
Experiences with e-Science workflow specification and
enactment in bioinformatics

Matthew Addis1, Justin Ferris1, Mark Greenwood2, Peter Li3, Darren Marvin1, Tom Oinn4, Anil Wipat3

1[mja,jf,djm]@it-innovation.soton.ac.uk. IT Innovation Centre, University of Southampton, SO16 7NP

2 markg@cs.man.ac.uk. Dept. of Computer Science, University of Manchester, M13 9PL
3[Peter.Li, Anil.Wipat]@ncl.ac.uk. School of Computing Science, University of Newcastle upon Tyne,

NE1 7RU
4 tmo@ebi.ac.uk. European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD

Abstract

Workflow techniques form an important part of in-silico experimentation within the bioinformatics
domain and potentially allow the eScientist to describe and enact their experimental processes in a
structured, repeatable and verifiable way. Bioinformaticians routinely use Web-based resources within
their in-silico experiments. However, the use of current web service orchestration techniques is
problematic, and represents a significant barrier to take-up by the bioinformatics community, due to the
rapidly evolving and competing standards, a lack of freely available tools, limited support for interaction
with stateful services, and inappropriate levels of abstraction for the bioinformatics domain. As a result,
the EPSRC funded myGrid[11] project has, in collaboration with the European Bioinformatics Institute
and the Human Genome Mapping Project, developed a graphical toolset and workflow enactor which
uses its own high level representation of a process flow, including specification of processing units, data
transfers and execution constraints.

Introduction

Bioinformaticians frequently use a combination of
local applications and remote services for
performing ‘in-silico’ experiments. These
experiments are procedures using computer based
information repositories and computational
analysis adopted for testing hypotheses or to
demonstrate known facts. In myGrid’s case, the
emphasis is on data intensive experiments
requiring combinations of applications into
workflows. However, there can be a significant
difference between the level at which the scientist
wants to think about their problem and the level at
which it is necessary to implement a solution, for
example the details of the necessary web services
calls and the data links between them.

As a result, we have developed a workflow
language that allows a range of abstraction levels
so that users who want to interact with individual
services and applications at a detailed level can
still do so, whilst others can be relieved from the
nitty-gritty and focus on higher-level processes. In
this way, our approach allows the members of the
bioinformatics community to define the
abstractions that fit their way of working and
assemble workflows appropriate to their in-silico
experiments.

This paper presents the experiences and rationale
that have lead myGrid, in collaboration with the
European Bioinformatics Institute (EBI) and
Human Genome Mapping Project (HGMP) to
develop yet another workflow language (SCUFL:
Simple Conceptual Unified Flow Language).
Details are given of our flow language and the
corresponding workflow enactment engine. Our
workflow-authoring tool is available as open
source through the Taverna project [3], as is the
workflow enactment engine, available through the
Freefluo project [2]. Both tools are designed to be
flexible and extensible to other domains.

Finally, a case study is included to show how we
use our approach to author and enact a real-world
bioinformatics workflow using Web Services.

Who, what, when, where, how of
bioinformatics workflows in myGrid

Workflows for in-silico experimentaion

MyGrid aims to assist the scientist with the
development and execution of in-silico
experiments. These experiments allow the
scientist to investigate or verify a hypothesis that
they may have about a particular problem or
domain. Such in-silico experiments are, by their

mailto:markg@cs.man.ac.uk
mailto:tmo@ebi.ac.uk

very nature, hypothesis driven, ad-hoc and highly
specialised to the particular problem they are
associated with. For example, myGrid is now
finishing its first full prototype using a case study
for the examination of the genetics of Graves’
disease [4]. The associated workflow is very
specific to Graves’ disease and is used to
investigate what genes and loci are involved, to
then determine which single nucleotide
polymorphisms (SNPs) located in these genes are
involved and finally to develop genotyping
experiments to test the above hypotheses.

The use of myGrid to investigate Graves’ Disease is
just one example of the workflow lifecycle where
workflows are typically assembled and tailored to
the particular experiment; enacted using a
combination of local applications and remote
services; iterated and refined; and then recorded
for provenance alongside the experimental results.
The exploratory and ad-hoc nature of the work
performed means that the user will often interact
with the workflow whilst it is executing, for
example to visualise and filter intermediate results,
choose appropriate remote service providers or
local tools, and generally to monitor and control
execution.

Workflow functionality

Basic workflow requirements such as the need to
support sequential and parallel flows, looping and
conditionals, recursion and complex data types
(not just int, float, string etc.) are treated as a
‘given’ in this paper and are common to most
workflow languages, i.e. they are not particular to
workflow in e-Science. Other functionality, for
example the need for semantic annotation and
discovery of workflows, the need to generate
provenance information, and the need to support
services that generate large volumes of data are
very much germane to e-Science workflow and are
discussed in more detail later in this paper.

Integration, integration, integration…

In providing a general-purpose environment for in-
silico experimentation using workflows, myGrid
will need to accommodate/integrate a vast range of
resources in terms of data and applications. These
resources may be within an organisation, for
example in-house systems at a large
pharmaceutical company or local tools developed
within an academic research group, or they may be
external services delivered by a public body or
accessed across an extranet. The European
Bioinformatics Institute [5] alone hosts over 50
tools and 40 databases. The problem of dealing

with the heterogeneity of bioinformatics resources
is not the subject of this paper since the problem of
integration is a well-known problem in the
bioinformatics field [6]. There are several issues
that arise from a workflow perspective due to
resource heterogeneity:

Using the right level of abstraction

Workflow users will typically want to use remote
services at different levels of abstraction
depending on what they want to do. Some users
will want to interact intimately with a specific
service to tweak parameters that determine the
detailed nature of the results or to tune
performance. Other users will wish to be
abstracted from these details since they are more
concerned with the overall orchestration of several
services into a high-level flow and hence want
detailed workflows and specific invocation
methods to be ‘wrapped’ up and delivered in an
easy to use form.

Integration of existing tools and services

There are several existing tools or services that
provide integration functionality and the user will
want to incorporate these within their workflows.
These tools and services often have their own
invocation and scripting mechanisms. Interaction
with such tools and services is often stateful and
scripts may be used to describe a series of
activities that need to be performed. Furthermore,
a variety of type systems are encountered
(conceptual types, data formats, ‘on-the-wire’
types etc.) depending on the tools and services
being used. The requirements for abstraction and
different invocation models can be illustrated by
considering the use of the Talisman [7] tool and
SoapLab [8,10] services, both of which have been
developed by the EBI and are used within myGrid
workflows.

Talisman is a rapid application development tool
and runtime environment for writing web based
user interfaces. A wide variety of applications and
data can be accessed through Talisman, for
example, the EMBOSS[9] toolset and the
ENSEMBL[12] database. Talisman is currently
used by curators at the EBI for the annotation of
Interpro and GO. Talisman is typically used with
a Web-based user interface, but it can also execute
XML scripts that describe a series of activities to
perform. This is in contrast to the typical Web
Services model where a set of separate operations
would typically be provided, one for each
application that can be invoked. Therefore,
incorporation of Talisman as a Web Service into a

workflow requires the use of XML scripts as well
as XML data.

Soaplab is a set of Web Services that provide a
programmatic access to applications on remote
computers. The EBI has a Soaplab service running
on top of several tens of analyses (most of them
coming from EMBOSS). The advantage of
Soaplab is the uniform way of describing analyses
and their input and output data by an XML-based
metadata description. Use of Soaplab requires a
stateful interaction where a series of calls are
required to execute an application (create instance
of application, run application, wait for results, get
results). Therefore, incorporation of Soaplab into
a workflow requires a ‘mini-workflow’ to execute
each application.

Workflows as part of ‘e-Science’

Workflow lifecycle

Use of workflow as part of a scientific endeavour
requires support for the workflow lifecycle. For
example, a particular workflow will typically be
authored, enacted, validated and modified in an
iterative cycle. Whole workflows, or workflow
fragments, will be published and shared so that
others can use or learn from them, which in turn
involves a process of annotation, discovery and
personalisation. Therefore, workflow authoring,
versioning, and scientific validation will be a key
part of in-silico experimentation.

Semantic description of workflows

The workflows (and resources) for a particular in-
silico experiment will not necessarily be known a-
priori. Specification at a semantic level of the
resources and activities required allows discovery
of suitable resources and workflows in a way that
is abstracted from the syntactic details of data
formats or invocation mechanisms. The use of
explicit and machine-readable semantics for the
inputs, outputs, and function of a workflow
increase the ability to share workflows since it
allows workflows to be indexed, browsed, and
searched according to their overall purpose rather
than detailed syntax, data formats or service
bindings.

Workflow provenance

Use of workflows as part of scientific activity
often require provenance[16] data to be kept about
the activities performed during workflow
execution (recording of intermediate data sets,
details of the specific service providers used,

versions of data and tools involved, interventions
were made by the user). Provenance support is
needed in the workflow language (so that the
required level of provenance can be specified); the
systems used to enact the workflows (so that the
specified provenance data is generated during
execution); and data stores (so provenance data
can be store d and subsequently retrieved).

Large datasets

Bioinformatics applications can generate large
datasets. If these applications are executed as
remote services and large datasets need to be
transferred between these services, then,
depending on network topography, it can be
inefficient (and in some cases prohibitive) to
transfer all the data to and from a workflow
orchestration tool used to orchestrate the services.
In particular, it doesn’t make sense to
unnecessarily transfer intermediate datasets to and
from a workflow tool if some of the services are
co-located at the same service provider. Options
include streaming of data directly between services
(or via intermediate repositories) or orchestrated
set up of alterative network protocol transmission,
e.g. sftp. Support for these models needs to be
present in both the workflow language and
workflow enactment engine since the control-flow
is now separated from the physical data-flow.
Many of the bio services in myGrid are hosted by
the EBI and there is scope for enhancing these
services to allow service-to-service data exchange,
for example through the use of data caching EBI.

Deployment

Two modes of deployment are expected for the
myGrid workflow editor and enactor. The first
mode is where an individual uses the tools on their
desktop (either directly, or within the myGrid
workbench[14]) for orchestrating a set of remote
services (and potentially local applications). To
support this mode, the tools need to be freely
available and easy to install and use. The
bioinformatics community is a significant user of
open-source. Many members simply cannot
afford, or are not willing to use, proprietary and
commercial offerings. The second mode of
deployment is where an existing community
service provider (e.g. the EBI) or large commercial
organisation (e.g. a pharmaceuticals company)
wants to provide new services that allow its users
(public, collaborators or internal employees) to
compile and execute workflows and their
resources. For example, a community service
provider might host a workflow portal that allows
users to search through a directory of workflows,

select one (or build their own), and then execute it
at the service provider site. This has requirements
of robustness and scalability that are less evident
in the personal ‘desktop’ use of the tools.

Summary of workflow requirements in
myGrid

Workflow in myGrid is characterised by the
following requirements:

1) The workflow language should allow varying

levels of abstraction to match the needs of
each individual bioinformatics user. This
includes specification of resources or
processes at a semantic level (conceptual type
rather than invocation syntax or service
‘instance’ specification).

2) The workflow language and enactor should
support the specification and generation of
provenance data. This includes support for
authoring and versioning, for example by
annotating the workflow specification.

3) Workflow enactment should allow invocation
of services using mechanisms other than
simple Web Service calls, in particular stateful
interactions with services and use of scripts.

4) Specification and enactment of workflows that
involve sequential and parallel flows,
iterations and conditionals, complex data
types etc. – the usual stuff supported by
workflow languages, e.g. BPEL4WS[13].

5) Workflow editing and enactment tools need to
be simple use by bioinformaticians in a
desktop (unix or windows) environment.
Workflow editing and enactment tools also
need to be able to be deployed within services
provided to the community by organisations
such as the EBI, e.g. to allow users to
discover, compose and execute workflows
using resources at the EBI.

6) The workflow language and enactor should be
able to accommodate services that exchange
data directly between each other or via
intermediate data repositories.

Choice of a workflow language

There are many existing standards for workflow.
A good review of Process Modelling Languages is
given on http://www.ebpml.org. The obvious
question that myGrid has, and continues to face, is
whether any of the existing standards are a suitable
starting point for what the project wants to
achieve. Some of the relevant standards include:
Xlang, WSFL, and BPEL from Microsoft and
IBM; ebXML from Oasis; XPDL from the

workflow management coalition; UML extensions
and EDOC from the OMG; and WSCI, which is
under the umbrella of the W3C. It is not the
purpose of this paper to review or summarise
existing standards. However, some of the reasons
why myGrid had not opted to use an existing Web
Service orchestration language are given below.

Shifting sands

The current workflow standards are in flux; it is
not obvious which one is best for myGrid. The
major players (BEA, Microsoft, IBM etc.) are all
involved in multiple ‘standards’ (BPEL, BPML,
XPDL etc.) and multiple standardisation initiatives
(W3C, OASIS etc.). Alliances come and go and
standards are moving quickly (for example,
WSFL/Xlang→BPEL1.0→BPEL1.1 only took
about 18 months). It takes a significant amount of
time and effort to effectively track workflow
standards.

Availability of simple, free and high-quality tools

High quality and free tools (e.g. open source) are
typically not available to support current standards.
There are several commercial offerings, for
example BPEL through IBM’s WebSphere or
Collaxa’s BPEL server), however proprietary and
costly solutions significantly limit the target
audience of myGrid. Furthermore, industrial
strength solutions, e.g. WebSphere, are typically
not easy to deploy on the desktop. Many users
want a simple desktop tool that they can download,
install and use with the minimum of support.

Levels of abstraction

Web Service standards such as BPEL don’t have
the levels of abstraction necessary for most
bioinformaticians. For example, BPEL can’t
conceptually group together the operations
involved when accessing an application through
SoapLab in a way that is easily encapsulated and
partitioned within a larger workflow.

Semantics

Web Service orchestration languages don’t support
specification of processes or resources at a
semantic level since they are written directly in
terms of the syntax of XML data and WSDL
operations. Furthermore, since there is little hope
of myGrid influencing these languages, there is not
much scope for adding this support to the language
either.

http://www.ebpml.org/

Workflow is not just for Web Services

Use of multiple invocation methods (CORBA,
Web Services, Grid Services, local libraries) is
typically not supported in existing workflow
languages, which are often targeted purely at Web
Service invocation. Furthermore, existing
standards and tools don’t cater for service-to-
service exchange of large volumes of data.

Provenance

Existing standards don’t explicitly support
provenance or authoring and versioning. Lack of
support for provenance applies both to the
language used to specify a workflow and an engine
used to execute a workflow specification.

The myGrid approach

MyGrid did initially adopt the WSFL language as
the basis of workflow specification and enactment.
To start with, this proved to be a good choice.
Although a freely available WSFL enactment
engine was not available at the time, the
implementation of an enactor to support the subset
of WSFL required proved quite simple. Use of an
existing specification also saved time when
looking to get a working demonstrator going early
in the project, which was essential in capturing
user requirements.

However, as the project progressed and more
sophisticated workflows needed to be supported, it
became clear that WSFL was no longer suitable for
many of the reasons listed above. Other
languages were considered, but ultimately myGrid
made the decision to develop its own language and
enactor as the most cost effective way to achieve
the research objectives of the project. We did
consider layering our higher-level language on top
of an existing lower-level third-party language and
tool-set, however, whilst this would potentially
allow a degree of ‘plug-and-play’ of third-party
software, it was felt that the extra effort of taking
this approach did not justify the benefits.

The decision of myGrid to design our own language
and tools from scratch has meant that myGrid can
more easily investigate some of key research
aspects of e-Science workflows in bioinformatics,
for example what it means to add semantics to a
workflow language, and how to specify and
generate provenance information.

Overall, we feel that decoupling myGrid from the
current turmoil of the workflow standards world
means that the project can get on with the research

work of building e-Science tools that operate at the
right level of abstraction, are open-source, and
most importantly will be adopted by the
community beyond the end of the project.

The Scufl language and workflow
enactment engine

The Scufl language is a high-level conceptual
workflow language and full details of Scufl can be
found on the Taverna Open Source project site
http://taverna.sourceforge.net. Only a short
summary is presented here to assist with
interpretation of the case study presented later. A
Scufl definition consists of three main entities.

Processors:
A processor can be regarded as a function of some
set of input data to a set of output data, where each
function may have side effects on the execution
environment that are not encapsulated within the
input / output specification. Processors therefore
contain ports, which are named uniquely within
the scope of the processor, are defined as either
input or output and may have a type assigned to
them in some type scheme, but this is not currently
defined within the Scufl language. Processors
have a set of named input ports, a set of named
output ports, a name within the scufl space, and a
current execution status (initializing, waiting,
running, or completed).

Data links:
A data link represents the consumption of some
processor output by an input of some other
processor. In fact, there is nothing in the language
to prevent a processor consuming one of its own
outputs, although this may be rejected during the
translation to some other format due to the implicit
problems with cyclic workflows. Data links have a
source processor and output port name, a sink
processor and an input port name and an optional
name within Scufl space.

Concurrency constraint:
Although the data link specifications are enough to
ensure correct execution ordering, since we allow
processors to have side effects on their
environment it is often required to explicitly create
constraints on the ordering of execution of
different processors. Specifically, it is possible to
create a gate constraint that must be satisfied
before a processor can effect a particular state
change; for example, processor one is only allowed
to shift state from waiting to running when
processor two has status 'completed'. Constraints
have a processor controlled by the constraint, a

http://taverna.sourceforge.net/

Freefluo also supports generation of provenance
information (what, when and where for all
activities performed in a workflow) and also
provides service discovery via standard UDDI if a
service is not bound in a workflow specification
(soon to be supported in Scufl).

state change blocked in that processor, a gate
condition, and an optional name within scufl
space. Concurrency constraints are particularly
useful in dealing with stateful interaction with
services as shown below.

 Workflow enactment engine
 Graves’ disease case studies
Details of the myGrid workflow enactment engine
can be found on the Freefluo Open Source project
site http://freefluo.sourceforge.net

The aim of the Graves’ disease scenario is to
identify genes involved in Graves’ disease (GD)
using a microarray approach (Fig. 1). GD is caused
by the secretion of thyroid-stimulating
autoantibodies by the lymphocytes of the immune
system. These autoantibodies stimulate thyroid
cells via the thyroid stimulating hormone receptor
and override the normal feedback mechanism,
leading to hyperthyroidism [15].

Freefluo is a Java workflow orchestration tool for
web services that currently supports a subset of
WSFL as well as Scufl. Freefluo is very flexible
and at its core is a reusable orchestration
framework that is not tied to any workflow
language or execution architecture. The enactor
core supports an object model of a workflow in the
form of a directed graph where each node has a
state machine that defines its lifecycle. Workflow
scheduling and state transitions are driven by
message passing between nodes as execution of
the workflow progresses. The core of the enactor
is decoupled from both the textual form of a
workflow specification and the details of service
invocation and data model. This allows the core to
orchestrate a workflow in a generic way.

Figure 1 A schematic diagram describing the
Graves' disease scenario.

The enactor core is used in the context of a
particular language and service run-time
environment. A workflow language parser is used
to convert a textual workflow specification, e.g. a
Scufl document, into the internal object
representation of the enactor core. An invocation
framework is then added to allow the enactor to
actually invoke services in the run-time
environment and deal with the specific data types
passed between the services invoked, e.g. WSDL
calls and XML message parts.

Freefluo can easily be extended to support
different invocation methods (Web Services, Grid
Services, CORBA) and has been used in other
projects in this way, for example for using
CORBA wrapped numerical methods and data sets
in a steel modelling workbench currently in use by
the European Coal and Steel Community.

High-level views of the workflows required for the
GD scenario were represented using the unified
modelling language (UML) in the form of activity
diagrams (Fig. 2 represents just one sub-workflow
within the overall GD workflow).

It is the ability to extend the enactor’s run-time
that also enables easy integration of stateful
services such as Soaplab since the ‘mini-
workflow’ of using these services can be
encapsulated in bespoke extension. Furthermore,
the run-time extensions are a natural and simple
place to provide features such as iteration over
datasets and automatic type casting or conversion.

These series of conceptual steps identified for a
workflow were then used as the basis of
construction of a Scufl workflow specification
using the Taverna workflow-authoring tool. The
Scufl specification describes how to orchestrate the
set of Web Services that provide the required

http://freefluo.sourceforge.net/

functionality. The workflow created is shown in
Fig 3.

Figure 2 UML diagram representing the
nucleotide sequence annotation workflow.

The triangles at the top of Fig 3 are workflow
inputs, the triangles at the bottom are workflow
outputs and the green ovals are Web Service
operations. The solid lines represent the data
flows with the text annotations showing the data
types.

Figure 3 Graphical display of the ‘Nucleotide
Sequence With GO Terms’ workflow.

Some parts of the Graves’ disease workflow
required the use of both the Talisman and Soaplab
applications. An example of this is shown in Fig
4 where services are colour coded according to
type: green for WSDL; pink for Talisman and
beige for Soaplab. The important thing to note is
that these all appear at the same level of
abstraction to the user despite the different levels
of complexity of invoking the Web Services
involved. Also shown in the diagram is a series of
Web Service invocations that are cascaded
together using control links. This set of
invocations corresponds to the use of a stateful
Web Service where a series of calls needs to be
made in order to execute the application and

retrieve the results. In this case, the series of
invocations is explicitly visible to the user, as they
are not abstracted through an extension to the
workflow enactor. It should be clear from this
example how the workbench and enactor could be
used to invoke other stateful applications, e.g.
using CORBA or Grid Services.

Figure 4 Incorporation of different types of
service into a workflow

Next Steps

Whilst the work we have done to date has made
good progress on Web Service orchestration, and
fulfils many of the requirements of the developers
and users of bioinformatics workflows, there are
many key areas that we still need to address.

Future work includes: the explicit support for
workflow semantics in the language and enactor,
the ability to coordinate web services or other
applications that need to exchange large quantities
of data (effectively workflow enactment that
passes data by reference instead of by value);
coordination of contextualised web services, for

example passing context in SOAP headers using
standards such as WS-Context; workflow
management and lifecycle, for example a
framework for the storage, indexing, searching and
retrieval of workflows; and support for services or
applications that stream input or output, i.e. they
don’t conform to the current Web Service
paradigm; and integration of local applications and
toolkits in their native form.

These areas will form part of a user-driven
programme of further work within myGrid and in
collaboration with the Human Genome Mapping
Project and other e-Science projects.

Conclusions

MyGrid has, in collaboration with the European
Bioinformatics Institute and the Human Genome
Mapping Project, developed a graphical toolset
and workflow enactor, which uses its own high
level representation of a process flow, including
specification of processing units with data and
execution constraints. The workflow toolset is
available as open source and has also been
integrated into the myGrid workbench where it was
a key tool in assisting with the identification of
genes involved in Graves’ disease.

The biologists involved in the myGrid case study
have positively received our approach confirming
the need to address the significant difference
between the level at which the scientist wants to
think about their problem and the level at which it
is necessary to implement a solution. We also
welcome wider feedback, anything from a quick
note commenting on our work to offers of
collaboration will be gratefully received. In
particular we're interested in hearing from anyone
who thinks they might be able to apply and extend
our tools in other domains.

Acknowledgements

This work is supported by the UK e-Science
programme under grant EPSRC GR/R67743. We
would also like to acknowledge the assistance of
the whole myGrid consortium.

References

[1] M Greenwood, C Wroe, R Stevens, C Goble,
M Addis. "Are bioinformaticians doing e-
Business?", EuroWeb 2002, St Annes College,

Oxford, UK. 17-18 December 2002
http://www1.bcs.org.uk/DocsRepository/03700/37
82/greenwoo.htm
[2] Freefluo Workflow Enactor:
http://freefluo.sourceforge.net
[3] Taverna workflow authoring environment:
http://sourceforge.net/projects/taverna
[4] R Stevens, A Robinson, and C Goble myGrid:
Personalised Bioinformatics on the Information
Grid, in Proceedings of Intelligent Systems in
Molecular Biology, Brisbane Australia, July 2003
[5] http://www.ebi.ac.uk/services/index.html
[6] Bioinformatics: bringing it all together,
NATURE, VOL 419, 17 OCTOBER 2002,
http://www.nature.com/nature.
[7] Talisman:
http://www.ebi.ac.uk/talisman/index.html
[8] SoapLab: http://industry.ebi.ac.uk/soaplab/
[9] EMBOSS:
http://www.uk.embnet.org/Software/EMBOSS/
[10] M. Senger, Soaplab - a unified Sesame door
to analysis tools, to appear in Proc UK e-Science
programme All Hands Conference, 2-4 Sept 2003,
Nottingham, UK
[11] C.A. Goble, C.J. Wroe, R. Stevens and the
myGrid consortium, The myGrid project: services,
architecture and demonstrator. Proceedings UK
OST e-Science 2nd All Hands Meeting 2003,
Nottingham, UK 2-4 Sept, 2003
http://www.mygrid.org.uk
[12] ENSEMBL
http://www.ebi.ac.uk/ensembl/index.html
[13] BPEL4WS Specification: Business Process
Execution Language for Web Services Version 1.1
http://www-
106.ibm.com/developerworks/library/ws-bpel/
[14] Robert Stevens, Kevin Glover, Chris
Greenhalgh, Claire Jennings, Peter Li, Melana
Radenkovic, Anil Wipat, Performing in silico
Experiments on the Grid: A Users Perspective.
Proceedings UK OST e-Science 2nd All Hands
Meeting 2003, Nottingham, UK 2-4 Sept, 2003
[15] Kohn LD, Shimojo N, Kohno Y, Suzuki K.
(2000) An animal model of Graves' disease:
understanding the cause of autoimmune
hyperthyroidism. Rev Endocr Metab Disord. 1:59-
67.
[16] Mark Greenwood,Carole Goble, Robert
Stevens, Jun Zhao, Matthew Addis, Darren
Marvin, Luc Moreau, Tom Oinn , Provenance of e-
Science Experiments - experience from
Bioinformatics, Proceedings UK OST e-Science
2nd All Hands Meeting 2003, Nottingham, UK 2-4
Sept, 2003.

http://www1.bcs.org.uk/DocsRepository/03700/3782/greenwoo.htm
http://www1.bcs.org.uk/DocsRepository/03700/3782/greenwoo.htm
http://freefluo.sourceforge.net/
http://sourceforge.net/projects/taverna
http://www.ebi.ac.uk/services/index.html
http://www.nature.com/nature
http://www.uk.embnet.org/Software/EMBOSS/
http://www.mygrid.org.uk/
http://www.ebi.ac.uk/ensembl/index.html
http://www-106.ibm.com/developerworks/library/ws-bpel/
http://www-106.ibm.com/developerworks/library/ws-bpel/

	Introduction
	Who, what, when, where, how of bioinformatics workflows in myGrid
	
	
	Workflows for in-silico experimentaion
	Workflow functionality

	Integration, integration, integration…
	Workflows as part of ‘e-Science’
	Workflow lifecycle
	Semantic description of workflows
	Workflow provenance
	Deployment

	Summary of workflow requirements in myGrid
	
	Choice of a workflow language

	Shifting sands
	Availability of simple, free and high-quality tools
	Levels of abstraction
	Workflow is not just for Web Services
	Provenance
	The myGrid approach
	Processors:
	A processor can be regarded as a function of some set of input data to a set of output data, where each function may have side effects on the execution environment that are not encapsulated within the input / output specification. Processors therefore co
	Data links:
	A data link represents the consumption of some processor output by an input of some other processor. In fact, there is nothing in the language to prevent a processor consuming one of its own outputs, although this may be rejected during the translation t
	Concurrency constraint:
	Although the data link specifications are enough to ensure correct execution ordering, since we allow processors to have side effects on their environment it is often required to explicitly create constraints on the ordering of execution of different pro
	Workflow enactment engine

	Graves’ disease case studies

