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ABSTRACT 

In order to provide an increasing number of functionalities and 
benefit from sophisticated and application-tailored services from the 
network, distributed applications are led to integrate an ever-
widening range of networking technologies. As these applications 
become more complex, this requirement for ‘network 
heterogeneity’ is becoming a crucial issue in their development. 
Although progress has been made in the networking community in 
addressing such needs through the development of network 
overlays, we claim in this paper that the middleware community has 
been slow to integrate these advances into middleware architectures, 
and, hence, to provide the foundational bedrock for heterogeneous 
distributed applications. In response, we propose our ‘open 
overlays’ framework. This framework, which is part of a wider 
middleware architecture, accommodates ‘overlay plug-ins’, allows 
physical nodes to support multiple overlays, supports the stacking of 
overlays to create composite protocols, and adopts a declarative 
approach to configurable deployment and dynamic 
reconfigurability. The framework has been in development for a 
number of years and supports an extensive range of overlay plug-ins 
including popular protocols such as Chord and Pastry. We report on 
our experiences with the open overlays framework, evaluate it in 
detail, and illustrate its application in a detailed case study of 
network heterogeneity. 

Categories and Subject Descriptors 

C.2.4 [Computer-Communication Networks]: Distributed 
Systems – Distributed applications 

General Terms 

Algorithms, Measurement, Design, Reliability, Experimentation 

Keywords 

WSN, middleware, overlay network, framework 

1. INTRODUCTION 
Modern distributed systems can be characterised by increasing 
levels of heterogeneity. This subsumes both the characteristics of 
the distributed applications and services in question, and the 
environments in which they operate. For example, there are 
increasing demands for applications that are adaptive, autonomic, 

dependable, secure, scalable etc., and also demands for such 
applications to operate in increasingly-varied environments such as 
the fixed internet, mobile and pervasive environments, embedded 
systems, etc.  

In this paper we address a key aspect of heterogeneity that has 
perhaps received less attention than it deserves in the middleware 
community: network heterogeneity. As well as needing to run 
effectively over an ever-increasing range of networking 
technologies (e.g. large-scale fixed networks, mobile ad-hoc 
networks, resource impoverished sensor networks, satellite links, 
etc), distributed applications are increasingly demanding 
sophisticated and application-tailored services from the underlying 
network (e.g. multimedia content distribution, reliable multicast, 
etc.). Furthermore, going beyond this ‘classic’ view of 
heterogeneity, we can discern a growing trend towards ‘extreme’ 
network heterogeneity involving the combining of already 
heterogeneous elements. For example [13] discusses scenarios in 
which sensor networks are tightly integrated with cluster-based and 
internet-based grids. This trend is also evident in the current interest 
in systems of systems [43] and the pervasive grid [27].  

Such factors have driven the networking community to develop the 
concept of network overlays as an approach to the virtualisation of 
the underlying network resource(s). Network overlays make it 
possible to provide a range of different networking abstractions 
including peer-to-peer groups, distributed hash tables, application-
level multicast, etc. In our view, however, this work has not yet 
been sufficiently embraced and integrated by middleware designers 
(Several overlay frameworks have been developed (e.g. [32, 8, 2, 
38, 33]) but these suffer from significant limitations as discussed in 
Section 5). We therefore propose the concept of open overlays and 
suggest that it be adopted as a central element of contemporary 
middleware platforms. In our conception, open overlays offer a 
configurable and reconfigurable framework that is well integrated 
into a broader middleware architecture, and supports (flexible) 
virtualization of the network resource, the co-existence of multiple 
(physical or) virtual networking abstractions, and potentially 
support the layering of virtual network abstractions to achieve 
desired network services through composition. 

In this paper we present a detailed evaluation of the open overlays 
approach. This builds on extensive experience of using the approach 
in the construction and composition of a variety of (often complex) 
overlays and overlay-based distributed applications. The rest of the 
paper is structured as follows. Section 2 provides an overview of 
our open overlays framework, focusing on its associated 
architectural patterns and its support for configuration and 
reconfiguration. Following this, Section 3 presents an in-depth case-
study of network heterogeneity that demonstrates the application of 
the approach; and Section 4 offers an in-depth discussion of the 
benefits of the framework in particular and the open overlays 
concept in general. Finally, Section 5 discusses related work, and 
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Section 6 offers our overall conclusions and plans for further 
research. 

2. THE OPEN OVERLAYS FRAMEWORK 

2.1 Context 
There are essentially three responses to the network heterogeneity 
that we noted above. The first is to progressively add features to 
existing middleware platforms to cope with the increased levels of 
heterogeneity (e.g. extensions to deal with mobile computing). It is 
now well recognized however that this leads to bloat and is not a 
viable long-term solution. The second approach is to create 
specialised per-application-domain middleware platforms (e.g. 
middleware for sensor networks). This approach has yielded some 
success but suffers from significant limitations—particularly in 
terms of achieving interoperability and accommodating the kinds of 
‘extreme’ heterogeneity (e.g. systems that integrate sensor networks 
and clusters) referred to above. The third approach, which we 
favour, is to offer a configurable framework that can be tailored to 
the needs of a given application and operational domain (or 
domains) while avoiding the shortcomings of the two previous 
approaches. Configurable frameworks also have the benefit that 
they can potentially support run-time reconfiguration, and thus 
address another emerging trend in modern distributed systems: 
dynamicity, and the consequent need for adaptivity. 

In general terms, our research over the past few years has been 
targeting the development of such frameworks through a number of 
projects including Open ORB [4], ReMMoC [22], NetKit [11], 
Gridkit [23], and through our contributions to the RUNES 
middleware [10]. The approach is well documented and builds on 
the complementary nature of lightweight software component 
technology (together with component frameworks) in tandem with 
reflection. Components and component frameworks provide the 
building blocks and associated principled software engineering 
methodology for the construction of middleware, and reflection 
provides the means to inspect and adapt this underlying (explicit) 
structure, and thus additionally render it reconfigurable at runtime to 
address the need for adaptivity. OpenCOM [12] lies at the heart of 
this architectural approach, offering the necessary underlying 
lightweight and reflective component model. 

We have employed this approach in the design of the open overlays 
framework that is the subject of this paper. The framework is 
integrated as part of the wider Gridkit middleware architecture [23], 
which also addresses heterogeneity in other dimensions (e.g. in 
supporting multiple interaction types [24], and in dealing with 
heterogeneous service discovery protocols [9]). Aspects of the open 
overlays framework have previously been presented in the literature 
[23, 24, 25]; but in the following sub-sections we provide a 
consolidated overview and update to provide context for the 
substantial evaluation material in Sections 3 and 4 which forms the 
main contribution of this paper. 

2.2 Basic architecture of the framework 
The open overlays framework. The open overlays framework (as 
visualised in Figure 1) is an OpenCOM component framework that 
is deployed on each participating node in the distributed system. 
The framework accepts ‘plug-in’ components that offer various 
types of overlay-related behaviour. More specifically, the types of 
components that can be plugged into the framework are as follows:  

 

Figure 1. An example configuration of the open overlays 

framework 

 

i) Overlay plug-ins. These are per-node implementations of 
network overlays. For example, Figure 1 shows four overlay 
plug-ins: TBCP [35], Scribe [7], and plug-ins for a Chord 
Distributed Hash Table (DHT) and a Chord Key-Based 
Routing (KBR) overlay [44]. Multiple overlays can operate 
simultaneously in the framework either in mutual isolation 
(cf. TBCP and Scribe in Figure 1) or in a stacking relationship 
(e.g. Scribe and Chord DHT are both stacked atop Chord 
KBR). The overlay plug-in abstraction can be applied 
uniformly throughout the communication stack. For example, 
transport protocols like TCP or UDP are represented as 
overlay plug-ins, and an AODV overlay plug-in may be 
provided in the network layer in a MANET environment. 
Note, we term plug-ins implementing transport behaviour (i.e. 
no routing) as null overlays. Hence, the abstraction can even 
be applied at the level of the physical network as 
demonstrated in Section 3. 

ii) Interface plug-ins. While overlay plug-ins provide different 
types of behaviour, interface plug-ins capture common API 
patterns that can be shared by multiple overlays. For example, 
following [15], we provide an interface plug-in for DHT 
overlays and another for multicast overlays. The indirection 
provided by interface plug-ins isolates higher-layer software 
from the idiosyncrasies of individual overlay plug-ins, 
facilitates application-transparent adaptation (i.e. transparently 
replacing one overlay with another), and encourages a 
principled approach to the development of ‘families’ of 
overlays plug-ins, each of which shares a common API. 

A pattern for overlay plug-ins. Overlay plug-ins are themselves 
‘mini’ component frameworks (in OpenCOM, component 
frameworks are inherently components), each of which, as shown in 
the left part of Figure 1, is composed of three distinct elements 
(components) that respectively encapsulate the following areas of 
behaviour: 

i) control behaviour, in which the node co-operates with its peer 
control element on other nodes to build and maintain an 
overlay-specific virtual network topology; 

ii) forwarding behaviour that determines how the overlay will 
route messages over the aforementioned virtual topology;  

iii) state information that is maintained for the overlay; e.g. 
nearest neighbours. 

124



Each of these three elements exposes a standard interface, IControl, 
IForward, and IState respectively, which enables the free 
composition of overlays (subject to the configuration constraints 
discussed below). We refer to this three-element architecture as the 

overlay pattern. The motivation for the overlay pattern is to achieve 
flexibility in terms of both configuration and dynamic 
reconfiguration by enabling both control and forwarding behaviour 
to be independently replaced without loss of state information. Note 
also that the overlay pattern can form a basis for further 
decomposition—i.e. each of the three elements can itself be a 
component framework. We consider such an overlay in Section 4. 

2.3 Local configuration and reconfiguration 
Local configuration Each per-node instance of the open overlays 
framework is dynamically configured at deploy-time. Possible 
configurations are first set out in terms of a set of pre-installed 
profiles, each of which specifies an available palette of overlay and 
interface plug-ins and a set of basic constraints that specify 
configurations that are recognised by the profile. As examples, we 
have defined profiles for multicast environments and for wireless 
sensor networks (see Section 4, table 6). 

To support configuration, the framework employs both static and 
dynamic meta-data as follows:  

i) static meta-data is attached to the set of overlay plug-ins 
currently available in the profile; this specifies a set of 
configuration rules (see below), constrains which other 
overlay plug-ins may be stacked below the plug-in, and may 
also constrain which interface plug-in the overlay requires; 

ii) dynamic meta-data is provided by a per-node context engine 
[Capra,03]; this meta-data varies dynamically according to the 
current state of the host node in terms of relevant 
characteristics such as battery life, network connectivity etc. 

The static configuration rules contained within each profile are 
declarative XML-based expressions that specify the configuration 
possibilities supported by the profile. As an example, the following 
configuration rule (expressed in pseudo-code rather than XML for 
the sake of clarity) states that when a ‘multicast’ service is requested 
by the application, and the current network context is ‘fixed 
infrastructure with no IP multicast support’, then the TBCP overlay 
plug-in should be instantiated and configured beneath the ‘overlay 
multicast’ interface plug-in—i.e. to match one of the configurations 
shown in Figure 1: 

 

if (multicast && fixed_infrastructure && 
   !IP_multicast) 
    configure overlay_multicast interface with TBCP 

 

Once the execution of such a rule has resulted in the instantiation of 
a ‘top-level’ overlay plug-in (i.e. TBCP in our example), the 
configuration process continues in a delegated manner which we 
refer to as top-down recursive instantiation. This involves each 
overlay plug-in evaluating its own configuration rules, and on that 
basis selecting, instantiating (or discovering) and configuring a 
further overlay at the next level down. This process continues until 
an overlay plug-in is encountered which has no rules that trigger 
any further instantiation.  

Local reconfiguration Having established a configuration as 
discussed above, it is possible to dynamically reconfigure a node’s 
overlay configuration using the ‘standard’ OpenCOM reflective 
capabilities [12]. For example, one can inspect the current 

composition of components in the framework, replace or add 
components, or add interceptors. However, in line with the usual 
semantics of OpenCOM component frameworks, all such actions 
are subject to ‘veto’ if they would violate the meta-data constraints 
associated with the profile or the current state of the framework 
instance. For example, a constraint of the overlay framework is that 
there must be a null overlay plug-in (e.g. transport or physical 
network component) at the bottom of the overlay framework 
configuration. 

2.4 Distributed deployment & reconfiguration 
While local configuration and reconfiguration rely on static and 
dynamic meta-data available on each node, Distributed 
configuration (i.e. overlay deployment) and reconfiguration both 
rely on generic support provided by OpenCOM’s distributed 

component framework (DCF) facility [25].  

DCFs are coordinated sets of local component framework instances 
that are spread across a set of co-ordinated nodes. For example, a 
DCF-enabled extension of the TBCP overlay plug-in from Figure 1 
would contain an instance of the TBCP component framework for 
every node participating in the overlay. DCFs support dynamic 
reconfiguration both at a coarse-grained (e.g. changing the top-level 
overlay in use), and a fine-grained level (e.g. changing the overlay 
plug-ins underlying the top-level one, or changing one of the 
elements within an individual overlay plug-in).  

 

 

Figure 2. The per-node elements of a Distributed Component 

Framework 

 

The DCF facility is supported by the per-node architecture 
illustrated in Figure 2. Briefly, both deployment and reconfiguration 
are driven by configurators which select and apply reconfiguration 
‘policies’—i.e. scripts to be executed on each DCF node to enact a 
specified deployment or reconfiguration action. The selection of 
these policies from a policy repository is performed similarly to the 
local configurations/reconfigurations discussed in section 2.2 (i.e. 
based on meta-data and configuration rules).  

DCFs themselves can be very flexibly configured according to 
application needs. For example, depending on the numbers of 
participating nodes, each DCF may employ a single master 
configurator or per-node distributed configurators. Similarly, they 
may employ either a single or multiple context engine and policy 
database. In addition, the strategies used to achieve consensus in the 
case of distributed configurators, or to achieve quiescence before 
applying a policy script, can all be flexibly configured. We also 
support configurable strategies to post-validate policy enactments, 
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ranging from simple but scalable strategies based on exceptions to a 
fully reliable (but not very scalable) transaction protocol. Each DCF 
also maintains a meta-interface (see IDistributedMetaArchitecture 

in figure 2) that enables the atomic insertion (deletion) of 
components into (from) the local component framework instances 
on all the participating nodes. The meta-interface also reifies 
information about the DCF in terms of its participating nodes and 
their current component configurations. The communication 
underlying the meta-interface is implemented in terms of a 
lightweight group membership service [21]. 

For safe dynamic reconfiguration it is important to ensure that 
updates do not impact the integrity of the system. Hence, the 
distributed framework must be made safe to adapt, i.e. placing it in 
a quiescent state. We have so far developed a single, centralised 
implementation for deriving a safe state in the distributed 
framework (this is used for the evaluation results in section 3). A 
request to reconfigure the distributed framework from a central 
node generates a request message asking each local framework 
instance to be placed in a quiescent state; this message is propagated 
via gossiping through the meta-group service. Once a local 
framework is in a quiescent state it returns a notification to the 
configurator node. Upon the condition that all members are in a 
quiescent state the reconfiguration can take place. The disadvantage 
of the centralised approach is that it may be too resource intensive, 
and may not scale suitably for large numbers of nodes. 
Additionally, it may not be necessary to place all nodes in a safe-
state at the same time, or have a single node managing the transition 
to a safe state. Hence, our framework also supports selectable 
approaches to safe-state management that can be tailored to the 
particular style of reconfiguration to be performed and the 
environment that the framework is deployed.  

In sum, in the context of the open overlays framework the DCF is 
used to make coordinated changes across all member nodes of an 
overlay. For example, in a spanning tree overlay plug-in we can in 
one action change the topology of the overlay from a ‘fewest hop’ 
to a ‘shortest path’ configuration by reconfiguring the control 
element of the plug-in on each node (see Section 3). Similarly, we 
might change the routing strategy of a multicast overlay to anycast 
by globally reconfiguring the forwarding elements. 

3. CASE-STUDY BASED EVALUATION 

3.1 Background 
We now discuss the application of the open overlays framework in 
an implemented real-world scenario: wireless sensor network-based 
real-time flood forecasting in a river valley in the north west of 
England. This work has previously been published from an 
application perspective [28]; this paper, in contrast, takes a 
quantitative perspective and focuses especially on the dynamic 

reconfigurability capabilities of the open overlays framework in the 
scenario. 

In terms of necessary background, we monitor water depth and flow 
rate in the river by deploying a number of specialised sensor nodes 
along the banks of the river. About 15 nodes are currently deployed. 
The sensor data is collected in real-time and routed using a spanning 
tree topology to one or more designated ‘root’ nodes. From there 
the data is forwarded via GPRS to a prediction model that runs on a 
remote computational cluster. 

Each sensor node (known as ‘GridStix’) comprises a 400MHz 
XScale CPU, 64MB of RAM, 16MB of flash memory, and 
Bluetooth and WiFi networks (the root nodes are also equipped with 

GPRS). Each GridStix is powered by a 4 watt solar array and a 12V 
10Ah battery. They run Linux 2.6, version 1.4 of the JamVM Java 
virtual machine. Unlike traditional sensor network deployments, 
wherein sensors are merely responsible for relaying sensor data to 
off-site processing facilities, this deployment makes significant use 
of local processing, which is used to support computationally 
complex sensors and to support the local prediction of future 
environmental conditions. This functionality necessitates rich 
support for heterogeneous network technologies. On the one hand, 
networking support must be sufficiently power-efficient that nodes 
may operate for extended periods of time. On the other hand, 
applications such as image-based flow prediction also require high 
performing (and implicitly power hungry) networking support. 

This need for heterogeneity is further compounded by varying 
resilience requirements: During quiescent periods, when flooding is 
unlikely, data may reach the off-site cluster with a high delay. Faults 
in the network may take a long time to be recovered from, since 
they might only jeopardise the completeness of measurement logs. 
In these periods, low energy consumption is a prime requirement to 
maximise the life-time of the sensor network. By contrast, when a 
flood is imminent, we want the network to react quickly, while 
providing a high degree of resilience (e.g. a low sensitivity to 
disruptions), even if this means its energy supplies get depleted 
much more rapidly.  

To support these heterogeneous application requirements, we have 
implemented a tailored Flood-WSN profile on top of our Overlays 
Framework, which we deployed on each node in the network. In the 
remainder of this section we describe in more details how we 
mapped our application requirements unto this domain-specific 
profile. We also present lines-of-code (LoC) and memory footprint 
measurements to convey an idea of the size and complexity incurred 
by this implementation of this profile. 

In a second part (Sections 3.3 and 3.4), we then discuss the overall 
performance of the resulting system, in terms of latency, resilience 
and power consumption. In particular we look at the impact of the 
reconfigurations made possible by the framework. More 
specifically, the figures we present show that the use of the 
framework has no detrimental impact on the overall performance of 
the flood prediction network, and that the reconfiguration 
mechanisms embedded in the framework cause acceptable 
overheads, two crucial preconditions for the deployment of our 
technology in real applications. 

3.2  The Flood-WSN profile 
Our application supports reconfiguration along two dimensions, 
which both lend themselves to the structures offered by our 
Overlays Framework: 

i) At the physical network level each node can use either 
Bluetooth or WiFi (802.11b). Both technologies have 
extremely different throughput, energy, and range properties 
as summarised in Table 1 (These power draw figures are 
based on Ericsson ROK-104-001 BT modules, and Marvell 
88W8385 WiFi modules. The given range figures were 
measured using strategically deployed directional antennas). 
WiFi provides the highest throughput and longest range, but 
at the cost of energy consumption almost an order of 
magnitude higher than Bluetooth. Typically Bluetooth would 
be used in quiescent conditions, and WiFi in imminent 
flooding situations. 

ii) At the data routing level data may be routed from the sensor 
nodes to the root node along two different types of spanning 
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tree: either using a ‘shortest path’ (SP), or a ‘fewest hop’ (FH) 
strategy. Fewest hop (FH) spanning trees are optimised to 
maintain a minimum number of hops between any given node 
and the root. FH trees minimise the data loss that occurs due 
to node failure, but are sub-optimal with respect to power 
consumption. Shortest path (SP) spanning trees are optimised 
to maintain a minimum distance in edge weights from any 
given node to the distinguished ‘root’ node; edge weights are 
derived from the power consumption of each pair-wise 
network link. SP trees tend to consume less power than FW 
trees, but offer poorer performance; 

 

Table 1. Relevant characteristics of Bluetooth and WiFi 

 Throughput Power Draw Range 

Bluetooth 786Kbps 0.4W typical  up to 200M  

WiFi 11Mbps 2.9W typical  up to 1.2KM  
 

 

These two levels of optional configuration are reflected in our 
Flood-WSN profile by four options (WiFi, Bluetooth, SP and FP 
spanning trees). As FH and SP overlays differ only in terms of their 
forwarding components, an FH overlay may be implemented simply 
by creating a new forwarding component and re-using the state and 
control components of the SP tree. 

The storage memory footprint (on disk) of the resulting code is 
shown on Table 2. The Flood-WSN profile consumes just 28KB of 
storage memory, and an average of 105KB of dynamic memory 
during execution inclusive of platform specific overheads such as 
the Java virtual machine running on the GridStix. In order to save 
dynamic memory, overlays are instantiated on demand, rather than 
being maintained concurrently. 

 

Table 2. Footprint of the WSN Profile in deployment. 

 Storage Memory 

OpenCOM 52.4KB 

Overlays Framework 23.8KB 

Flood-WSN Profile 28.0KB 

Total 104.2KB 
 

 

The WiFi/Blueetooth capabilities were extremely easy to implement 
as they directly rely on OS-level capabilities. Much more interesting 
for the assessment of the Overlays Framework is the 
implementation of the two types of Spanning Trees topologies, 
whose size and footprints are described in Table 3. The spanning 
tree plug-ins necessitated the creation of four classes on top of the 
underlying framework, one for each element of the overlays pattern 
that we presented in  Section 2.2. Two classes served both spanning 
trees (the control and state components), with two differentiated 
forwarding components were implemented, one creating an SP tree, 
and one an FH tree. Importantly, as Table 3 shows, this re-use of 
components between FH and SP trees allows an additional tree 
overlay to be implemented by replacing a single component at a 
storage cost of only 6.5KB. 

 

Table 3. Breakdown of Overlay Memory Footprint 

 Shortest Path (SP) Fewest Hops (FH) 

 Size LoC Size LoC 

Control 7.3KB 124 re-used re-used 

State 2.5KB 24 re-used re-used 

Forward 6.3KB 346 6.5KB 352 

 

3.3 Overall Performance 
We now discuss the overall performance of the resulting 
application, in terms of latency, resilience and power consumption. 
More precisely, we start with a quantitative evaluation of the 
relative costs and benefits of the various options identified above as 
a basis for determining the conditions under which the system might 
best be reconfigured. We first discuss how the use of Bluetooth or 
WiFi influences the characteristics of the network, and then move 
on to compare the two different spanning tree configurations 
(Fewest Hops and Shortest Path). The criteria employed include 
both generic metrics and application-specific concerns (see below). 
The generic metrics are as follows:  

i) Latency: We quantify this in terms of the average latency with 
which messages can be relayed from each sensor node to the 
root node (and thence to the back-end flood prediction 
models). 

ii) Resilience: This is a function of the extent to which the failure 
of a given node reduces the overall connectedness of the 
network. We quantify it as the number of viable routes 
between each node and the root. 

iii) Power Consumption: Although the GridStix are equipped 
with solar panels, power consumption is still an extremely 
important factor given that flooding occurs in conditions of 
low light intensity! We quantify this as the per-hop power 
consumed during the transmission of a 1KB sensor reading 
from each node to the root. 

In all cases we measure and plot each of these metrics for each node 
in the network. The figures were obtained by empirical 
measurements on a lab version of the deployed system with a 
topology as shown in Figure 3. 

   
Figure 3. FH (left) and SP (right) Spanning Trees 
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Figure 4a. Physical Network Latency 

 

Figure 4b. Physical Network Resilience 

 

Figure 4c. Physical Network Power Consumption 

 

The Bluetooth and WiFi configurations were evaluated against each 
other using a common configuration at the Spanning Tree level in 
both cases (we chose an SP configuration that is designed to 
minimise power consumption). In Figure 4a, the ‘latency’ graph 
shows that WiFi incurs significantly less latency than Bluetooth 
(over nodes B-O—i.e. 14 non-root nodes): average reporting 
latency for the latter was 2,912ms, compared to just 38ms with 
WiFi. The ‘resilience’ graph (in Figure 4b) again shows Wifi 

performing significantly better than Bluetooth: the average number 
of routes from each node is 13.2 for Wifi compared to just 4.4 for 
Bluetooth. Finally, the ‘power consumption’ graph (in Figure 4c) 
shows that Bluetooth consumes significantly less power than the 
lowest power WiFi configuration. The average per-hop power 
consumption was 0.44 Watts for Bluetooth and 2.35 Watts for 
WiFi. 

In summary, and as expected, WiFi offers lower latency and higher 
resilience than the Bluetooth configuration, but consumes 
significantly more power. It is also interesting to note that for each 
of the three properties evaluated there are significant variations 
across the nodes. This implies that a decision as to the optimal time 
at which a reconfiguration operation should be initiated ought 
ideally to be informed by data from multiple nodes in the tree. Last 
but not least, the energy figures are in lines with those measured in 
Table 1 - the power consumed by local computation during 
reconfiguration is negligible compared to the power consumed due 
to network use. 

Spanning Tree configurations The SP and FH overlay network 
configurations were evaluated against each other (using the WiFi 
network configuration in both cases); the results are seen in Figure 
5. 

 

Figure 5a. Spanning Tree Latency 

 

Figure 5b. Spanning Tree Resilience  
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Figure 5c. Spanning Tree Power Consumption  

  

In Figure 5a, the ‘latency’ graph shows FH performing significantly 
better than SP: the average reporting latency with FH was 11 
milliseconds compared to 28 milliseconds for SP. As expected, 
reporting latency in both cases tends to increase with separation 
from the gateway node (the nodes to the right of the bar chart 
happen to be those that are physically located furthest from the 
root). On the ‘resilience’ graph (in Figure 5b) FH again performs 
significantly better than SP: the average number of nodes affected 
by node failure in FH was 1.29, as compared to 2.64 for SP. Finally, 
the ‘power consumption’ graph (in Figure 5c) shows that FH 
consumes significantly more power than SP: the average per-hop 
power consumption was 3.39 Watts for FH and 2.35 Watts for SP.  

In summary, FH is significantly better than SP in terms of latency 
and resilience, but consumes significantly more power. Again there 
are significant variations from node to node. These differences 
between the FH and SP topologies, and between individual nodes 
tends to show that the main drivers for these measurements lay 
outside of the Overlay Framework and the Flood-WSN profile, 
whose impact is probably negligible compared to other influencing 
factors, such as the lengths of routes, and the characteristics of the 
wireless technologies in use. 

Triggering Reconfiguration: Reconfiguration is supported in our 
sensor network though the Distributed Component Framework 
facility included in the Overlays Framework (see Section 2.4). The 
reconfiguration opportunities arising from the above analysis, and 
the associated ‘triggers’ that drive the system from one 
configuration to another are expressed with declarative 
configuration rules, summarised in Figure 6 in the form of a state 
transition diagram (to avoid excessive presentational complexity, 
the diagram represents a drastically simplified view of the 
implemented system). We also show a representative pseudo-code 
configuration rule relating to one of the transitions (the top one).  

As can be seen, the triggers/rules are partly based on the factors of 
latency, resilience and power consumption discussed above; but 
they also include two additional application-specific triggers. The 
first of these, High_Flow, is based on attaching a video camera to 
some of the nodes, pointing this at the river surface, and estimating 
river flow rates by carrying out some simple image processing on 
the resultant images. 

 

Figure 6. Reconfiguration states and triggers (simplified)  

 

 In the other, Flood_Predicted, the trigger is provided by so-called 
point prediction models [3] which provide localised predictions of 
water depth based on the collated readings of depth sensors in the 
immediate locality. Interestingly, the computations underlying 
High_Flow and Flood_Predicted run in a distributed manner on the 

GridStix nodes themselves; and the open overlays framework is 
used to instantiate additional overlays to handle the coordination 
involved in these distributed computation (cf. the principle of 
supporting multiple co-existing overlays).  

3.4 Evaluating the cost of reconfiguration  
While dynamic DCF-based reconfiguration clearly enables system 
utility to be optimised for varying environmental conditions, there is 
a cost associated with each reconfiguration operation in terms of the 
time taken to perform the reconfiguration, and the power consumed 
by the additional CPU and network activity. These are significant 
costs: time taken reconfiguring is time during which the network is 
out of commission (involving lost sensor readings); and consuming 
additional power clearly increases the risk of losing nodes due to 
power depletion. We therefore carried out experiments to evaluate 
the cost of reconfiguration in our case study scenario. We focused 
on reconfiguration at the Spanning Tree level as this avoids 
network-specific overheads that would inevitably impact 
measurements involving switching between the two physical 
networks.  

Figure 7a shows the per-node time required to reconfigure 
between FH and SP spanning trees for the same topology that was 
used in Section 3.2. The average time required was 1878 ms. To put 
this in perspective, at typical sensing rates used in the case study 
this implies an average loss of less than one message (0.36 
messages).  
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Figure 7a. Reconfiguration times 

 

Figure 7b. Reconfiguration costs in terms of power 

Figure 7b shows the per-node power costs associated with 
reconfiguration from FH to SP and vice versa (there is a difference 
in cost between the two directions because the DCF was configured 
to employ the current overlay to support reconfiguration 
operations). When reconfiguring from FH to SP, network power 
costs an average of 44.2 milliwatt hours of battery life per node. 
When switching from SP to FH, network power costs average 23.5 
milliwatt hours. But to put this in perspective, the maximum power 
consumed during overlay reconfiguration for any node (46 milliwatt 
hours) is equivalent to less than 0.05% of the battery capacity of a 
GridStix, which in combination with the infrequent nature of 
reconfiguration is effectively negligible. 

Overall, it can be seen that the power and time overheads of 
reconfiguration are relatively small, particularly compared to the 
potential benefits of optimising the system to current conditions.  

For comparison, and in order to apportion the share of the 
Framework’s mechanisms in reconfiguration costs, average 
overheads for local reconfiguration in the Framework are provided 
in Table 4. This shows that the frameworks reconfiguration 
overhead is quite reasonable, averaging 198 ms, and roughly only 
represents one tenth of the reconfiguration time observed on each 
node, the rest being due to the latency of message passing that is 

required to support distributed coordination, and thus outside of the 
Open Overlays structure. 

 

Table 4. Time overhead of Reconfiguration. 

 Overhead (ms) 

Component Creation 118 

Component Binding 69 

Component Connection 11 

Total 198 

 

3.5 Conclusion 
This case study shows that different level of network heterogeneity 
(here both in wireless technologies, and in overlay topologies) can 
easily be captured into the structures of our Overlays-Framework. 
The decomposition of overlay plug-ins into three standard 
components also encourages reuses, and allows developers to 
support a wide scope of alternative configurations at a relatively low 
cost in terms of memory footprint and implementation effort. 

Finally, the performance figures we presented show that the use of 
the framework has no obvious detrimental impact of the overall 
performance of the flood prediction network, and that the 
reconfiguration mechanisms embedded in the framework cause 
acceptable overheads, two crucial preconditions for the deployment 
of our technology in real applications. 

 

4. LESSONS LEARNT AND DISCUSSION 
In this section, we expand on the conclusion of the case-study 
evaluation and we present the lessons we have learnt on the benefits 
of our Open Overlays framework as we applied it to a number of 
different domains. We discuss qualitatively the advantages of the 
framework in terms of software development, and present some 
more extensive performance figures in terms of memory footprint 
and configuration times for some of the many plug-ins we have 
already implemented. 

We finish this section with a general discussion of the value we see 
in the fundamental notion of overlays as an architectural principle 
for heterogeneous middleware. 

4.1 Benefits of the open overlays framework 
We evaluate the effectiveness of the open overlays framework 
against the following four criteria: 

i) Generality: To what extent can the framework be generally 
applied in terms of different network services deployed in 
different network environments; and how general is the 
overlay pattern in developing overlays? 

ii) Ease of Use: How easy is it for a developer to use the 
framework, and extend it with new functionality? 

iii) Configurability: To what extent can the framework be 
configured to meet specific requirements and environments 
(an in-depth evaluation of reconfigurability is provided in 
Section 3)? 

iv) Resource Overhead: Is the overhead incurred to support 
generality, configurability and reconfigurability acceptable? 

Generality As an indicator of generality, we have developed a 
substantial set of overlay plug-ins of which Table 5 lists eight. From 
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this list, the generality in terms of the network services provided is 
clear: we cover KBR protocols (e.g. Chord and Pastry), a DHT 
overlay, multicast protocols (e.g. Scribe and TBCP), gossip 
overlays (Scamp), and more specialised overlays such as a node 
failure monitoring overlay, and a spanning tree overlay for fan-in 
routing. Table 5 also shows the configurability options offered by 
each overlay plug-in (in brackets, following the descriptions), and 
illustrates that the framework can be generally applied in different 
network environments (thus addressing network heterogeneity): e.g. 
we can use the Spanning Tree overlay in a wireless sensor network 
(see Section 3); and we can choose different multicast protocols for 
different networks: e.g. TBCP for wide area networks, or Scamp for 
wireless networks.  

These various implementations also provide a strong and 
comprehensive evaluation of the overlay pattern: all eight were 
straightforwardly implemented in terms of the three defined 
elements (i.e. control, state and forward), providing clear evidence 
that the pattern applies generally to different overlay types. 
Moreover, each of the implementations exhibits a clear and natural 
separation of concerns in contrast to many monolithic 
implementations.  

As shown in Figure 8, one of the eight overlays, i.e. Pastry 
KBR, was further decomposed to investigate finer-grained 
configurability and reconfigurability (for example, the control 
element is composed of sub-components corresponding to distinct 
Pastry algorithms, i.e. for joining, leaving, maintenance and repair). 
This decomposition demonstrates that the overlay pattern can itself 
be extended to meet the complexities of individual overlays and yet 
still be supported by the framework. 

 

 

Figure 8. Extending the overlay pattern in the Pastry KBR 

plug-in 

 

 

Ease of use The framework has been used by over 15 programmers, 
from a range of institutions, with different levels of programming 
experience, in a number of system development projects (e.g., 
projects developing middleware for sensor networks, resource 
discovery, and publish-subscribe). Some of these programmers 
contributed as ‘plug-in developers’, some as ‘framework 
configurers and users’, and some as both. From observation and 
discussion were able to draw the following conclusions: 

Table 5. Descriptions of some implemented overlay plug-ins  

Overlay 

Name 

Description and configurability options 

Chord 
KBR 

A KBR overlay based on Chord [44] (options: 
standard or ‘dependable’ control element; 2 choices of 
supporting overlay) 

DHT Data storage overlay (options: standard or 
‘dependable’ control element; used atop any KBR 
overlay) 

Pastry 
KBR 

A KBR overlay based on Pastry [41] (options: supports 
alternate overlay maintenance algorithms) 

Failure 
Monitor 

Monitoring overlay based on [45]; detects and 
disseminates node failure info (options: used atop any 
gossip overlay) 

SCAMP Scaleable Group Membership overlay with gossip-
based forwarding [21] (options: 2 choices of 
supporting overlay) 

Scribe Multicast based on [7] (options: used atop any KBR 
overlay) 

Spanning 
Tree 

Tree overlay for fan-in routing (options: shortest path 
or fewest hop tree configurations; used atop either Wifi 
or Bluetooth ‘overlays’) 

TBCP Wide area multicast overlay [35] (options: standard or 
‘dependable’ control element; 2 choices of supporting 
overlay) 

 

i) Plug-in developers generally understood and followed the 
approach implied by the overlay pattern, and to this extent 
their solutions are easily deployable by third party application 
developers. A caveat is that in some cases control, forward 
and state were not completely separated into distinct 
components. This is an area where further software 
engineering support might benefit both the plug-in developer 
and the framework configurer/ user. 

ii) A typical overlay plug-in is developed in a time frame of 2 to 
8 weeks depending on the complexity of the overlay. 

iii) Framework users found it relatively easy to apply the existing 
profiles of the framework; but in cases where new 
configuration rules needed to be defined, they expressed the 
need for clearer documentation of the set of attributes and 
context values understood by the framework. 

Hence, despite the fact that the evidence is primarily anecdotal, and 
that there are areas of possible improvement, we believe that it is 
reasonably safe to conclude that third parties can use the framework 
with relative ease.  

Configurability To measure the extent of the configurability of the 
framework we calculated the numbers of possible configurations in 
each of four profiles (i.e. an ‘empty’ profile consisting of only the 
framework itself, a ‘WSN’ profile for wireless sensor network 
environments, a ‘multicast’ profile for multicast overlays, and a 
‘full’ profile containing all of the foregoing; see Table 6). The 
numbers, which are summarised in the rightmost column of Table 6, 
result from an exhaustive enumeration of all the configurations 
reachable via the ‘top-down recursive instantiation’ process 
described in Section 2.3, applied to the set of plug-ins available in 
each profile (for example, TBCP can be configured with either a 
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standard or a ‘dependable’ control element, and it can be layered 
over TCP and UDP transport ‘overlays’ and thus yields 4 
configurations at its level). The results show that the more complex 
and well-populated profiles support a very large number of possible 
configurations; e.g. the ‘full’ profile has 26,999; this does not mean 
that programmers must write 27,000 rules, rather the approximately 
30 rules for the full profile combine to offer many potential 
configurations. But, more importantly, because of the top-down 
recursive instantiation process, all of these configurations are 
meaningful. This is because the architecture of the framework 
disallows invalid instantiations. This can be compared to other 
configurable toolkits such as Ensemble [46] or JGroups 
(www.jgroups.org) which, despite supporting millions of 
combinations, offer a much smaller number that are actually useful 
(because these use event-based component bindings that allows 
components to be connected to any other in any order).  

Furthermore, the overlay pattern contributes significantly to the 
configurability of the framework by supporting fine-grained 
configuration of individual overlays. Consider, for example, a 
Gnutella implementation with either a random-walk-based, or a 
flooding-based forwarder; or a tree overlay with a control element 
that either contains or doesn’t contain a self-repair algorithm. This 
applies equally when the overlay pattern is decomposed. For 
example, our Pastry example above supports two alternative 
implementations of the maintenance sub-component: one version, 
which is based on the original Pastry algorithm, employs frequent 
leaf set broadcasts over TCP connections; the other employs UDP-
based keep-alive messages to monitor the state of its leaf set. The 
latter algorithm is less robust to network wide failure or malicious 
attack, but generates far fewer network messages. 

Resource overhead To assess the price paid for its generality, ease-
of-use and configurability, we quantified the resource overhead 
incurred by the open overlays framework in three experiments. All 
of these employed components from Gridkit 1.5/ OpenCOM v1.3.5 
(available from http://gridkit.sourceforge.net), executing on a Java 
1.5.0.10 virtual machine on a networked workstation with a 3.0 
GHz Pentium 4 processor, 1 Gbyte of RAM and running Windows 
XP.  

The first experiment (see Table 6) investigated the static storage 

footprint costs of each profile; i.e. the disk space required to store 
the framework, components and configuration rules. This measure 
is important as it illustrates the cost of storing not only a starting 
configuration but also any reconfigurations that may subsequently 
be applied. It can be seen from Table 6 that the base framework 
requires 60K before any plug-ins are added. Note that the 
configuration rules take a lot of storage (usually at least 2KBytes) 
because they are coded in XML. A more efficient representation 
might be better for profiles that are both complex and designed to be 
applied in resource-scarce environments.  

Table 6. Configurability results and overheads for framework 

profiles 

Profile No. 

plug-

ins 

No. 

config. 

rules 

Disk mem. 

for config. 

rules (KB) 

Disk mem 

for plug-

ins (KB) 

Total No. of 

configs 

available 

Empty 0 0 0 60 1 

WSN 7 6 16 146 4 

Multicast 21 19 59 169 89 

Full 40 31 87 252 26,999 

 

Table 7. Performance times and dynamic memory costs of 

typical configurations 

Configuration 

Name 

#plug-

ins 

#Conns Profile Config. 

time (ms) 

Dynamic 

mem. (KB) 

Empty 0 0 Full N/A 10,448 

Empty 0 0 Sensor N/A 8,352 

Spanning tree 5 12 Sensor 191 11,452 

Spanning tree 5 12 Full 193 15,264 

TBCP 6 12 Full 211 15,144 

SCAMP 5 9 Full 152 13,708 

Scribe/KBR 9 27 Full 486 16,652 

Scribe + TBCP 13 39 Full 592 16,972 

TBCP+SCAMP 10 21 Full 281 15,308 

 

In the second experiment (see Table 7) , we evaluated dynamic 

memory overhead by measuring the RAM footprint of overlay plug-
ins while they were in operation (i.e. joined to a running overlay). 
We can see from Table 7 that the basic framework with no plug-ins 
is responsible for a high percentage of the overall footprint (65% on 
average; note, however, that this figure includes 6,392 Kbytes for 
the JVM and 600 KBytes for the OpenCOM kernel). We can again 
reduce overhead in a given deployment through the profiling 
mechanism (different profiles will have different numbers of 
configuration rules in memory). More complex configurations, e.g. 
the layering of Scribe over a Chord KBR, or TBCP and Scamp 
deployed in parallel, obviously increases the footprint size, but by a 
small margin, e.g. adding Scamp to TBCP results in a 164 Kbytes 
increase. 

Finally, the third experiment (again, see Table 7) investigated 
configuration performance by measuring the time needed to 
configure new plug-ins based on a sample of configurations from 
the different profiles (e.g. TBCP in the full profile, etc.). While it is 
clear that configuration performance is largely tied to the 
complexity of the configuration in terms of the numbers of 
configuration rules and plug-ins involved, and the number of inter-
component connections etc., the overall cost of configuration 
(including rule evaluation and component initialisation) is largely 
negligible compared to time for a node to join an overlay (e.g. 
Pastry averages 5 to 10 seconds for node joins). The costs of (DCF-
based) distributed configuration (i.e. overlay deployment) need not 
be much more costly than this depending on the protocol used (e.g. 
Scamp [21]). 

4.2 Assessing the open overlays concept 
To evaluate the open overlays concept, we examine how successful 
we have been in achieving the desired properties of virtualisation of 
the network resource, co-existence of overlays, and layering of 
overlays to compose network services. In terms of virtualisation, 
Section 4.1 has illustrated the range of overlays that can be 
virtualised by common interfaces, e.g. multicast and DHT network 
resources. These have then been utilised to build a wide range of 
higher level middleware services, e.g. publish-subscribe, group 
middleware [24] and sensor middleware (see Section 3) that are 
independent of the network service; i.e. the middleware can be 
deployed in different networked environments without 
modification. This work has demonstrated that virtualisation is 
indeed a powerful concept when incorporated within an overall 
(configurable and reconfigurable) middleware architecture. This is 
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also something that is quite unique in that existing middleware 
platforms/ paradigms do not yet support network virtualisation.  

In terms of co-existence, our experience shows that i) overlays can 
be deployed in parallel, ii) this is indeed a useful service to offer, 
and iii) the overheads of co-existence are reasonable. This is best 
illustrated by the sensor network scenario in Section 3, which 
utilises three separate overlays. One outstanding issue is the 
management of co-existence, in particular in terms of QoS 
properties. We are currently investigating the potential role of the 
work by Cooper [8] in addressing this problem. Finally, in terms of 
layering we have shown that relevant overlays can usefully be 
stacked on top of each other, e.g. the Scribe overlay (or the DHT) 
can be stacked on top of either Pastry or Chord. Similarly, in the 
scenario in Section 3 we layer a Spanning Tree overlay on top of 
either Bluetooth or 802.11b networks. The layering process is 
guided by top-down recursive instantiation and the use of uniform 
interfaces, and promotes the reuse of lower-level overlay plug-ins. 

5. RELATED WORK 
Specialised middleware As mentioned in the introduction, one 
approach to dealing with heterogeneity is to develop a series of 
specialist middleware platforms for particular domains of operation. 
This approach has been most prevalent in the mobile computing 
domain, with a wide variety of platforms emerging including: 
context-aware and adaptive technologies [6, 37]; particular 
interaction paradigms [16, 14]; and more specific techniques to deal 
with disconnection [29]. Some interesting techniques have also 
emerged to deal with heterogeneity in service discovery platforms, 
including the ReMMoC platform from Lancaster [22] and the 
INDISS work at INRIA [5]. Specialist middleware technologies 
have also emerged in areas such as distributed multimedia [47, 17] 
and grid computing [19, 20]. 

There is currently strong interest in middleware for sensor networks. 
This is a relatively new development building on the early 
experiences with operating systems in this area. Middleware 
approaches for wireless sensor networks seek to provide abstract 
programming models that offer a more global distributed systems 
management perspective, often enabling multiple applications to co-
exist and share the underlying sensor infrastructure. A good survey 
of middleware for sensor networks can be found in [26], which 
includes a taxonomy for sensor middleware featuring database-
inspired approaches, tuple-space approaches and event-based 
approaches as important sub-classes. 

It is clear that significant advances have been made in terms of 
specialist techniques for particular environmental or application 
domains. Despite these advances, though, the specialist middleware 
approach has a number of very significant limitations. In particular, 
these solutions remain narrow in scope and do not help with 
problems such as interoperability with other domains. In addition, 
they are all developed independently of each other and there is no 
support for the re-use of software in other domains, i.e. there is no 
common architectural framework.  

Configurable and reconfigurable middleware There has been 
considerable interest over the last decade in techniques that support 
configurability and reconfigurability in middleware. Such 
techniques typically rely on underlying reflective support including 
both structural and behavioral reflection. Examples of key reflective 
middleware platforms include the work at Lancaster mentioned 
above, the families of platforms developed at the University of 
Illinois at Urbana Champaign [30, 39], ExORB [40], Arctic Beans 

[1] and RAPIDWare [42]. This paper follows this general approach 
and reflection lies at the heart of our proposal for open overlays.  

Other researchers are investigating the potential role of aspect-
oriented programming in supporting configurable (and in some 
cases reconfigurable) middleware platforms [48, 31]. This is in 
many ways complementary to reflective middleware, seeking higher 
level aspect-oriented constructs to express the weaving of cross-
cutting concerns in middleware. Indeed, some implementations in 
this area build on top of reflective middleware technology [18]. 

Overlay Frameworks As mentioned in the introduction, the 
networking community has been carrying out a significant volume 
of research directed towards the development of network overlays. 
However, most of this research has been targeted towards the 
implementation of application specific protocols such as peer-to-
peer substrates or multicast solutions. In this section, we focus on 
the smaller number of initiatives focusing on middleware 
frameworks to support overlay software. 

iOverlays [32] was one of the earliest attempts to define a 
framework for the support of overlay networks. Essentially, 
iOverlays is low-level software cross-connect that forwards 
messages according to a script that embodies the semantics of a 
particular overlay. ODIN-S [8] also provides a framework for 
overlay development, with an emphasis on managing resources for 
overlays that share common nodes, i.e. co-existent overlays. As 
such this work is strongly complementary to ours. [34] also explores 
the co-existence of multiple overlay networks across nodes, in 
particular demonstrating that the maintenance and deployment of 
one overlay (in this case Pastry) can utilise the behaviour of another 
(a gossip protocol) to improve its operation. Both these systems 
illustrate use-cases that can be generally developed using our open 
overlays framework. 

Other solutions target the declarative description of overlay 
networks and the subsequent automatic generation of code to 
implement the desired virtual network abstraction (cf. model-driven 
engineering) [2, 38, 33]. This is an interesting approach to 
managing the complexity of configurable middleware. The above 
solutions focus almost entirely on configuring overlay networks, i.e. 
on tool support for the generation of a given overlay style. There is 
little or no work on the subsequent management of overlays, 
specifically reconfiguration as context changes. In addition, all of 
the above are stand-alone toolkits and are not integrated into 
broader middleware architectures. We acknowledge that currently 
our framework is not as declarative as these approaches in that low-
level overlay code (e.g. in Java or C++) must be created first before 
being plugged into our framework. However, we do believe the two 
approaches are complementary and we are investigating model-
driven approaches for generating code to insert into the open 
overlays framework. 

6. CONCLUSIONS AND FUTURE WORK 
We have presented and evaluated our concept of open overlays and 
its associated framework—a framework that is designed to 
comprehensively address the ‘network heterogeneity’ problem in 
the context of middleware architecture. In our evaluation of the 
open overlays concept, we have argued for the usefulness of 
network virtualisation in a middleware context, the usefulness of 
supporting multiple overlays per node and the stacking of overlays, 
and the benefits of structuring overlay plug-ins according to the 
overlay pattern. In terms of the framework-specific evaluation, we 
have focused on the framework’s generality, its ease of use for both 
plug-in developers and configurers/ users, the practicability of its 
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configuration and reconfiguration capabilities (employing top-down 
recursive instantiation, declarative rule-based configuration and 
reconfiguration, and distributed deployment and reconfiguration), 
and the fact that it incurs only a modest resource overhead. 
Furthermore, we have presented a detailed case study of network 
heterogeneity and at the same time demonstrated the use of our 
framework in a challenging, WSN-based, application context in 
supporting multiple overlays, and dynamically reconfiguring them 
according to current environmental conditions. 

In current work, we are integrating an overlay-independent 
dependability subsystem [36] into the framework. This can 
significantly simplify the ‘control’ element of participating overlay 
plug-ins by factoring out the task of overlay maintenance and 
delegating this to the framework. We also have a PhD project that is 
using the open overlays framework as the basis of a sub-framework 
specialising in ad-hoc routing protocols in MANETs.  

In future work, we are particularly interested in supporting 
challenging scenarios involving ‘extreme’ network heterogeneity of 
the type discussed in the introduction (e.g. involving systems that 
span a sensor network, a fixed grid environment, and a loosely-
connected MANET). This is a fundamentally challenging issue in 
that it is not yet understood even how to design overlays that can 
successfully span such environments, let alone an overarching 
framework. In addressing this challenge, we do not foresee major 
problems in applying the basic tenets of our framework on 
individual nodes; it will be the distributed deployment and 
reconfiguration issues involving DCFs that will present the major 
challenges (e.g. making appropriate choices in terms of distributed 
versus centralised configurators, quiescence and validation 
algorithms, membership protocols, etc.). 

More widely, we believe that users of mainstream middleware will 
increasingly demand overlay support, and so the challenge will arise 
of how best to integrate the open overlays concept, or a variant of it, 
in such platforms. We hope that the experiences reported in this 
paper will be of relevance in this.  
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