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Abstract

In this work we repo t on our experiences running OpenMP programs on a commodity cluster
of PCs running a softw_,re distributed shared memory (DSM) system. We describe our test en-

vironment and report on the performance of a subset of the NAS Parallel Benchmarks that have
been automaticaly parall elized for OpenMP. We compare the performance of the OpenMP imple-
mentations with that of tac_r message passing counterparts and discuss performance differences.

1 Introduction

Computer Architectures usi_g clusters of PCs with commodity networking have become a low cost

alternative for high end scientific computing. Currently message passing is the dominating program-

ruing model for such cluster_. The development of a parallel program based on message passing adds

a new level of complexity t_, the software engineering process since not only computation, but also

the explicit movement of dala hetween the processes must be specified.

Shared memory parallel processors (SMP) provide a user friendlier programming model. The use

of globally addressable men_oly allows users to exploit parallelism while avoiding the difficulties of

explicit data distribution on _arallel machines. Parallelism is commonly achieved by multi-threading

the execution of loops. Comi_iler directives to support multithreaded execution of loops are supported

on most shared memory pardi,el platforms. In addition, many compilers provide an automatic paral-

lelization feature taking all tt,e burden of code analysis off the user. Efficiency of compiler parallelized

code is often limited, since _ thorough dependence analysis is not possible without user information.

Alternatively, there are para tetization support tools available which take the tedious work of depen-

dence analysis and generation of directives off the user but allow user guidance for critical parts of the

code. An example Of such a tool is CAPO [10].

While shared memory a 'chitectures provide a convenient programming model for the user, their

drawback is that they are e_pensive and the scalability of the code may be limited due to poor data
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locality and possibly large s:nchronization overhead. During recent years there have been consider-

able efforts to develop system software to support DSM (Distributed Shared Memory) programming

which enables the user to e_qploy the convenient shared memory programming model on a network

of processors, thereby maintaining the ease of use while maintaining the low cost of hardware. Ex-

amples of such systems are TmadMarks [2] and SCASH [13]. These systems allow the support of

OpenMP parallelization on clusters of processors, thereby removing the major impediment to their

usage which is the high effort to develop a message passing version from a sequential program. We

have installed publicly available DSM software on a commodity cluster of PCs and tested its perfor-

mance on a set of benchmarl, kernels. The paper seeks to address the issue of evaluating the efficiency

of DSM without explicit hardware support. The rest of the paper is structured as follows: In section 2

we discuss the message pas_ing and the shared address space programming models. In section 3 we

describe the hardware platfo m and system software of our test environment. In section 4 we describe

our evaluation strategy and discuss the performance of the individual benchmark kernels. In section 5

we discuss some of the prob eros we encountered. In section 6 we briefly examine some related work

and in section 7 we summarize our conclusions and discuss future work.

2 Programming Models

Currently message passing md shared address space are the two leading programming models for

clusters of SMPs.

2.1 Message Passing

Message passing is a well uaderstood programming paradigm. The computational work and the as-
sociated data are distributed between a number of processes. If a process needs to access data located

in the memory of another 1,rocess, it has to be communicated via the exchange of messages. The

data transfer requires cooperative operations to be performed by each process, that is, every send

must have a matching recetve. The regular message passing communication achieves two effects:

communication of data fron sender to receiver and synchronization of sender with receiver.

MPI (Message Passing Interface) [12] is a widely accepted standard for writing message passing

programs. It is a standard t,rogramming interface for the construction of a portable, parallel appli-
cation in Fortran or in C/C _+, which is commonly used when the application can be decomposed

into a fixed number of processes operating in a fixed topology (for example, a pipeline, grid, or tree).

MPI provides the user with a programming model where processes communicate by calling library

routines to send and receive messages. Pairs of processes can perform point-to-point communication

to exchange messages. For increased convenience and performance a group of processes can also

call collective communicati m routines to implement global operations such as broadcasting values

or calculating global sums. Global synchronization can be implemented by calls to barrier routines.

Asynchronous communication is supported by providing calls for probing and waiting for certain

messages. In MPI-1, all cotnmunication operations require the sending as well as the receiving side

to issue calls to the message passing library.

2.2 Shared Address Space

Parallel programming on a s'_ared memory machine can take advantage of the globally shared address

space. Compilers for sharLd memory architectures usually support multi-threaded execution of a

program. Loop level parallelism can be exploited by using compiler directives such as those defined
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in theOpenMPstandard[14]. Multipleexecutionthreadsareautomaticallycreatedfor performing
theworkinparallel.Datat_ansferbetweenthreadsisdonebydirectmemoryreferences.OpenMP
providesafork/joinexecuti_mmodelin whicha programbeginsexecutionasa singleprocessor
thread.Thisthreadexecute_sequentiallyuntilaPARALLELconstructis found.At thistime,the
threadcreatesateamof thretdsandit becomesitsmasterthread.All threads'executethestatements
lexicallyenclosedbytheparallelconstruct.Work-sharingconstructs(DO,SECTIONSandSINGLE)
areprovidedtodividetheexecutionoftheenclosedcoderegionamongthemembersof ateam.All
threadsareindependentandnaysynchronizeattheendof eachwork-sharingconstructoratspecific
pointseitherimplicitlyorexplicitly(specifiedbytheBARRIERdirective).Exclusiveexecutionmode
isalsopossiblethroughthecefinitionofCRITICALregions.

Thisapproachprovides_relativelyeasywaytodevelopparallelprogramsbuthasdisadvantages.
It isoftendifficultto achiewscalabilityof thecodefor alargenumberof processorsduetoalackof
datalocalityandexcessives,,nchronizationcosts.

3 Hardware Platform and Software Description

Our test environment consi_ t_ of a cluster of commodity PCs at the High Performance Computing

Center of the University of _;tuttgart (HLRS). In the following we give some details about hardware

and system software.

3.1 Platform descriptil_n

We have used a cluster at HLRS consisting of 8 NEC 120Ed server nodes as the test platform. The

nodes are dual processor s?stems with two 1 GHz Pentium III and 2 GB of main memory. Each

node is equipped with a Myrinet 2000 NIC in a fast 64 bit / 66 MHz PCI slot. The nodes are based

on the ServerSet III HE chil_set and have a good communication performance to the Myrinet cards.

The bandwidth from memo y to the card is 409 MB/s for read operations and 480 MB/s for write

operations. These data have been acquired with the program 'gin_debug' provided by Myricom. A
collection of data for other n _otherboards and chipsets can be found at [ 1 ]. For our evaluation we used

only one CPU per node.
In order to compare the performance of SCASH with a true shared memory system, we used a

16-way NEC AzusA. The AzusA is a shared memory system with IA-64 processors. Both systems,

the distributed memory clu, te._ and the shared memory AzusA, were running Linux in its 2.4 ver-

sion. This reduces effects title to different memory managments of different operating systems on

the distributed and the shar:d memory architecture. The performance impact of different memory

mangement systems is discussed in In [5].
We did not have a four _ r eight processor IA-32 system available for the tests.

3.2 SCore

SCore is a parallel progran_ming environment for workstations and PC clusters, developed by the

Real World Computing Part _crship (RWCP). The project has now been transferred to the PC Cluster

Consortium. Amongst othe features, SCore provides its own communication layer called PM [19,

20]. It aims at providing a ,mfform interface to different communication devices like Fast Ethernet,

Gigabit Ethernet or Myrinet

SCore also supports dif|crent parallel programming paradigms like message passing or shared

memory. On the message p_ _smg side there is a MPI-implementation based on MPICH with an addi-



tionaldevicespecificallyde.ignedforthePMlayer.Sharedmemoryissupportedin twoways.The
PMlayerhasasharedmenorydevicethatis intendedfor SMPsystems.It usesmemory-mapped
sharedsegementsforthecoNlraunicationbetweenprocessesonatruesharedmemorysystem.Addi-
tionally,theSCorearchitect_lrehasasoftwaredistributedsharedmemorysystemcalledSCASH[6],
thatweemployedto obtaintheresultsofthetestswepresentin thispaper.

3.3 SCASH

SCASH [6] is a page-based _oftware distributed shared memory system. It is implemented as a user-

space runtime library which u_es the PM layer for communicating pages between cluster nodes.

It employs an eager rele:tse consistency model to ensure the consistency of shared memory on a

per-page basis. This means that at memory synchronisation points only modified parts of memory are

updated, which usually requ res exchange of data between nodes.

The home node of a pa_ is the node that keeps the latest data of the page. If other nodes change

the data within a page it mu_t be updated on the home node. To reduce memory transfer, SCASH also

provides the possibility to cl_ange the home node of a page. It is possible to use two page consistency

protocols, an invalidate and _n update protocol, which can be chosen dynamically.

To reduce memory transter between nodes, the nodes use cached copies of requested pages. Only

on write operations to the memory can these copies become inconsistent. The update protocol speci-

fies that all copies of a partic:ular page be updated once one node changes its contents.

In the invalidate protoc_l, the home node of a page notifies all nodes which share that page when

a page has been altered and -ached copies of that page on other nodes become invalid.

3.4 Omni OpenMP

Omni OpenMP is a collecti_n of programs and libraries that enable OpenMP for back-end compilers

that do not support it natively The front-end to these compilers translates C or Fortran77 OpenMP

source texts into multi-threaded C with calls to a runtime library.

One of the main goals, f Omni OpenMP is portability, so the translation pass from an OpenMP

program to the target code i_ written in JAVA. The target code is - in turn - compiled by the back-end

C compiler on the target pl', tform. For the tests presented here we used the GNU C Compiler as the

backend compiler.
The Omni compiler swte can be configured to use several different underlying libraries. For

the thread system Solaris Threads or pthreads are supported, but there is also support for Stack-

Threads [18] developed by Real World Computing Project (RWCP). In addition to the support of

threads there is support for ,c_,eral shared memory implementations, like UNIX shmem. In our tests

we used the support for th,' SCASH distributed shared memory system which has been described

above.

The Omni OpenMP co_npiler suite is also available for IA-64. For tests on the shared memory

Azusa system (see 3.1) we used the Omni compiler, too, again in order to minimize the influence of
different software. This w_v we can attribute certain observations to either the DSM system or the

Omni OpenMP compiler.

4 Case studies

For our evaluation we selec cd a subset of the NAS Parallel Benchmarks [3]. They were designed to

compare the performance ol parallel computers for computational fluid dynamics (CFD) applications.



The full suite consists of fivc benchmark kernels and three simulated CFD applications. We selected

three of the five benchmark kernels for our study.

4.1 Evaluation Strategy

To evaluate the performance of our test environment we compare the timings of OpenMP implemen-

tations of the benchmark ketnels to:

1. Timings of their mess:tge passing counterparts on the same system.

2. Timings obtained on a true shared memory system but with the same operating system and

therefore a comparabl _"memory managment system.

The first OpenMP versus M _1 comparison will give us some means to determine how well the DSM

software handles memory c,_herency and synchronization. In the MPI implementation access to re-

mote data is achieved by calls to the message passing library. The user has control over data locality

and decides when and how much data to communicate. This provides the opportunity to minimize

communication during program execution. Another aspect of the message passing approach is that

data communication and sy _chronization are integrated. The send and receive operations not only

exchange data, but also regulate the progress of the processes. In the OpenMP implementation the
locations of the data, the mnount of data to be communicated, and the synchronization among the

threads depends on the DSM system and the compiler. As explained in section 3, the DSM system de-

tects the necessity of communicating data when a page of memory is accessed that has been marked as

updated by another process. We will use the number of page requests as an indicator for the amount
of communication in the D:;,M system. Even in the case where a hand-optimized message passing

implementation outperform_ the DSM system, the ease of application porting may compensate for a

certain loss of performance

The comparison of Opel MP on a cluster versus OpenMP on a shared memory node gives us some

estimate of the speedup th:Jt can be expected from the OpenMP programming paradigm on a true

shared memory architecture Our test platforms are described in section 3. We use the Omni compiler

on both platforms.
The benchmarks come ia different classes determined by the problem size. We ran only the small

problems of class S,W, and A, since we encountered some problems with the larger sizes which will
be discussed in section 5.._;i_ce our system is small, consisting of only 8 nodes, it is hazardous to

extrapolate the scalability _,tudies to larger systems. However, running the very small benchmark

classes allows us to gain some insight into how the computation to communication ratio impacts the

performance.
Since the ease of applic_ tion porting is an important factor in favor of the DSM system, we started

out with a sequential versiolL of our benchmark kernels and used the automatic parallelization support

tool CAPO [10] to insert OpenMP directives, thereby minimizing the parallelization effort. CAPO

was developed at the NAS/, Ames Research Center. It takes as input a sequential Fortran program.

It then performs an extens_ +e dependence analysis over statements, loop iterations, and subroutine

calls and generates Fortran ,:ode containing OpenMP directives. CAPO is based on the dependence

analysis module of the CAl"lools [8] parallelization tool. Our starting point for the message pass-

ing version of the benchmark kernels was the NPB2.3 [4] release of the NAS Parallel benchmarks.

For the OpenMP implemet;tations we started with an optimized serial implementation of the same

benchmarks as described i_ 19]. The structure of the serial code is kept very close to the message

passing code. Only slight i _t,difications were applied to the kernels considered in our study and we
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Figure 1: Speedup, for class A of the EP benchmark for OpenMP/DSM and MPI

will describe them in the see ions below. A good description about how to use CAPO for the OpenMP

parallelization of the benchmarks is given in [10],

4.2 The EP benchmark kernel

EP stands for ernbarrassingly parallel. The kernel generates pairs of Gaussian random deviates ac-

cording to a specific schemt. _s the name suggests, the iterations of the main loop can be executed

in parallel. Tool based Ope _MP parallelization of the kernel was possible without user interaction.
Once the data is distributed, the main loop which generates the Gaussian pairs and tallies the counts

does not require access to re note data except for several global sum reductions at the end. In the MPI

implementation the global s, u'c_is achieved by calls to mpi_a 11 reduce. The OpenMP implementa-
tion uses the OMP PARALI EL REDUCTION directive. The MPI implementation shows a very low

communication overhead, v_hich is less than 1% even for the smallest benchmark class on 8 nodes.

If m denotes the log2 of th,, number of complex pairs of uniform (0, 1) random numbers, then the

problem size of the benchm.trk classes under consideration is:
Class S: m = 24

ClassW: rn=25

Class A: m = 28

The OpenMP/DSM imlqcmentation shows a very low number of page requests to the DSM sys-

tem. As expected, the mess_ ge passing as well as the OpenMP/DSM implementation show an almost

linear speedup for all bench,hark classes. For 8 nodes the OpenMP/DSM performance ranges within

97 % to 102% of that of lklPI, depending on the benchmarks class. As an example we show the

speedup for class for class/, i_l fig. 4.2.

4.3 The CG benchmark kernel

The CG benchmarks kerne uses a conjugate gradient method to compute an approximation to the

smallest eigenvalue of alm :e, sparse, unstructured matrix. The kernel is useful for testing unstruc-

tured grid computations ar_] communications since the underlying matrix has randomly generated

locations of entries. Paralbli_ation for message passing and directive based versions occur on the



samelevelwithintheconju_ategradientalgorithm.Thebasicparalleloperationsare:sparsematrix
vectormultiply,AXPYoper.ttions,andsumreductions.ThecodewasparallelizedusingCAPOwith-
outanyuserinteraction.If _adenotesthenumberofrowsof thesparsematrixandnzthenumberof
non-zeroelementsperrow,Inentheproblemsizeof thebenchmarkclassesunderconsiderationare:

ClassS: na= 1400 nz=7
ClassW: na=7000 nz=8
ClassA: na=14000 nz=ll

In fig. 2 we show the speedup for the three benchmark classes. For class A, the MPI as well as the

OpenMP/DSM and OpenMi'/SMP implementations show reasonable speedup. The OpenMP/SMP

version shows occasional superlinear speedup due to cache effects. For 8 nodes, the OpenMP/DSM

efficiency reaches about 75+: of that of MPI. The MPI version maintains this speedup for the smaller

problem sizes but the perfol mance of the OpenMP/DSM version decreases drastically. For 8 nodes

and class W the OpenMP/D:;M efficiency is only 35% and for class S is goes down to 6% yielding a

speedup of less than 1.

The class S problem si, e is far too small to serve as a realistic example. However, we have

a closer look at the perfromance differences for this class to get an idea about potential scalability

issues related to the DSM system.

Our first observation is that the Omni compiler and its runtime library introduce additonal over-

head which decreases perfol mance even on a shared memory system. This is demonstrated in fig.2d,

where we compare the speedup of class S for the Omni compiler with that of the Intel compiler and

Guide, which is part of the I,.AP/Pro ToolSet of Kuck & Associates/Intel.

To analyse the DSM pel Iiwmance we examine the three major time consuming loops within one

conjugate gradient iteration These loops are the same in the MPI and the OpenMP/DSM implemen-

tation. They implement a sl,arse matrix-vector multiplication (MVM), a dot-product (DOT), and a

loop combining two AXPY ,_perations and a dot-product. Code examples are shown in fig. 3

The sparse matrix A is slored in packed format such that indirect addressing is required for matrix

operations. The sparse matt x-vector multiply is a double-nested loop requiring indirect addressing.

For OpenMR it is paralleliz _d by using an OMP PARALLEL DO on the outer loop across the rows

of the sparse matrix. The dot-product as well as the AXPY's combined with a dot-product are single

loop nests, using the OpenMP REDUCTION clause to build the global sum.

The speedups for class "; for the three major loops are shown in fig. 4. Both implementations

suffer from a large commm ication to computation ratio for the single nested loops. However, the

effect is far more severe for he DSM system. In the MPI version the communication required for the

global reduction operations s highly optimized by using non-blocking send and receive to minimize

synchronization overhead. "he set of processes that communicate with each other is determined in

advance. This allows the r_ duction of the amount of communication within the iteration loop. In

the OpenMP/DSM impleme _tation, processing the OpenMP REDUCTION clause by the DSM system

generates a large communic mon overhead which is indicated by high number of page requests and

manifestes itself by poor s I,eedup as can be seen in fig. 4. The parallel efficiency is bad for the

matrix-vector-multiply and ( isastrous for the dot-product and AXPY operations.

We conclude that the pe_ F{)rmance loss for the small size problems is due to:

1. additonal overhead due to the Omni compiler,

2. A high communictati_m to computation ratio which results from short loops and global com-

muincation operation_.

For the more realistic be' lchmark class A the performance of the DSM system is acceptable.
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Figure 2: Speedups for different classes of the CG benchmarks. In (a) the speedup for OpenMP/DSM

is shown for classes A, W a _d S. The MPI speedup for the same classes is given in (b). The speedup

for a true shared memory s_ _tem is presented in (c). (d) shows a comparison of the speedup for class S

for different compilers on a shared memory platform. The Guide and the Intel compiler both support

OpenMP natively.



Matrix-VectorProduct:

!$omp parallel do ¢lefault(shared) private(j k,sum)

do j=l,las=row-firstrow+l

sum : 0. dO

do k=ro,_str(j) ,rowstr(j+l)-i

sum = sum + a(k)*p(colidx(k)

enddo

q(j ) = sum

enddo

Dot-Product

d = 0. OdO

!$omp parallel do (efault(shared) private(j

do j=l, l_stcol-firstcol+l

d : d -_ p(j)*q(j)

enddo

reduction(+:d)

AXPY/Dot-Product Combination

rho : 0 .O( 0

!$omp parallel do (e=ault(shared) private(j

do j=l, l_:s<col-firstcol+l

z(j) = z(j) + alpha*p(j)

r(j) = r(j) - alpha*q(j)

rho = _ho + r(j *r(j)

enddo

reduction(+:rho)

Figure 3: Code examples f_ c multiplication, a dot-product, and a loop combining two AXPY opera-

tions and a dot-product
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Figure 4: Details of CG ben_ hmark's class S. Speedups are shown for the matrix-vector multiplication

(MVM), for the dot-producl (DOT) and AXPY+dot-product (AXPY+DOT). (a) results for DSM, (b)

results for MPI

4.4 The FT kernel ben:hmark

The FT benchmark is the _omputational kernel of a spectral method based on a 3-D Fast Fourier

Transform (FFT). During the setup phase the 3D array is filled with random numbers. Unlike in the

other benchmarks, the setul+ phase is part of the timed code. The serial implementation of FT code

was changed to pre-calculal _ the values for the loop that initializes each data plane. This enables the

directive based parallelizati_,n of the loop. The main loop in FT could not be parallelized completely

automatically. Due to the c_,mplicated structure of the loop CAPO had to assume data dependencies

that prevented parallelizatio.t. [n contrast to a compiler CAPO allows interactive user guidance during

the parallelization process. I'arallelization could be achieved by privatizing certain arrays through the

CAPO user interface.

If nx, ny, and nz denote the number of gridpoints in each of the spatial dimensisons.the sizes of

the benchmark classes unde • consideration are given as:

Class S: nx= 64, nv= 64, nz= 64

Class W: nx=128, n)=128, nz= 32

ClassA: nx=256, n_=256, nz=128

The speedup for OpenM P/DSM, MPI, and OpenMP/SMP versions for our three benchmark classes

is shown in fig. 5. For 8 re,des the OpenMP/DSM implementation achieves about 70% of the MPI

speedup, for class W 65% and for class S 50%. The OpenMP/DSM speedup is limited to about 4 out

of 8 processes compared to 6 out of 8 for the MPI implementation. To understand the performance

difference we examine the ,tifferent steps of the FT benchmarks in detail. In both implementations,

the 3-D FFT is accomplish,'d by performing a 1-D FFT in each of the three spatial dimensions. For

each spatial dimension the t hree-dimensional array is copied into a one-dimensional array, the FFT is

performed on the one-dime _s_onal array, and the result is copied back. A code fragment for the first

dimension is shown fig. 6.

The OpenMP paralleliz ttion is achieved by inserting an OMP PARALLEL DO on the outermost

loop. This results in a dist :ibution of the data in dimension of K corresponding to the z-direction.

The speedup for the individ_lal three spatial dimensions for the OpenMP implementation on the class
A benchmark is shown in rig 7. While the FFT in x and y dimension reach a speedup of 6 out of

I0



8
7

6

65

3

ciass A
class W ............
class S .................

2 6 7 83 4 5

# threads

(a)

8
._.
"E 7
q.,

• 5

4

2

0

¢.

7

6

5

4

3

2

1

0

class A
class W .............

class $7

2 3 4 5 6 7 8

# processes

(b)

/...<. -'/'

..-"

.•..°°"

y<°"

f class W ............
class S .................

2 3 4 5 6 7 8

# threads

(c)

Figure 5: Comparison of Ml'I and OpenMP/DSM speedups for classes A, W and S of the FT bench-

mark. (a) Speedup for Open vlP/DSM, (b) MPI Speedup, (c) Speedup on the SMP system

do k : I, n3

do j = '_, n2

do J =: i, nl

w(J) : u(i,j,k)

endd )

call fft (w .... )

do i- i, d(1)

u(i,j,k) =

endd)

enddo

enddo

w(i)

Figm,' 6: Code fragment for the first dimension of FFT
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8,thespeedupinz-dimensl_nisonly2 outof 8. Theperformancelossin X andY dimensionis
mostlydueto communicati_,ncausedby writingto thesharedarrayU whichis indicatedbypage
requestswithinthisloop.L_,gicallythereisnocommunicationrequiredforthisloop,sinceonlythe
localpartof thearrayis acc:ssed.Theperformancedecreaseforthez-dimensionisduetothefact
thatheretheoutermost1ool-of theloopnestfromfig. 6runsin J andnot in K dimension.Since
thedatawasdistributedinK dimension,parallelexecutionofthelooprequiresaccesstoremotedata
andcausesalargenumber_,fpagerequests.TheMPIimplementationperformsatransposeof the
three-dimensionalarrayinz dimension,whichisachievedbyacalltoMPI_ALLTOALL. This causes

some decrease in performan_ e, but not as severe as in the DSM system.
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Figure 7: Spee.lup for different directions of the FFT on the DSM system

5 Problems encountered

The installation of SCore, 5CASH and Omni OpenMP was rather straight forward. For the basic

SCore installation we tried t,_ use aggressive compiler optimizations whenever possible and we went

through an iterative process o find a stable configuration in terms of compiler settings. The SCASH

and Omni OpenMP configur ttions were based on the one found for the basic SCore system. We were

able to run all tests and examples delivered with either SCASH or the Omni OpenMP compiler suite

successfully.

We ran into problems when trying to run the three kernel benchmarks EP, CG, and FI" for larger

problem sizes such as they :_re given class B or C. We also could not run any of the simulated CFD

applications BT, SE and LU _hat are part of the benchmark suite, even for the small problem size given

in class A. The problems wt encountered were due to the fact that SCASH was not able to allocate

enough of virtual memory. [he SCASH system itself uses a large amount of memory for its own

memory managment on top ,,t the one provided by the operating sysstem. To improve data exchange

performance (i.e. bandwidth and latency) SCASH specifically allocates pin-down memory [21]. For

larger benchmark classes it s._',ms that there is not enough pinnable memory available.

Another severe restricm,n is the 32 bit address-space of the IA32 architecture. With 32 bit ad-

dresses the address-space is _cstricted to at most 232 addresses. Usually the memory managment of

12



operating systems like Linu_ or Windows I allows a process to use only part of this address-space

for its private data. The ope_ ating system uses the rest to mirror some internal data structures into the

process' virtual address-spa_ e. Under Linux a process can only use 2 GB of the theoretical maximum

of 4 GB for its private data.
Without additional effort, the kernel itself would suffer from this 4 GB barrier. To enable the use

of more main memory, on IA32 Linux uses the PAE capabilities of modern processors to access up to

64 GB. This is achieved by utving a three stage page address translation mechanism. But even with

this system, only the kernel ,'an handle more than 4 GB. A single process is still restricted to 2 GB of

private memory.
A software distributed shared memory system like SCASH that runs in user-mode and uses a 32

bit global address-space will therefore be restricted to a maximum of 4 GB global shared memory.

6 Related Work

Another system supporting l:le OpenMP paradigm on distributed memory systems is TreadMarks [2].

Comparisons of the TreadMarks systems with message passing programming are given in [7] and

[11]. Other systems that supi_ort software DSM programming are Cashmere [17] and SMP-Shasta [?]

There are a number of pawrs reporting on comparisons of different programming paradigms. As

an example we name [15] _nd [16] where message passing and shared memory programming are

compared on shared mernor, architectures.

7 Conclusions and Future Work

We have measured the peff_ finance of OpenMP/DSM implementations of three of the NAS Parallel

Benchmarks on a commodity cluster of PCs, and we compared the speedup to corresponding MPI

implementations of the sam,: algorithms. The difference in performance depends on the structure of

the application and the prob em size. For the largest problem sizes under consideration the observed

OpenMP/DSM speedups ra _ge between 100% and 70% of the MPI speedup for all benchmarks.

Only in cases whith an extrt mely high communication to computation ratio does the OpenMP/DSM

speedup go down to less th; n 10% of MPI. This occurs in the smallest class of the CG benchmark,

where AXPY and dot-product operations for short vector lengths are being parallelized. We have

noticed that in this extreme =ase part of the performance decrease was due to compiler defficiencies

which also show on a shared memory system. The memory problems described in section 5 are

implementation dependent and we expect them to be resolved in commercial software. Usage of 64

bit system sofwtare and kernel enhancements to support DSM on a system level will improve the

general usability of DSM sy ,terns.

All in all we are encour._ged by the results we obtained considering the fact that we were using

public domain software. Tie DSM system allowed us to take exploit parallelism over all nodes of

the cluster by using automal _cally parallelized code based on OpenME We find the performance dif-

ferences when compared wi_h hand-optimized MPI code acceptable when we take into account the

extremely short developemc _t time of the parallel code. Our future plan is to run full size aplications

in our testbed environment.

IWindows is a registered trade_aarkof Microsoft Corp.
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Distributed vs Shared Memory Parallelism

• Distributed Memory • Shared Memory

• Commodity hardware I, Globally shared

_. Commodity network address space

*- Parallelization via*. Low cost alternative

for high end scientific compiler directives

computing • Incremental

• Currently difficult to parallelization possible

program: • High cost of hardware

• Data distribution • Limited scalability

• Messallle Passing

required

Distributed Shared Memo, y (DSM) ......
7_Z__ i?_ _ "-_'i_ ..............................................

• Software for distributed

memory architecture

• Enables shared memory

programming

• Combines

• Examples are:

• TreadMarks

•Scash

I

I'erformance9

Test Environment: Hardware
_-_D?y.____Se_<e_":'*_ ............... Z"22_ _-7:2" -" _..:_ 1 .

• PC Cluster at HLRS

• 8 NEC 120Ed server nodes.

• Each Node:

• Dual processor

• 1 GHz Pentium ill

• 2 GB main memory

• Network:

• M_TJ.net 2000 NIC

• 64 bit/g6 MHz PC1 slot

• Bandwidth:

• 409 MB/s read

• 480 MB/s write

H L _'S It



Test Environment: System Software (1)

• SCore: PC Cluster Consorti_im, Japan

Applications (e.g. NAS parallel Benchm ,ik_l

H L Ris _ _

Test Environment System Software (2)

• SCash:

• PC Cluster Consortium

• Software Distributed Shared Memory System.

• Based on a high bandwidth communication library

{PM}

• Maintains page based memory consistency

t, Multiple writer release consistency model:

• Modified pages are transferred at synchronization points

[e g bar_ers)

H L R S _ 6 _

Test Environment System Software (3)

:7_7 ...... : _" i_ _ .........

• Omnl Compiler:

OpenMP compiler with C . n(l Fortran front
end for SMP

• SCash based Omni Comp lcr

Case Studies

• Three kernel benchmarks from the NAS Parallel

Benchmark suite:

Message passing implementation based on MPI

(NPB2,3)

• Automatically parallelized OpenMP code using the

CAPO parallelization tool

• Evaluation strategy:

• Run different problem sizes

• Compare speedup to corresponding message passing

implementations

• Compare speedup to a true SMP system:

• Same operating system

• Omni compiler, but not using SCASH

• Take into account development time for parallel code



The EP Benchmark

• Embarrassing Parallel: ___

• Generation of random

numbers

Loop iterations parallel.

• Global sum reduction at

the end

• MPI implementation:

• Global sum built via

MPI ALLREDUCE

• LOW corllmunication

overhead (< 1%)

• OpenMP/DSM:

• Little memory access.

• OMP DO PARALLEL

• OMP DO REDUCTION

E,Ch,_ A

Linear speed1_p for MPI and OpertMP/DSM

N,) surprises

The CG Benchmark

• Conjugate gradient method to solve an

eigenvalue problem

• Stresses irregular data access

• Major loops:

Sparse Matrix-Vector-Multiply

Dot-Product

• AXPY Operations

• Same major loops in MPI and OpenMP

implementation

• Automatic parallelization without user

interaction

L _ 7 5 i i0

CG Benchmark Results (1)

• OpenMP/DSM efficiency

about 75% of that of MPI

for Class A

• OpenMP/DSM performxnce
bad for Class S:

• Inefficiencies in the Ormli

Compiler

• Large Communication

overhead:

* short loops with few
calculations

• Global redl_cltOn operation5

H u R S _

CG Benchmark Results (2)
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The FT Benchmark

• Kernel of spectral method based on 3D Fast

Fourier Transform (FFT)

• 3D FFT achieved by a 1D FFr in x, y, and z

direction

• OpenMP parallelization requ:red some user

interaction

FT Benchmark Results (1)

• OpenMP/DSM efficiency

about 70% of MPI

• MP| ParaUelization:

MPI_ALLTOALL to

achieve transpose of

data

• OpenMP P-drallelization:

• OMP DO PARALLEL on

outer loop

• Extra communication

introduced by DSM

system (false page

sharing)

• Remote data access

required far FFT in z-
di111ension

FT Benchmark Results (2)

;:} //i -:!}}K

2
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Problems Encountered
_--_:F _'_-: _?_" _?_ _y_y_FZ: _''- ............ i _ .......... _}

• Limited Pin-able memory available

• Private memory limited to 2GB

• Need for:

• Enhanced kernel support

• 64 bit addressing mode



Conclusions:

• OpenMP/DSM delivered acci_ptable speedup
if the communication/computation ratio is

not too high

• OpenMP/DSM showed between 70% and
100% of MPI efficiency for benchmarks of

Class A

• Large cases could not be ru_ due to memory

problems

Related Work:
-

• TreadMarks

• Cashmere

• SMP-Shasta

Future Work:

• Run full applications under DSM

• Try commercial DSM software once it
becomes available (I. E. KAI/Pro Toolset

Network Edition)

t-i u It s Ir
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