G. Jost and B. Robins / Parallelization of a 3D CFD solver for multi-core node clusters

s u b r o u t i n e c s f f t m (i s i g n , ny ,m, rny , a , m2 , f , m1)

i m p l i c i t none

i n t e g e r i s i g n , n , m, m1 , m2 , i z e r o

i n t e g e r i , ny

i n t e g e r omp_get_num_threads

r e a l work , t a b l

r e a l a (1 : m2 , 1 :m)

complex f (1 : m1 , 1 :m)

! $omp p a r a l l e l i f (i s i g n . ne . 0)

! $omp do

do i = 1 , m

CALL c s f f t (i s i g n , ny , rny , a (1 , i) , f (1 , i))

end do

! $omp end do

! $omp end p a r a l l e l

re turn

end

Listing 2. Source code for subroutine csfft.

OpenMP omp parallel do on the loop over the

calls to csfft.

FFTW can be used in a multi-threaded environment,

but some care must be taken. The fftw_execute

routines are thread-safe. The FFTW planner routines,

however, share data and should only be called by one

thread at a time. We decided to have all the plans

be created by only one thread. We can achieve this

by specifying the OpenMP IF-clause when creating

the parallel region. At runtime, the value of isign

will be checked. During the initialization phase this

value is 0 and the call is executed by only one thread.

The calls to fftw_execute, which take the bulk

of the compute, will be executed in parallel. Since

the plan is not modified by fftw_execute, it is

safe to execute the same plan in parallel by multiple

threads. We do not have to worry about MPI thread-

safety, since all communication occurs outside of par-

allel regions. Programs that issue calls to the MPI li-

brary within parallel regions need initialize MPI by

using MPI_init_thread instead of MPI_init

and check whether the required level

of thread-safety is provided.

When running multithreaded MPI codes process,

thread and memory placement becomes even more

critical than for pure MPI codes. It is essential to

ensure that the MPI processes actually use multiple

cores. If multiple threads end up running on the same

core, the performance would actually decrease when

increasing the number of threads. In addition, the cores

should be located within the same socket. Accessing

data on memory modules located on a different socket,

even though possible within the same node, usually

has higher latency and lower bandwidth. A challenge

which we encountered when running our hybrid test

cases was, that at this point there is no standard API

to control such a placement and we were dependent

on vendor provided means to achieve the desired ef-

fect. The Cray XT5, mpirun run command (aprun)

provides means to do so, the SGI Altix has environ-

ment variables, e.g., DSM_CPULIST and the dplace

and omplace commands, while on the Sun Con-

stellation Cluster we used the Linux numactl com-

mand. The numactl command provides means to

control process and memory placement and is avail-

able on generic Linux clusters. It may take some ef-

fort to achieve the proper placement and the effect on

performance can be enormous. Listing 3 shows some

examples how to run hybrid codes on different sys-

tems.

Timings for the hybrid MPI/OpenMP code for test

case 1 on the Cray XT5 are shown in Figs 5 and 6. The

behavior was similar on the Sun Constellation Cluster.

The horizontal axis denotes the number MPI processes

and the number of OpenMP threads employed. The

vertical axis is the time in seconds. Figure 5 shows tim-

ings for case 1. The columns are ordered according to

the total number of cores with different MPI process

and OpenMP thread combinations. Figure 6 shows

timings for case 2, using only 1 MPI process per socket

and increasing the number of OpenMP threads from 1

to 4. This figure shows the speed-up obtained through

G. Jost and B. Robins / Parallelization of a 3D CFD solver for multi-core node clusters 133

P l a c e 4 p r o c e s s e s employing 2 t h r e a d s each on 8 c o r e s

Cray XT5 :

ap run −n 4 −N 2 −d 2 . / a . out

SGI A l t i x :

mpirun −np 4 omplace − n t 2 . / a . out

G e n e r i c Linux C l u s t e r assuming 8 c o r e s p e r node :

p r o c p l a c e . sh :

MPI Proc 0 :

numac t l −−physcpub ind =0 ,1

MPI Proc 1 :

numac t l −−physcpub ind =2 ,3

MPI Proc 2 :

numac t l −−physcpub ind =4 ,5

MPI Proc 4 :

numac t l −−physcpub ind =6 ,7

mpirun p r o c p l a c e . sh −np 4 . / a . out

Listing 3. Examples how to achieve proper placement for hybrid runs.

Fig. 5. Test case 1 employing different MPI process and OpenMP thread combinations.

OpenMP parallelization. Depending on hardware plat-

form and test case, we do observe that MPI/OpenMP

can outperform pure MPI on the same number of cores.

An example is test case 1, running on 256 cores, where

128 processes using 2 threads achieve better perfor-

mance than 256 single threaded processes. We col-

lected performance statistics on the Cray XT5 using

the CrayPat performance analysis tool to explain this

behavior. We profiled the following scenarios:

• 128 × 1 running on 128 cores;

• 128 × 1 running on 256 cores;

• 128 × 2 running on 256 cores;

• 256 × 1 running on 256 cores.

Comparing the profiles in Fig. 7 explains the effect

why we observe the significant increase in execu-

tion time when placing MPI on all cores within a

socket. The figure shows profiles for running 128 MPI

processes using 128 and 256 cores. Intuitively we

would expect communication to be fastest, when satu-

rating all core with MPI processes, as inter-node com-

munication can take advantage of the available shared

memory without using the network. From the profiles

134 G. Jost and B. Robins / Parallelization of a 3D CFD solver for multi-core node clusters

Fig. 6. Test case 2 employing 1, 2 and 4 threads per MPI process. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/

SPR-2010-0308.)

(a) (b)

Fig. 7. CrayPat performance profile for case 1 on Cray XT5. (a) Performance profile using 128 MPI on 128 cores. (b) Performance profile using

128 MPI on 256 cores.

we learn that the computation time, included in the

USER time, decreases from 86 to 76 s when using only

2 cores per socket. This can be explained by resource

contention for on socket memory access. The major

time decrease, however, is due to a decrease in time

spent in MPI routines, which drops from 85 to 50 s,

mostly due to reduced time spent in the MPI_Waitall

routine. The MPI_Waitall results from the all-to-all

type communication, which is necessary for the data

redistribution as discussed in Section 2. In Figs 8 and 9

we show the bandwidth of MPI_Alltoall for 16 and

64 MPI processes. The measurements were taken on

two of our test platforms. We notice that for both plat-

forms spacing out the MPI processes is advantageous,

G. Jost and B. Robins / Parallelization of a 3D CFD solver for multi-core node clusters 135

Fig. 8. Comparing 1 MPI vs 4 MPI procs per socket.

Fig. 9. Comparing 1 MPI vs 4 MPI procs per socket.

whenever network access is involved. On the Sun Con-

stellation Cluster, with 16 cores per node, this is the

case for the 64 process run. On the Cray XT5, with

only 8 cores per node, the 16 as well as the 64 process

run both benefit from not saturating the nodes with

processes. From this we conclude that the cause is con-

136 G. Jost and B. Robins / Parallelization of a 3D CFD solver for multi-core node clusters

O v e r a l l User Time

Time % | Time | Group

100.0% | 121 .517044 | 1782821 .4 | T o t a l

|−−−

| 57.3% | 70 .877576 | 1194165 .0 | USER

||−−

| | 0.5% | 70 .716171 | 1194165 .0 | pe . 6 8

|||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 | | 0.4% | 70 .716171 | 1194165 .0 | t h r e a d . 0

3 | | 0.1% | 10 .409677 | 1191148 .0 | t h r e a d . 1

|||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

CSFFT User Time

|||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| | 2.5% | 3 .039335 | 658944 .0 | c s f f t _

|||−−

3 | | 0.0% | 3 .116081 | 658944 .0 | pe . 6 8

||||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 | | | 0.0% | 3 .049541 | 658944 .0 | t h r e a d . 0

4 | | | 0.0% | 2 .859632 | 658944 .0 | t h r e a d . 1

||||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 4. Profile for 128 processes on 256 cores 2 threads per process. The listing shows process 68 as and example.

tention when multiple MPI processes all require access

to the network link of the socket. Reducing the number

of MPI processes per node mitigates the contention for

network access, as fewer processes compete with each

other.

Load-balancing across the threads, when using 2

threads per MPI process on 256 cores is displayed in

Listing 4. We show the load-balance for one of the 128

MPI processes. Only 10 s of the 70 s total user time

is actually executed by multiple threads. This is due to

the fact that we have parallelized only a small num-

ber of loops. The execution time for both test cases,

however, is spread across many subroutines, which we

have not considered for OpenMP parallelization at this

point. If we look at csfft as an example for a routine

executed by multiple threads, we see that the time de-

creases from 5.1 for single threaded execution to 3.0 on

2 threads. In order to achieve similar speed-up for the

whole application, more fine grained-parallelism needs

to be exploited.

In Listing 5, we show the performance profile for

a run with 256 MPI processes on 256 cores. This run

suffers from high MPI overhead due to the already dis-

cussed contention for network access.

We also looked into the memory requirements of the

128 and 256 process executions for test case 1. From

the Linux size command applied to the executa-

bles for the 128 (xpir3d.128) and the 256 (xpir3d.256)

process runs:

xpir3d.128 40.8 MB total size

xpir3d.256 36.7 MB total size

per MPI process. This does not include the memory for

the distributed data, which is allocated at runtime. The

per process requirements for the distributed data are

around 54 and 27 MB for the 128 and 256, respectively.

The per process memory requirements are somewhat

higher for the 128 execution than for the 256 execu-

tion, but certainly not by a factor of 2. The reason is

that the program, requires many 2D local work arrays,

which are replicated on all MPI processes. We moni-

tored the size of the resident data for both executions

using the Linux top command. It shows 228 MB per

process and 184 MB per process for 128 and 256 runs,

respectively. The MPI library itself allocates space for

communication buffers. All of this yields significantly

higher memory requirements the more MPI processes

are involved. For test case 2 the memory requirements

restricted us to place only 1 MPI process per socket.

In this, we gained an extra 10–14% speedup by us-

ing multiple OpenMP threads. Timings are shown in

Fig 6.

G. Jost and B. Robins / Parallelization of a 3D CFD solver for multi-core node clusters 137

Time % | Time | Group

|−−−−−−−−−−−−−−−−−−−−−−−−−−

| 61.0% | 85 .577149 | MPI

||−−−−−−−−−−−−−−−−−−−−−−−−

| | 23.3% | 32 .714120 | m p i _ w a i t a l l _

| | 17.2% | 24 .199623 | mpi_ ibsend_

| | 9.5% | 13 .276114 | mpi_bsend_

| | 7.6% | 10 .708347 | mpi_send_

| | 3.1% | 4 .406558 | m p i _ i r e c v _

||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| 37.2% | 52 .132345 | USER

||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| | 14.9% | 20 .943498 | main

| | 3.6% | 5 .090790 | pca lc_mpi_

| | 2.9% | 4 .088041 | d c a l c _

| | 2.1% | 2 .941339 | c s f f t _

Listing 5. Profile for 256 processes on 256 cores single thread.

4. Related work

The pure MPI implementation of the PIR3D and its
performance limitations are the topic of [15]. However,
this paper does not discuss the hybrid implementation
of the code. There are many papers discussing hybrid
parallelism under various aspects. We can only name
a few: a very useful set of hybrid benchmark codes
from the field of CFD are the multi-zone versions of
the NAS Parallel Benchmarks NPB-MZ. They are de-
scribed in [16] and their performance characteristics
are discussed in [7]. Potentials and challenges of hy-
brid MPI/OpenMP on multi-core node clusters are pre-
sented in [5] and [14]. The authors conclude that hy-
brid parallelism should only be employed if scalability
can no be obtained with pure MPI parallelism and that
the benefit of hybrid parallelism depends on the par-
ticular application. The work presented in this paper
complements the previous work in that it discusses a
full-scale real-world application and provides detailed
performance analysis statistics. Opportunities for ex-
ploiting OpenMP task parallelism in MPI programs
to overlap communication and computation are dis-
cussed in [9]. In the current work we use non-blocking
MPI communication for the data swapping. Overlap-
ping communication and computation is not feasible
for the application.

5. Conclusions

In this paper, we described how we employed hy-
brid MPI/OpenMP programming to increase the per-
formance of a full-scale CFD application which was

originally parallelized using MPI. We tested the new

hybrid code on different compute systems and iden-

tified common benefits and challenges when combin-

ing the two programming models. Benefits include the

decrease in communication overhead by lowering the

number of MPI processes, which, in turn, mitigates

contention for network access among processes run-

ning on the same node. We also noted decrease in

memory requirements by lowering the amount of repli-

cated data and nearly linear speed-up of the parallel

regions. Challenges we experienced are that the per-

formance depends very much on process, thread and

memory placement. The fact that there is currently no

standard API to control process and thread placement

requires user familiarity with the means of process

placement for the particular compute system. Adding

OpenMP directives also raises issues regarding the use

of run time libraries. Numerical libraries called from

within parallel regions need to be thread-safe, which

means that the calls to these routines can be issued by

multiple threads at the same time without causing side

effects. Furthermore, in case the numerical libraries are

multithreaded themselves, care has to be taken with re-

gard to how this interacts with the OpenMP paralleliza-

tion. Within an OpenMP parallel region, for example,

the library routine itself should execute in single thread

mode. In order to benefit from hybrid MPI/OpenMP

parallelism the application needs to have sufficient fine

grained parallelism in order to benefit from OpenMP.

At this point we have only begun exploiting OpenMP

for our application and focused on a very small subset

of parallelizable loops. The fact, that we were able to,

138 G. Jost and B. Robins / Parallelization of a 3D CFD solver for multi-core node clusters

with very little effort, outperform the pure MPI code,

makes us optimistic about this approach.

We will conclude with a set of best practices for ex-

ploiting hybrid parallelism, based on our experience

with PIR3D. If the application shows good scalabil-

ity just using MPI we would not recommend adding

OpenMP directives unless there are idle cores avail-

able. Hybrid parallelization should be considered if

the scalability of MPI parallelism is limited, for ex-

ample by the limited amount of coarse-grained paral-

lelism or inefficient load-balance at MPI level. Another

reason is the available of idle cores, which occurred

for PIR3D because of high memory requirements. We

then recommend obtaining a profile for a relevant

set of input data and to investigate whether the most

time consuming routines contain a sufficient amount of

parallelizable, computational intensive loops. Possible

overlap of computation and communication is also a

reason to consider hybrid parallelism. One should have

an understanding of the hierarchies within the under-

lying compute system and the means of how to place

processes, threads and memory during execution. This

placement impacts the performance significantly. The

scalability of the OpenMP parallelization within a sin-

gle node should be ensured. When calling runtime li-

brary routines within parallel regions, these routines

need to be thread-safe and should run on only a sin-

gle thread. In summary we conclude that hybrid par-

allelization is a way to increase the performance when

the application exposes a hierarchy of coarse-grained

and fine-grained parallelism. It is important that this hi-

erarchy is mapped correctly onto the hierarchy within

the underlying hardware platform.

Acknowledgements

This work was funded by the Office of Naval Re-

search (ONR), the National Aeronautics and Space

Administration (NASA) and NorthWest Research As-

sociates, Inc. (NWRA). Support was also provided by

the DoD High Performance Computing Modernization

Program (HPCMP), User Productivity Enhancement,

Technology Transfer and Training (PETTT) program.

We do thank the Engineer Research and Development

Center Major Shared Resource Center, Vicksburg, MS,

USA for providing computional resources and support

on the Cray XT5 and SGI Altix systems. Our grati-

tude also goes to the Texas Advanced Computing Cen-

ter (TACC) of the University of Texas at Austin which

supported us by providing compute time and support

for our experiments on the Sun Constellation Cluster.

References

[1] Argonne National Laboratories, MPICH2, 2010, available at:

http://www.mcs.anl.gov/research/projects/mpich2/.

[2] B. Chapman, G. Jost and R. van der Pas, Using OpenMP, MIT

Press, Cambridge, MA, 2007.

[3] J. Ferzinger and M. Peric, Computational Methods for Fluid

Dynamics, Springer, New York, NY, 2002.

[4] K. Goto and R.A. van de Geijn, Anatomy of high-performance

matrix multiplication, ACM Transactions on Mathematical

Software 34(3) (2008), Article 12.

[5] G. Hager, G. Jost and R. Rabenseifner, Communication char-

acteristics and hybrid MPI/OpenMP parallel programming on

clusters of multi-core SMP nodes, in: Proceedings of CUG 09,

Atlanta, GA, USA, May 4–7, 2009.

[6] F. Holzaepfel, Adjustment of subgrid-scale parameterizations

to strong streamline curvature, AIAA Journal 42 (2004), 1369–

1377.

[7] H. Jin and R.F. Van Der Wijngaart, Performance characteristics

of the multi-zone NAS parallel benchmarks, Journal of Par-

allel and Distributed Computing 66 (2006), 674–685, Special

Issue: 18th International Parallel and Distributed Processing

Symposium.

[8] L. Koesterke and K.F. Milfeld, How does an asymmetric node

architecture affect applications? A simple method to gauge the

effects of NUMA on load-balancing, in: 2009 TeraGrid Con-

ference, Arlington, VA, USA, 2009.

[9] A. Koniges, R. Preissl, J. Kim, D. Eder, A. Fisher, N. Masters,

V. Mlaker, S. Ethier, W. Wang, M. Head-Gordon and N. Wich-

mann, Application acceleration on current and future cray plat-

forms, in: Proceedings of CUG 2010, Edingburgh, 24–27 May,

2010.

[10] K.F. Milfeld, L. Koesterke and K.W. Schulz, Parallel commu-

nications and NUMA control on Teragrid’s New Sun Constel-

lation system, in: 2008 TeraGrid Conference, NV, USA, 2008.

[11] MPI Forum, MPI-2.2 documents, 2010, available at: http://

www.mpi-forum.org/docs/docs.htm.

[12] Ohio State University, 2010, MVAPICH: MPI over InfiniBand,

10GigE/iWARP and RoCE, available at: http://mvapich.cse.

ohio-state.edu/.

[13] OpenMP Architexture Review Board, 2010, The OpenMP API

specification for parallel programming, available at: http://

openmp.org/wp/.

[14] R. Rabenseifner, G. Hager and G. Jost, Hybrid MPI/OpenMP

parallel programming on clusters of multi-core SMP nodes, in:

D.E. Baz, F. Spies and T. Gross, eds, in: Proceedings of the

17th Euromicro International Conference on Parallel, Distrib-

uted and Network-Based Processing, PDP 2009, Weimar, Ger-

many, 18–20 Febuary, 2009, IEEE Computer Society, pp. 427–

436.

[15] R. Robins and G. Jost, Parallelization of a vector-optimized

3-D flow solver for multi-core node clusters, in: Proceedings

of UGC10, June 2010.

[16] R.F. Van Der Wijngaart and H. Jin, NAS parallel bench-

marks, multi-zone versions, NAS Technical Report NAS-03-

010, NASA Ames Research Center, Moffett Field, CA, USA,

2003.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

