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Abstract

This paper describes an implemented robot system,
which relies heavily on probabilistic AI techniques for
acting under uncertainty. The robot Pearl and its prede-
cessor Flo have been developed by a multi-disciplinary
team of researchers over the past three years. The goal
of this research is to investigate the feasibility of assist-
ing elderly people with cognitive and physical activity
limitations through interactive robotic devices, thereby
improving their quality of life. The robot’s task in-
volves escorting people in an assisted living facility—a
time-consuming task currently carried out by nurses. Its
software architecture employs probabilistic techniques at
virtually all levels of perception and decision making.
During the course of experiments conducted in an as-
sisted living facility, the robot successfully demonstrated
that it could autonomously provide guidance for elderly
residents. While previous experiments with fielded robot
systems have provided evidence that probabilistic tech-
niques work well in the context of navigation, we found
the same to be true of human robot interaction with el-
derly people.

Introduction

The US population is aging at an alarming rate. At present,
12.5% of the US population is of age 65 or older. The Ad-
ministration of Aging predicts a 100% increase of this ratio
by the year 2050 [26]. By 2040, the number of people of
age of 65 or older per 100 working-age people will have in-
creased from 19 to 39. At the same time, the nation faces a
significant shortage of nursing professionals. The Federation
of Nurses and Health Care Professionals has projected a need
for 450,000 additional nurses by the year 2008. It is widely
recognized that the situation will worsen as the baby-boomer
generation moves into retirement age, with no clear solution
in sight. These developments provide significant opportuni-
ties for researchers in AI, to develop assistive technology that
can improve the quality of life of our aging population, while
helping nurses to become more effective in their everyday ac-
tivities.

To respond to these challenges, the Nursebot Project was
conceived in 1998 by a multi-disciplinary team of investi-
gators from four universities, consisting of four health-care
faculty, one HCI/psychology expert, and four AI researchers.
The goal of this project is to develop mobile robotic assis-
tants for nurses and elderly people in various settings. Over
the course of 36 months, the team has developed two proto-
type autonomous mobile robots, shown in Figure 1.

From the many services such a robot could provide
(see [11, 16]), the work reported here has focused on the task

Copyright c
✂

2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

of reminding people of events (e.g., appointments) and guid-
ing them through their environments. At present, nursing
staff in assisted living facilities spends significant amounts
of time escorting elderly people walking from one location
to another. The number of activities requiring navigation is
large, ranging from regular daily events (e.g., meals), ap-
pointments (e.g., doctor appointments, physiotherapy, hair
cuts), social events (e.g., visiting friends, cinema), to simply
walking for the purpose of exercising. Many elderly people
move at extremely slow speeds (e.g., 5 cm/sec), making the
task of helping people around one of the most labor-intensive
in assisted living facilities. Furthermore, the help provided
is often not of a physical nature, as elderly people usually
select walking aids over physical assistance by nurses, thus
preserving some independence. Instead, nurses often provide
important cognitive help, in the form of reminders, guidance
and motivation, in addition to valuable social interaction.

In two day-long experiments, our robot has demonstrated
the ability to guide elderly people, without the assistance of
a nurse. This involves moving to a person’s room, alerting
them, informing them of an upcoming event or appointment,
and inquiring about their willingness to be assisted. It then
involves a lengthy phase where the robot guides a person,
carefully monitoring the person’s progress and adjusting the
robot’s velocity and path accordingly. Finally, the robot also
serves the secondary purpose of providing information to the
person upon request, such as information about upcoming
community events, weather reports, TV schedules, etc.

From an AI point of view, several factors make this task
a challenging one. In addition to the well-developed topic
of robot navigation [15], the task involves significant interac-
tion with people. Our present robot Pearl interacts through
speech and visual displays. When it comes to speech, many
elderly have difficulty understanding even simple sentences,
and more importantly, articulating an appropriate response
in a computer-understandable way. Those difficulties arise
from perceptual and cognitive deficiencies, often involving a
multitude of factors such as articulation, comprehension, and
mental agility. In addition, people’s walking abilities vary
drastically from person to person. People with walking aids
are usually an order of magnitude slower than people with-
out, and people often stop to chat or catch breath along the
way. It is therefore imperative that the robot adapts to indi-
vidual people—an aspect of people interaction that has been
poorly explored in AI and robotics. Finally, safety concerns
are much higher when dealing with the elderly population,
especially in crowded situations (e.g., dining areas).

The software system presented here seeks to address these
challenges. All software components use probabilistic tech-
niques to accommodate various sorts of uncertainty. The
robot’s navigation system is mostly adopted from [5], and
therefore will not be described in this paper. On top of



Figure 1: Nursebots Flo (left) and Pearl (center and right) interact-
ing with elderly people during one of our field trips.

this, our software possesses a collection of probabilistic mod-
ules concerned with people sensing, interaction, and con-
trol. In particular, Pearl uses efficient particle filter tech-
niques to detect and track people. A POMDP algorithm per-
forms high-level control, arbitrating information gathering
and performance-related actions. And finally, safety consid-
erations are incorporated even into simple perceptual mod-
ules through a risk-sensitive robot localization algorithm. In
systematic experiments, we found the combination of tech-
niques to be highly effective in dealing with the elderly test
subjects.

Hardware, Software, And Environment

Figure 1 shows images of the robots Flo (first prototype, now
retired) and Pearl (the present robot). Both robots possess dif-
ferential drive systems. They are equipped with two on-board
Pentium PCs, wireless Ethernet, SICK laser range finders,
sonar sensors, microphones for speech recognition, speak-
ers for speech synthesis, touch-sensitive graphical displays,
actuated head units, and stereo camera systems. Pearl dif-
fers from its predecessor Flo in many respects, including its
visual appearance, two sturdy handle-bars added to provide
support for elderly people, a more compact design that al-
lows for cargo space and a removable tray, doubled battery
capacity, a second laser range finder, and a significantly more
sophisticated head unit. Many of those changes were the re-
sult of feedback from nurses and medical experts following
deployment of the first robot, Flo. Pearl was largely designed
and built by the Standard Robot Company in Pittsburgh, PA.

On the software side, both robots feature off-the-shelf au-
tonomous mobile robot navigation system [5, 24], speech
recognition software [20], speech synthesis software [3], fast
image capture and compression software for online video
streaming, face detection tracking software [21], and various
new software modules described in this paper. A final soft-
ware component is a prototype of a flexible reminder system
using advanced planning and scheduling techniques [18].

The robot’s environment is a retirement resort located in
Oakmont, PA. Like most retirement homes in the nation, this
facility suffers from immense staffing shortages. All exper-
iments so far primarily involved people with relatively mild
cognitive, perceptual, or physical inabilities, though in need
of professional assistance. In addition, groups of elderly in
similar conditions were brought into research laboratories for
testing interaction patterns.

Navigating with People

Pearl’s navigation system builds on the one described in [5,
24]. In this section, we describe three major new modules, all

concerned with people interaction and control. These mod-
ules overcome an important deficiency of the work described
by [5, 24], which had a rudimentary ability to interact with
people.

Locating People

The problem of locating people is the problem of determining
their ✄ -☎ -location relative to the robot. Previous approaches
to people tracking in robotics were feature-based: they ana-
lyze sensor measurements (images, range scans) for the pres-
ence of features [13, 22] as the basis of tracking. In our
case, the diversity of the environment mandated a different
approach. Pearl detects people using map differencing: the
robot learns a map, and people are detected by significant
deviations from the map. Figure 3a shows an example map
acquired using preexisting software [24].

Mathematically, the problem of people tracking is a com-
bined posterior estimation problem and model selection prob-
lem. Let ✆ be the number of people near the robot. The
posterior over the people’s positions is given by

✝✟✞ ☎✡✠☞☛ ✌✎✍✑✏✑✏✑✏✒✍✓☎✕✔✖☛ ✌✘✗✚✙ ✌ ✍✓✛ ✌ ✍✓✜✣✢ (1)

where ☎✕✤✥☛ ✌ with ✦★✧✪✩✫✧✬✆ is the location of a person at

time ✭ , ✙ ✌ the sequence of all sensor measurements, ✛ ✌ the se-
quence of all robot controls, and ✜ is the environment map.
However, to use map differencing, the robot has to know its
own location. The location and total number of nearby peo-
ple detected by the robot is clearly dependent on the robot’s
estimate of its own location and heading direction. Hence,
Pearl estimates a posterior of the type:

✝✟✞ ☎✡✠☞☛ ✌✎✍✑✏✑✏✑✏✒✍✓☎✕✔✖☛ ✌✎✍✓✄ ✌ ✗✚✙ ✌ ✍✓✛ ✌ ✍✓✜✣✢ (2)

where ✄ ✌ denotes the sequence of robot poses (the path) up to
time ✭ . If ✆ was known, estimating this posterior would be a
high-dimensional estimation problem, with complexity cubic
in ✆ for Kalman filters [2], or exponential in ✆ with particle
filters [9]. Neither of these approaches is, thus, applicable:
Kalman filters cannot globally localize the robot, and particle
filters would be computationally prohibitive.

Luckily, under mild conditions (discussed below) the pos-
terior (2) can be factored into ✆✯✮✰✦ conditionally indepen-
dent estimates:

✝✟✞ ✄ ✌ ✗✱✙ ✌ ✍✓✛ ✌ ✍✲✜✳✢ ✤
✝✴✞ ☎✕✤✥☛ ✌✘✗✚✙ ✌ ✍✲✛ ✌ ✍✓✜✣✢ (3)

This factorization opens the door for a particle filter that
scales linearly in ✆ . Our approach is similar (but not identi-
cal) to the Rao-Blackwellized particle filter described in [10].
First, the robot path ✄ ✌ is estimated using a particle filter, as
in the Monte Carlo localization (MCL) algorithm [7] for mo-
bile robot localization. However, each particle in this filter is
associated with a set of ✆ particle filters, each representing
one of the people position estimates ✝✟✞ ☎✕✤✥☛ ✌✘✗✚✙ ✌ ✍✓✛ ✌ ✍✓✜✣✢ . These
conditional particle filters represent people position estimates
conditioned on robot path estimates—hence capturing the in-
herent dependence of people and robot location estimates.
The data association between measurements and people is
done using maximum likelihood, as in [2]. Under the (false)
assumption that this maximum likelihood estimator is always
correct, our approach can be shown to converge to the correct
posterior, and it does so with update time linear in ✆ . In prac-
tice, we found that the data association is correct in the vast
majority of situations. The nested particle filter formulation
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Figure 2: (a)-(d) Evolution of the conditional particle filter from global uncertainty to successful localization and tracking. (d) The tracker
continues to track a person even as that person is occluded repeatedly by a second individual.

has a secondary advantage that the number of people ✵ can
be made dependent on individual robot path particles. Our
approach for estimating ✵ uses the classical AIC criterion
for model selection, with a prior that imposes a complexity
penalty exponential in ✵ .

Figure 2 shows results of the filter in action. In Figure 2a,
the robot is globally uncertain, and the number and location
of the corresponding people estimates varies drastically. As
the robot reduces its uncertainty, the number of modes in the
robot pose posterior quickly becomes finite, and each such
mode has a distinct set of people estimates, as shown in Fig-
ure 2b. Finally, as the robot is localized, so is the person
(Figure 2c). Figure 2d illustrates the robustness of the filter
to interfering people. Here another person steps between the
robot and its target subject. The filter obtains its robustness
to occlusion from a carefully crafted probabilistic model of
people’s motion ✶✟✷✹✸ ✤✥☛ ✌✻✺✼✠✾✽ ✸ ✤✥☛ ✌❀✿ . This enables the conditional
particle filters to maintain tight estimates while the occlusion
takes place, as shown in Figure 2d. In a systematic analy-
sis involving 31 tracking instances with up to five people at
a time, the error in determining the number of people was
9.6%. The error in the robot position was ❁❃❂ ❄❆❅❇❄❃❂✹❈ cm,
and the people position error was as low as ❉❊❂ ❄❋❅❍●❃❂ ❁ cm,
when compared to measurements obtained with a carefully
calibrated static sensor with ❅■❉ cm error.

When guiding people, the estimate of the person that is
being guided is used to determine the velocity of the robot,
so that the robot maintains roughly a constant distance to the
person. In our experiments in the target facility, we found
the adaptive velocity control to be absolutely essential for the
robot’s ability to cope with the huge range of walking paces
found in the elderly population. Initial experiments with fixed
velocity led almost always to frustration on the people’s side,
in that the robot was either too slow or too fast.

Safer Navigation

When navigating in the presence of elderly people, the risks
of harming them through unintended physical contact is enor-
mous. As noted in [5], the robot’s sensors are inadequate to
detect people reliably. In particular, the laser range system
measures obstacles 18 cm above ground, but is unable to de-
tect any obstacles below or above this level. In the assisted
living facilities, we found that people are easy to detect when
standing or walking, but hard when on chairs (e.g., they might
be stretching their legs). Thus, the risk of accidentally hitting
a person’s foot due to poor localization is particularly high in
densely populated regions such as the dining areas.

Following an idea in [5], we restricted the robot’s operation
area to avoid densely populated regions, using a manually
augmented map of the environment (black lines in Figure 3a

❏❏
❏

dining
areas

(a)

(b)

Figure 3: (a) Map of the dining area in the facility, with dining
areas marked by arrows. (b) Samples at the beginning of global
localization, weighted expected cumulative risk function.

– the white space corresponds to unrestricted free space). To
stay within its operating area, the robot needs accurate local-
ization, especially at the boundaries of this area. While our
approach yields sufficiently accurate results on average, it is
important to realize that probabilistic techniques never pro-
vide hard guarantees that the robot obeys a safety constraint.
To address this concern, we augmented the robot localization
particle filter by a sampling strategy that is sensitive to the
increased risk in the dining areas (see also [19, 25]). By gen-
erating samples in high-risk regions, we minimize the like-
lihood of being mislocalized in such regions, or worse, the
likelihood of entering prohibited regions undetected. Con-
ventional particle filters generate samples in proportion to the
posterior likelihood ✶✟✷✹❑ ✌ ✽✚▲ ✌✎▼✓◆✴✌✎▼✓❖ ✿ . Our new particle filter
generates robot pose samples in proportion to

P ✷✹❑ ✌❀✿ ✶✴✷✻❑ ✌ ✽✚▲ ✌ ▼✓◆ ✌ ▼✓❖ ✿ ✤ ✶✟✷✹✸ ✤✥☛ ✌✘✽✚▲ ✌ ▼✲◆ ✌ ▼✓❖ ✿ (4)

where
P

is a risk function that specifies how desirable it is to
sample robot pose ❑ ✌ . The risk function is calculated by con-
sidering an immediate cost function ◗✒✷✹❑ ▼✓◆ ✿ , which assigns
costs to actions ❘ and robot states ❑ (in our case: high costs
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for violating an area constraints, low costs elsewhere). To an-
alyze the effect of poor localization on this cost function, our
approach utilizes an augmented model that incorporates the
localizer itself as a state variable. In particular, the state con-
sists of the robot pose ❑ ✌ , and the state of the localizer, ❙ ✌ . The
latter is defined as accurate ( ❙ ✌❯❚ ❉ ) or inaccurate ( ❙ ✌❯❚❲❱ ).
The state transition function is composed of the conventional
robot motion model ✶✟✷✹❑ ✌❀✽ ◆ ✌✓❳❨✠ ▼ ❑ ✌✲❳❩✠✒✿ , and a simplistic model
that assumes with probability ❬ , that the tracker remains in
the same state (good or bad). Put mathematically:

✶✟✷✻❑ ✌ ▼ ❙ ✌ ✽ ◆ ✌✓❳❨✠ ▼ ❑ ✌✓❳❩✠ ▼ ❙ ✌✓❳❩✠ ✿❭❚
✶✟✷✹❑ ✌✘✽ ◆ ✌✲❳❩✠ ▼ ❑ ✌✓❳❩✠✒✿✟❪ ❬❃❫❵❴✎❛✚❜❨❴✎❛❞❝✟❡❣❢❤✷✎❉❵✐❯❬ ✿ ❫❊❴✎❛✓❥❜❨❴✎❛❞❝✟❡ (5)

Our approach calculates an MDP-style value function,❦ ✷✹❑ ▼ ❙ ✿ , under the assumption that good tracking assumes
good control whereas poor tracking implies random control.
This is achieved by the following value iteration approach:❦ ✷✹❑ ▼ ❙ ✿❣❧ ✐♠♦♥✚♣rq ◗✒✷✻❑ ▼✓◆ ✿ ❢ts ✉✇✈ ❴ ✈✑✶✟✷✹❑✡① ▼ ❙✓① ✽ ❑ ▼ ❙ ▼✓◆ ✿ ❦ ✷✹❑✡① ▼ ❙✲① ✿

if ❙ ❚ ❉ (good localization)

q ◗✒✷✻❑ ▼✲◆ ✿ ❢②s ✉✇✈ ❴ ✈✑✶✟✷✹❑✡① ▼ ❙✲① ✽ ❑ ▼ ❙ ▼✓◆ ✿ ❦ ✷✹❑✡① ▼ ❙✲① ✿
if ❙ ❚✳❱ (poor localization)

(6)

where s is the discount factor. This gives a well-defined MDP
that can be solved via value iteration. The risk function is
them simply the difference between good and bad tracking:P ✷✻❑ ✿③❚ ❦ ✷✹❑ ▼ ❉ ✿ ✐ ❦ ✷✻❑ ▼ ❱✥✿ . When applied to the Nursebot
navigation problem, this approach leads to a localization al-
gorithm that preferentially generates samples in the vicinity
of the dining areas. A sample set representing a uniform un-
certainty is shown in Figure 3b—notice the increased sample
density near the dining area. Extensive tests involving real-
world data collected during robot operation show not only
that the robot was well-localized in high-risk regions, but that
our approach also reduced costs after (artificially induced)
catastrophic localization failure by 40.1%, when compared
to the plain particle filter localization algorithm.

High Level Robot Control and Dialog Management

The most central new module in Pearl’s software is a prob-
abilistic algorithm for high-level control and dialog manage-
ment. High-level robot control has been a popular topic in
AI, and decades of research has led to a reputable collection
of architectures (e.g., [1, 4, 12]). However, existing architec-
tures rarely take uncertainty into account during planning.

Pearl’s high-level control architecture is a hierarchical
variant of a partially observable Markov decision process

Observation True State Action Reward

pearl hello request begun say hello 100

pearl what is like start meds ask repeat -100

pearl what time is it

for will the want time say time 100

pearl was on abc want tv ask which station -1

pearl was on abc want abc say abc 100

pearl what is on nbc want nbc confirm channel nbc -1

pearl yes want nbc say nbc 100

pearl go to the that

pretty good what send robot ask robot where -1

pearl that that hello be send robot bedroom confirm robot place -1

pearl the bedroom any i send robot bedroom go to bedroom 100

pearl go it eight a hello send robot ask robot where -1

pearl the kitchen hello send robot kitchen go to kitchen 100

Table 1: An example dialog with an elderly person. Actions in bold
font are clarification actions, generated by the POMDP because of
high uncertainty in the speech signal.

(POMDP) [14]. POMDPs are techniques for calculating op-
timal control actions under uncertainty. The control decision
is based on the full probability distribution generated by the
state estimator, such as in Equation (2). In Pearl’s case, this
distribution includes a multitude of multi-valued probabilistic
state and goal variables:④ robot location (discrete approximation)④ person’s location (discrete approximation)④ person’s status (as inferred from speech recognizer)④ motion goal (where to move)④ reminder goal (what to inform the user of)④ user initiated goal (e.g., an information request)

Overall, there are 288 plausible states. The input to the
POMDP is a factored probability distribution over these
states, with uncertainty arising predominantly from the lo-
calization modules and the speech recognition system. We
conjecture that the consideration of uncertainty is important
in this domain, as the costs of mistaking a reply can be large.

Unfortunately, POMDPs of the size encountered here are
an order of magnitude larger than today’s best exact POMDP
algorithms can tackle [14]. However, Pearl’s POMDP is a
highly structured POMDP, where certain actions are only
applicable in certain situations. To exploit this structure,
we developed a hierarchical version of POMDPs, which
breaks down the decision making problem into a collection of
smaller problems that can be solved more efficiently. Our ap-
proach is similar to the MAX-Q decomposition for MDPs [8],
but defined over POMDPs (where states are unobserved).

The basic idea of the hierarchical POMDP is to partition
the action space—not the state space, since the state is not
fully observable—into smaller chunks. For Pearl’s guidance
task the action hierarchy is shown in Figure 4, where abstract
actions (shown in circles) are introduced to subsume logical
subgroups of lower-level actions. This action hierarchy in-
duces a decomposition of the control problem, where at each
node all lower-level actions, if any, are considered in the con-
text of a local sub-controller. At the lowest level, the control
problem is a regular POMDP, with a reduced action space.
At higher levels, the control problem is also a POMDP, yet
involves a mixture of physical and abstract actions (where
abstract actions correspond to lower level POMDPs.)

Let ⑤◆ be such an abstract action, and ⑥⑧⑦q the control pol-
icy associated with the respective POMDP. The “abstract”
POMDP is then parameterized (in terms of states ❑ , obser-
vations ▲ ) by assuming that whenever ⑤◆ is chosen, Pearl uses
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Figure 5: Empirical comparison between POMDPs (with uncertainty, shown in gray) and MDPs (no uncertainty, shown in black) for high-
level robot control, evaluated on data collected in the assisted living facility. Shown are the average time to task completion (a), the average
number of errors (b), and the average user-assigned (not model assigned) reward (c), for the MDP and POMDP. The data is shown for three
users, with good, average and poor speech recognition.

lower-level control policy ❷⑧❸❹ :❺✟❻✻❼✡❽❿❾ ❼❣➀✕➁➂➄➃➆➅ ❺✟❻✹❼✡❽❿❾ ❼❣➀ ❷➇❸❹ ❻✹❼➄➃✎➃❺✟❻✲➈➉❾ ❼❣➀✕➁➂➄➃➆➅ ❺✟❻✲➈➉❾ ❼❣➀ ❷➇❸❹ ❻✹❼➄➃✎➃➊ ❻✹❼❣➀✕➁➂➄➃➆➅ ➊ ❻✹❼❣➀ ❷➇❸❹ ❻✹❼➄➃➋➃ (7)

Here
➊

denotes the reward function. It is important to notice
that such a decomposition may only be valid if reward is re-
ceived at the leaf nodes of the hierarchy, and is especially ap-
propriate when the optimal control transgresses down along
a single path in the hierarchy to receive its reward. This is
approximately the case in the Pearl domain, where reward is
received upon successfully delivering a person, or success-
fully gathering information through communication.

Using the hierarchical POMDP, the high-level decision
making problem in Pearl is tractable, and a near-optimal con-
trol policy can be computed off-line. Thus, during execu-
tion time the controller simply monitors the state (calculates
the posterior) and looks up the appropriate control. Table 1
shows an example dialog between the robot and a test sub-
ject. Because of the uncertainty management in POMDPs,
the robot chooses to ask a clarification question at three oc-
casions. The number of such questions depends on the clarity
of a person’s speech, as detected by the Sphinx speech recog-
nition system.

An important question in our research concerns the impor-
tance of handling uncertainty in high-level control. To inves-
tigate this, we ran a series of comparative experiments, all
involving real data collected in our lab. In one series of ex-
periments, we investigated the importance of considering the
uncertainty arising from the speech interface. In particular,
we compared Pearl’s performance to a system that ignores
that uncertainty, but is otherwise identical. The resulting ap-
proach is an MDP, similar to the one described in [23]. Fig-
ure 5 shows results for three different performance measures,
and three different users (in decreasing order of speech recog-
nition performance). For poor speakers, the MDP requires
less time to “satisfy” a request due to the lack of clarification
questions (Figure 5a). However, its error rate is much higher
(Figure 5b), which negatively affects the overall reward re-
ceived by the robot (Figure 5c). These results clearly demon-
strate the importance of considering uncertainty at the highest
robot control level, specifically with poor speech recognition.

In a second series of experiments, we investigated the im-
portance of uncertainty management in the context of highly
imbalanced costs and rewards. In Pearl’s case, such costs
are indeed highly imbalanced: asking a clarification question
is much cheaper than accidentally delivering a person to a
wrong location, or guiding a person who does not want to be
walked. In this experiment we compared performance using
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Figure 6: Empirical comparison between uniform and non-uniform
cost models. Results are an average over 10 tasks. Depicted are 3
example users, with varying levels of speech recognition accuracy.
Users 2 & 3 had the lowest recognition accuracy, and consequently
more errors when using the uniform cost model.

two POMDP models which differed only in their cost models.
One model assumed uniform costs for all actions, whereas
the second model assumed a more discriminative cost model
in which the cost of verbal questions was lower than the cost
of performing the wrong motion actions. A POMDP policy
was learned for each of these models, and then tested exper-
imentally in our laboratory. The results presented in figure 6
show that the non-uniform model makes more judicious use
of confirmation actions, thus leading to a significantly lower
error rate, especially for users with low recognition accuracy.

Results
We tested the robot in five separate experiments, each lasting
one full day. The first three days focused on open-ended in-
teractions with a large number of elderly users, during which
the robot interacted verbally and spatially with elderly people
with the specific task of delivered sweets. This allowed us to
gauge people’s initial reactions to the robot.

Following this, we performed two days of formal experi-
ments during which the robot autonomously led 12 full guid-
ances, involving 6 different elderly people. Figure 7 shows
an example guidance experiment, involving an elderly person
who uses a walking aid. The sequence of images illustrates
the major stages of a successful delivery: from contacting
the person, explaining to her the reason for the visit, walking
her through the facility, and providing information after the
successful delivery—in this case on the weather.

In all guidance experiments, the task was performed to
completion. Post-experimental debriefings illustrated a uni-
form high level of excitement on the side of the elderly. Over-
all, only a few problems were detected during the operation.
None of the test subjects showed difficulties understanding
the major functions of the robot. They all were able to operate
the robot after less than five minutes of introduction. How-
ever, initial flaws with a poorly adjusted speech recognition



(a) Pearl approaching elderly (b) Reminding of appointment

(c) Guidance through corridor (d) Entering physiotherapy dept.

(e) Asking for weather forecast (f) Pearl leaves

Figure 7: Example of a successful guidance experiment. Pearl picks
up the patient outside her room, reminds her of a physiotherapy ap-
pointment, walks the person to the department, and responds to a
request of the weather report. In this interaction, the interaction
took place through speech and the touch-sensitive display.

system led to occasional confusion, which was fixed during
the course of this project. An additional problem arose from
the robot’s initial inability to adapt its velocity to people’s
walking pace, which was found to be crucial for the robot’s
effectiveness.

Discussion

This paper described a mobile robotic assistant for nurses and
elderly in assisted living facilities. Building on a robot nav-
igation system described in [5, 24], new software modules
specifically aimed at interaction with elderly people were de-
veloped. The system has been tested successfully in exper-
iments in an assisted living facility. Our experiments were
successful in two main dimensions. First, they demonstrated
the robustness of the various probabilistic techniques in a
challenging real-world task. Second, they provided some ev-
idence towards the feasibility of using autonomous mobile
robots as assistants to nurses and institutionalized elderly.
One of the key lessons learned while developing this robot is
that the elderly population requires techniques that can cope
with their degradation (e.g., speaking abilities) and also pays
special attention to safety issues. We view the area of assis-
tive technology as a prime source for great AI problems in
the future.

Possibly the most significant contribution of this research
to AI is the fact that the robot’s high-level control system is
entirely realized by a partially observable Markov decision
process (POMDP) [14]. This demonstrates that POMDPs
have matured to a level that makes them applicable to real-
world robot control tasks. Furthermore, our experimental re-
sults suggest that uncertainty matters in high-level decision

making. These findings challenge a long term view in main-
stream AI that uncertainty is irrelevant, or at best can be han-
dled uniformly at the higher levels of robot control[6, 17]. We
conjecture instead that when robots interact with people, un-
certainty is pervasive and has to be considered at all levels of
decision making, not solely in low-level perceptual routines.
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