
 Open access Proceedings Article DOI:10.1145/1352592.1352606

Experiences with open overlays: a middleware approach to network heterogeneity
— Source link

Paul Grace, Danny Hughes, Barry Porter, Gordon S. Blair ...+2 more authors

Institutions: Lancaster University

Published on: 01 Apr 2008 - European Conference on Computer Systems

Topics: Overlay network and Virtual network

Related papers:

 A generic component model for building systems software

 The nesC language: a holistic approach to networked embedded systems

 The RUNES Middleware for Networked Embedded Systems and its Application in a Disaster Management Scenario

 An experiment with reflective middleware to support grid-based flood monitoring

 Contiki - a lightweight and flexible operating system for tiny networked sensors

Share this paper:

View more about this paper here: https://typeset.io/papers/experiences-with-open-overlays-a-middleware-approach-to-
56s3k7svh1

https://typeset.io/
https://www.doi.org/10.1145/1352592.1352606
https://typeset.io/papers/experiences-with-open-overlays-a-middleware-approach-to-56s3k7svh1
https://typeset.io/authors/paul-grace-m1uf6uot8g
https://typeset.io/authors/danny-hughes-2tf9vy75b1
https://typeset.io/authors/barry-porter-2f2r112035
https://typeset.io/authors/gordon-s-blair-1kb5600mn8
https://typeset.io/institutions/lancaster-university-ssfvgmrp
https://typeset.io/conferences/european-conference-on-computer-systems-rijed5tz
https://typeset.io/topics/overlay-network-2tow00dj
https://typeset.io/topics/virtual-network-36l5i8wh
https://typeset.io/papers/a-generic-component-model-for-building-systems-software-3o5nz94x4b
https://typeset.io/papers/the-nesc-language-a-holistic-approach-to-networked-embedded-3nbdmnogzq
https://typeset.io/papers/the-runes-middleware-for-networked-embedded-systems-and-its-4yg4kigws9
https://typeset.io/papers/an-experiment-with-reflective-middleware-to-support-grid-1b876y7o41
https://typeset.io/papers/contiki-a-lightweight-and-flexible-operating-system-for-tiny-17ra90mhum
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/experiences-with-open-overlays-a-middleware-approach-to-56s3k7svh1
https://twitter.com/intent/tweet?text=Experiences%20with%20open%20overlays:%20a%20middleware%20approach%20to%20network%20heterogeneity&url=https://typeset.io/papers/experiences-with-open-overlays-a-middleware-approach-to-56s3k7svh1
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/experiences-with-open-overlays-a-middleware-approach-to-56s3k7svh1
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/experiences-with-open-overlays-a-middleware-approach-to-56s3k7svh1
https://typeset.io/papers/experiences-with-open-overlays-a-middleware-approach-to-56s3k7svh1

Experiences with Open Overlays: A Middleware Approach
to Network Heterogeneity

Paul Grace, Danny Hughes, Barry Porter, Gordon S. Blair, Geoff Coulson, Francois Taiani

Computing Department, Lancaster University,
Lancaster, UK.

{gracep, danny, barry.porter, gordon, geoff, f.taiani}@comp.lancs.ac.uk

ABSTRACT

In order to provide an increasing number of functionalities and
benefit from sophisticated and application-tailored services from the
network, distributed applications are led to integrate an ever-
widening range of networking technologies. As these applications
become more complex, this requirement for ‘network
heterogeneity’ is becoming a crucial issue in their development.
Although progress has been made in the networking community in
addressing such needs through the development of network
overlays, we claim in this paper that the middleware community has
been slow to integrate these advances into middleware architectures,
and, hence, to provide the foundational bedrock for heterogeneous
distributed applications. In response, we propose our ‘open
overlays’ framework. This framework, which is part of a wider
middleware architecture, accommodates ‘overlay plug-ins’, allows
physical nodes to support multiple overlays, supports the stacking of
overlays to create composite protocols, and adopts a declarative
approach to configurable deployment and dynamic
reconfigurability. The framework has been in development for a
number of years and supports an extensive range of overlay plug-ins
including popular protocols such as Chord and Pastry. We report on
our experiences with the open overlays framework, evaluate it in
detail, and illustrate its application in a detailed case study of
network heterogeneity.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed applications

General Terms

Algorithms, Measurement, Design, Reliability, Experimentation

Keywords

WSN, middleware, overlay network, framework

1. INTRODUCTION
Modern distributed systems can be characterised by increasing
levels of heterogeneity. This subsumes both the characteristics of
the distributed applications and services in question, and the
environments in which they operate. For example, there are
increasing demands for applications that are adaptive, autonomic,

dependable, secure, scalable etc., and also demands for such
applications to operate in increasingly-varied environments such as
the fixed internet, mobile and pervasive environments, embedded
systems, etc.

In this paper we address a key aspect of heterogeneity that has
perhaps received less attention than it deserves in the middleware
community: network heterogeneity. As well as needing to run
effectively over an ever-increasing range of networking
technologies (e.g. large-scale fixed networks, mobile ad-hoc
networks, resource impoverished sensor networks, satellite links,
etc), distributed applications are increasingly demanding
sophisticated and application-tailored services from the underlying
network (e.g. multimedia content distribution, reliable multicast,
etc.). Furthermore, going beyond this ‘classic’ view of
heterogeneity, we can discern a growing trend towards ‘extreme’
network heterogeneity involving the combining of already
heterogeneous elements. For example [13] discusses scenarios in
which sensor networks are tightly integrated with cluster-based and
internet-based grids. This trend is also evident in the current interest
in systems of systems [43] and the pervasive grid [27].

Such factors have driven the networking community to develop the
concept of network overlays as an approach to the virtualisation of
the underlying network resource(s). Network overlays make it
possible to provide a range of different networking abstractions
including peer-to-peer groups, distributed hash tables, application-
level multicast, etc. In our view, however, this work has not yet
been sufficiently embraced and integrated by middleware designers
(Several overlay frameworks have been developed (e.g. [32, 8, 2,
38, 33]) but these suffer from significant limitations as discussed in
Section 5). We therefore propose the concept of open overlays and
suggest that it be adopted as a central element of contemporary
middleware platforms. In our conception, open overlays offer a
configurable and reconfigurable framework that is well integrated
into a broader middleware architecture, and supports (flexible)
virtualization of the network resource, the co-existence of multiple
(physical or) virtual networking abstractions, and potentially
support the layering of virtual network abstractions to achieve
desired network services through composition.

In this paper we present a detailed evaluation of the open overlays
approach. This builds on extensive experience of using the approach
in the construction and composition of a variety of (often complex)
overlays and overlay-based distributed applications. The rest of the
paper is structured as follows. Section 2 provides an overview of
our open overlays framework, focusing on its associated
architectural patterns and its support for configuration and
reconfiguration. Following this, Section 3 presents an in-depth case-
study of network heterogeneity that demonstrates the application of
the approach; and Section 4 offers an in-depth discussion of the
benefits of the framework in particular and the open overlays
concept in general. Finally, Section 5 discusses related work, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EuroSys’08, April 1–4, 2008, Glasgow, Scotland, UK.

Copyright 2008 ACM 978-1-60558-013-5/08/04...$5.00.

123

Section 6 offers our overall conclusions and plans for further
research.

2. THE OPEN OVERLAYS FRAMEWORK

2.1 Context
There are essentially three responses to the network heterogeneity
that we noted above. The first is to progressively add features to
existing middleware platforms to cope with the increased levels of
heterogeneity (e.g. extensions to deal with mobile computing). It is
now well recognized however that this leads to bloat and is not a
viable long-term solution. The second approach is to create
specialised per-application-domain middleware platforms (e.g.
middleware for sensor networks). This approach has yielded some
success but suffers from significant limitations—particularly in
terms of achieving interoperability and accommodating the kinds of
‘extreme’ heterogeneity (e.g. systems that integrate sensor networks
and clusters) referred to above. The third approach, which we
favour, is to offer a configurable framework that can be tailored to
the needs of a given application and operational domain (or
domains) while avoiding the shortcomings of the two previous
approaches. Configurable frameworks also have the benefit that
they can potentially support run-time reconfiguration, and thus
address another emerging trend in modern distributed systems:
dynamicity, and the consequent need for adaptivity.

In general terms, our research over the past few years has been
targeting the development of such frameworks through a number of
projects including Open ORB [4], ReMMoC [22], NetKit [11],
Gridkit [23], and through our contributions to the RUNES
middleware [10]. The approach is well documented and builds on
the complementary nature of lightweight software component
technology (together with component frameworks) in tandem with
reflection. Components and component frameworks provide the
building blocks and associated principled software engineering
methodology for the construction of middleware, and reflection
provides the means to inspect and adapt this underlying (explicit)
structure, and thus additionally render it reconfigurable at runtime to
address the need for adaptivity. OpenCOM [12] lies at the heart of
this architectural approach, offering the necessary underlying
lightweight and reflective component model.

We have employed this approach in the design of the open overlays
framework that is the subject of this paper. The framework is
integrated as part of the wider Gridkit middleware architecture [23],
which also addresses heterogeneity in other dimensions (e.g. in
supporting multiple interaction types [24], and in dealing with
heterogeneous service discovery protocols [9]). Aspects of the open
overlays framework have previously been presented in the literature
[23, 24, 25]; but in the following sub-sections we provide a
consolidated overview and update to provide context for the
substantial evaluation material in Sections 3 and 4 which forms the
main contribution of this paper.

2.2 Basic architecture of the framework
The open overlays framework. The open overlays framework (as
visualised in Figure 1) is an OpenCOM component framework that
is deployed on each participating node in the distributed system.
The framework accepts ‘plug-in’ components that offer various
types of overlay-related behaviour. More specifically, the types of
components that can be plugged into the framework are as follows:

Figure 1. An example configuration of the open overlays

framework

i) Overlay plug-ins. These are per-node implementations of
network overlays. For example, Figure 1 shows four overlay
plug-ins: TBCP [35], Scribe [7], and plug-ins for a Chord
Distributed Hash Table (DHT) and a Chord Key-Based
Routing (KBR) overlay [44]. Multiple overlays can operate
simultaneously in the framework either in mutual isolation
(cf. TBCP and Scribe in Figure 1) or in a stacking relationship
(e.g. Scribe and Chord DHT are both stacked atop Chord
KBR). The overlay plug-in abstraction can be applied
uniformly throughout the communication stack. For example,
transport protocols like TCP or UDP are represented as
overlay plug-ins, and an AODV overlay plug-in may be
provided in the network layer in a MANET environment.
Note, we term plug-ins implementing transport behaviour (i.e.
no routing) as null overlays. Hence, the abstraction can even
be applied at the level of the physical network as
demonstrated in Section 3.

ii) Interface plug-ins. While overlay plug-ins provide different
types of behaviour, interface plug-ins capture common API
patterns that can be shared by multiple overlays. For example,
following [15], we provide an interface plug-in for DHT
overlays and another for multicast overlays. The indirection
provided by interface plug-ins isolates higher-layer software
from the idiosyncrasies of individual overlay plug-ins,
facilitates application-transparent adaptation (i.e. transparently
replacing one overlay with another), and encourages a
principled approach to the development of ‘families’ of
overlays plug-ins, each of which shares a common API.

A pattern for overlay plug-ins. Overlay plug-ins are themselves
‘mini’ component frameworks (in OpenCOM, component
frameworks are inherently components), each of which, as shown in
the left part of Figure 1, is composed of three distinct elements
(components) that respectively encapsulate the following areas of
behaviour:

i) control behaviour, in which the node co-operates with its peer
control element on other nodes to build and maintain an
overlay-specific virtual network topology;

ii) forwarding behaviour that determines how the overlay will
route messages over the aforementioned virtual topology;

iii) state information that is maintained for the overlay; e.g.
nearest neighbours.

124

Each of these three elements exposes a standard interface, IControl,
IForward, and IState respectively, which enables the free
composition of overlays (subject to the configuration constraints
discussed below). We refer to this three-element architecture as the

overlay pattern. The motivation for the overlay pattern is to achieve
flexibility in terms of both configuration and dynamic
reconfiguration by enabling both control and forwarding behaviour
to be independently replaced without loss of state information. Note
also that the overlay pattern can form a basis for further
decomposition—i.e. each of the three elements can itself be a
component framework. We consider such an overlay in Section 4.

2.3 Local configuration and reconfiguration
Local configuration Each per-node instance of the open overlays
framework is dynamically configured at deploy-time. Possible
configurations are first set out in terms of a set of pre-installed
profiles, each of which specifies an available palette of overlay and
interface plug-ins and a set of basic constraints that specify
configurations that are recognised by the profile. As examples, we
have defined profiles for multicast environments and for wireless
sensor networks (see Section 4, table 6).

To support configuration, the framework employs both static and
dynamic meta-data as follows:

i) static meta-data is attached to the set of overlay plug-ins
currently available in the profile; this specifies a set of
configuration rules (see below), constrains which other
overlay plug-ins may be stacked below the plug-in, and may
also constrain which interface plug-in the overlay requires;

ii) dynamic meta-data is provided by a per-node context engine
[Capra,03]; this meta-data varies dynamically according to the
current state of the host node in terms of relevant
characteristics such as battery life, network connectivity etc.

The static configuration rules contained within each profile are
declarative XML-based expressions that specify the configuration
possibilities supported by the profile. As an example, the following
configuration rule (expressed in pseudo-code rather than XML for
the sake of clarity) states that when a ‘multicast’ service is requested
by the application, and the current network context is ‘fixed
infrastructure with no IP multicast support’, then the TBCP overlay
plug-in should be instantiated and configured beneath the ‘overlay
multicast’ interface plug-in—i.e. to match one of the configurations
shown in Figure 1:

if (multicast && fixed_infrastructure &&
 !IP_multicast)
 configure overlay_multicast interface with TBCP

Once the execution of such a rule has resulted in the instantiation of
a ‘top-level’ overlay plug-in (i.e. TBCP in our example), the
configuration process continues in a delegated manner which we
refer to as top-down recursive instantiation. This involves each
overlay plug-in evaluating its own configuration rules, and on that
basis selecting, instantiating (or discovering) and configuring a
further overlay at the next level down. This process continues until
an overlay plug-in is encountered which has no rules that trigger
any further instantiation.

Local reconfiguration Having established a configuration as
discussed above, it is possible to dynamically reconfigure a node’s
overlay configuration using the ‘standard’ OpenCOM reflective
capabilities [12]. For example, one can inspect the current

composition of components in the framework, replace or add
components, or add interceptors. However, in line with the usual
semantics of OpenCOM component frameworks, all such actions
are subject to ‘veto’ if they would violate the meta-data constraints
associated with the profile or the current state of the framework
instance. For example, a constraint of the overlay framework is that
there must be a null overlay plug-in (e.g. transport or physical
network component) at the bottom of the overlay framework
configuration.

2.4 Distributed deployment & reconfiguration
While local configuration and reconfiguration rely on static and
dynamic meta-data available on each node, Distributed
configuration (i.e. overlay deployment) and reconfiguration both
rely on generic support provided by OpenCOM’s distributed

component framework (DCF) facility [25].

DCFs are coordinated sets of local component framework instances
that are spread across a set of co-ordinated nodes. For example, a
DCF-enabled extension of the TBCP overlay plug-in from Figure 1
would contain an instance of the TBCP component framework for
every node participating in the overlay. DCFs support dynamic
reconfiguration both at a coarse-grained (e.g. changing the top-level
overlay in use), and a fine-grained level (e.g. changing the overlay
plug-ins underlying the top-level one, or changing one of the
elements within an individual overlay plug-in).

Figure 2. The per-node elements of a Distributed Component

Framework

The DCF facility is supported by the per-node architecture
illustrated in Figure 2. Briefly, both deployment and reconfiguration
are driven by configurators which select and apply reconfiguration
‘policies’—i.e. scripts to be executed on each DCF node to enact a
specified deployment or reconfiguration action. The selection of
these policies from a policy repository is performed similarly to the
local configurations/reconfigurations discussed in section 2.2 (i.e.
based on meta-data and configuration rules).

DCFs themselves can be very flexibly configured according to
application needs. For example, depending on the numbers of
participating nodes, each DCF may employ a single master
configurator or per-node distributed configurators. Similarly, they
may employ either a single or multiple context engine and policy
database. In addition, the strategies used to achieve consensus in the
case of distributed configurators, or to achieve quiescence before
applying a policy script, can all be flexibly configured. We also
support configurable strategies to post-validate policy enactments,

125

ranging from simple but scalable strategies based on exceptions to a
fully reliable (but not very scalable) transaction protocol. Each DCF
also maintains a meta-interface (see IDistributedMetaArchitecture

in figure 2) that enables the atomic insertion (deletion) of
components into (from) the local component framework instances
on all the participating nodes. The meta-interface also reifies
information about the DCF in terms of its participating nodes and
their current component configurations. The communication
underlying the meta-interface is implemented in terms of a
lightweight group membership service [21].

For safe dynamic reconfiguration it is important to ensure that
updates do not impact the integrity of the system. Hence, the
distributed framework must be made safe to adapt, i.e. placing it in
a quiescent state. We have so far developed a single, centralised
implementation for deriving a safe state in the distributed
framework (this is used for the evaluation results in section 3). A
request to reconfigure the distributed framework from a central
node generates a request message asking each local framework
instance to be placed in a quiescent state; this message is propagated
via gossiping through the meta-group service. Once a local
framework is in a quiescent state it returns a notification to the
configurator node. Upon the condition that all members are in a
quiescent state the reconfiguration can take place. The disadvantage
of the centralised approach is that it may be too resource intensive,
and may not scale suitably for large numbers of nodes.
Additionally, it may not be necessary to place all nodes in a safe-
state at the same time, or have a single node managing the transition
to a safe state. Hence, our framework also supports selectable
approaches to safe-state management that can be tailored to the
particular style of reconfiguration to be performed and the
environment that the framework is deployed.

In sum, in the context of the open overlays framework the DCF is
used to make coordinated changes across all member nodes of an
overlay. For example, in a spanning tree overlay plug-in we can in
one action change the topology of the overlay from a ‘fewest hop’
to a ‘shortest path’ configuration by reconfiguring the control
element of the plug-in on each node (see Section 3). Similarly, we
might change the routing strategy of a multicast overlay to anycast
by globally reconfiguring the forwarding elements.

3. CASE-STUDY BASED EVALUATION

3.1 Background
We now discuss the application of the open overlays framework in
an implemented real-world scenario: wireless sensor network-based
real-time flood forecasting in a river valley in the north west of
England. This work has previously been published from an
application perspective [28]; this paper, in contrast, takes a
quantitative perspective and focuses especially on the dynamic

reconfigurability capabilities of the open overlays framework in the
scenario.

In terms of necessary background, we monitor water depth and flow
rate in the river by deploying a number of specialised sensor nodes
along the banks of the river. About 15 nodes are currently deployed.
The sensor data is collected in real-time and routed using a spanning
tree topology to one or more designated ‘root’ nodes. From there
the data is forwarded via GPRS to a prediction model that runs on a
remote computational cluster.

Each sensor node (known as ‘GridStix’) comprises a 400MHz
XScale CPU, 64MB of RAM, 16MB of flash memory, and
Bluetooth and WiFi networks (the root nodes are also equipped with

GPRS). Each GridStix is powered by a 4 watt solar array and a 12V
10Ah battery. They run Linux 2.6, version 1.4 of the JamVM Java
virtual machine. Unlike traditional sensor network deployments,
wherein sensors are merely responsible for relaying sensor data to
off-site processing facilities, this deployment makes significant use
of local processing, which is used to support computationally
complex sensors and to support the local prediction of future
environmental conditions. This functionality necessitates rich
support for heterogeneous network technologies. On the one hand,
networking support must be sufficiently power-efficient that nodes
may operate for extended periods of time. On the other hand,
applications such as image-based flow prediction also require high
performing (and implicitly power hungry) networking support.

This need for heterogeneity is further compounded by varying
resilience requirements: During quiescent periods, when flooding is
unlikely, data may reach the off-site cluster with a high delay. Faults
in the network may take a long time to be recovered from, since
they might only jeopardise the completeness of measurement logs.
In these periods, low energy consumption is a prime requirement to
maximise the life-time of the sensor network. By contrast, when a
flood is imminent, we want the network to react quickly, while
providing a high degree of resilience (e.g. a low sensitivity to
disruptions), even if this means its energy supplies get depleted
much more rapidly.

To support these heterogeneous application requirements, we have
implemented a tailored Flood-WSN profile on top of our Overlays
Framework, which we deployed on each node in the network. In the
remainder of this section we describe in more details how we
mapped our application requirements unto this domain-specific
profile. We also present lines-of-code (LoC) and memory footprint
measurements to convey an idea of the size and complexity incurred
by this implementation of this profile.

In a second part (Sections 3.3 and 3.4), we then discuss the overall
performance of the resulting system, in terms of latency, resilience
and power consumption. In particular we look at the impact of the
reconfigurations made possible by the framework. More
specifically, the figures we present show that the use of the
framework has no detrimental impact on the overall performance of
the flood prediction network, and that the reconfiguration
mechanisms embedded in the framework cause acceptable
overheads, two crucial preconditions for the deployment of our
technology in real applications.

3.2 The Flood-WSN profile
Our application supports reconfiguration along two dimensions,
which both lend themselves to the structures offered by our
Overlays Framework:

i) At the physical network level each node can use either
Bluetooth or WiFi (802.11b). Both technologies have
extremely different throughput, energy, and range properties
as summarised in Table 1 (These power draw figures are
based on Ericsson ROK-104-001 BT modules, and Marvell
88W8385 WiFi modules. The given range figures were
measured using strategically deployed directional antennas).
WiFi provides the highest throughput and longest range, but
at the cost of energy consumption almost an order of
magnitude higher than Bluetooth. Typically Bluetooth would
be used in quiescent conditions, and WiFi in imminent
flooding situations.

ii) At the data routing level data may be routed from the sensor
nodes to the root node along two different types of spanning

126

tree: either using a ‘shortest path’ (SP), or a ‘fewest hop’ (FH)
strategy. Fewest hop (FH) spanning trees are optimised to
maintain a minimum number of hops between any given node
and the root. FH trees minimise the data loss that occurs due
to node failure, but are sub-optimal with respect to power
consumption. Shortest path (SP) spanning trees are optimised
to maintain a minimum distance in edge weights from any
given node to the distinguished ‘root’ node; edge weights are
derived from the power consumption of each pair-wise
network link. SP trees tend to consume less power than FW
trees, but offer poorer performance;

Table 1. Relevant characteristics of Bluetooth and WiFi

 Throughput Power Draw Range

Bluetooth 786Kbps 0.4W typical up to 200M

WiFi 11Mbps 2.9W typical up to 1.2KM

These two levels of optional configuration are reflected in our
Flood-WSN profile by four options (WiFi, Bluetooth, SP and FP
spanning trees). As FH and SP overlays differ only in terms of their
forwarding components, an FH overlay may be implemented simply
by creating a new forwarding component and re-using the state and
control components of the SP tree.

The storage memory footprint (on disk) of the resulting code is
shown on Table 2. The Flood-WSN profile consumes just 28KB of
storage memory, and an average of 105KB of dynamic memory
during execution inclusive of platform specific overheads such as
the Java virtual machine running on the GridStix. In order to save
dynamic memory, overlays are instantiated on demand, rather than
being maintained concurrently.

Table 2. Footprint of the WSN Profile in deployment.

 Storage Memory

OpenCOM 52.4KB

Overlays Framework 23.8KB

Flood-WSN Profile 28.0KB

Total 104.2KB

The WiFi/Blueetooth capabilities were extremely easy to implement
as they directly rely on OS-level capabilities. Much more interesting
for the assessment of the Overlays Framework is the
implementation of the two types of Spanning Trees topologies,
whose size and footprints are described in Table 3. The spanning
tree plug-ins necessitated the creation of four classes on top of the
underlying framework, one for each element of the overlays pattern
that we presented in Section 2.2. Two classes served both spanning
trees (the control and state components), with two differentiated
forwarding components were implemented, one creating an SP tree,
and one an FH tree. Importantly, as Table 3 shows, this re-use of
components between FH and SP trees allows an additional tree
overlay to be implemented by replacing a single component at a
storage cost of only 6.5KB.

Table 3. Breakdown of Overlay Memory Footprint

 Shortest Path (SP) Fewest Hops (FH)

 Size LoC Size LoC

Control 7.3KB 124 re-used re-used

State 2.5KB 24 re-used re-used

Forward 6.3KB 346 6.5KB 352

3.3 Overall Performance
We now discuss the overall performance of the resulting
application, in terms of latency, resilience and power consumption.
More precisely, we start with a quantitative evaluation of the
relative costs and benefits of the various options identified above as
a basis for determining the conditions under which the system might
best be reconfigured. We first discuss how the use of Bluetooth or
WiFi influences the characteristics of the network, and then move
on to compare the two different spanning tree configurations
(Fewest Hops and Shortest Path). The criteria employed include
both generic metrics and application-specific concerns (see below).
The generic metrics are as follows:

i) Latency: We quantify this in terms of the average latency with
which messages can be relayed from each sensor node to the
root node (and thence to the back-end flood prediction
models).

ii) Resilience: This is a function of the extent to which the failure
of a given node reduces the overall connectedness of the
network. We quantify it as the number of viable routes
between each node and the root.

iii) Power Consumption: Although the GridStix are equipped
with solar panels, power consumption is still an extremely
important factor given that flooding occurs in conditions of
low light intensity! We quantify this as the per-hop power
consumed during the transmission of a 1KB sensor reading
from each node to the root.

In all cases we measure and plot each of these metrics for each node
in the network. The figures were obtained by empirical
measurements on a lab version of the deployed system with a
topology as shown in Figure 3.

Figure 3. FH (left) and SP (right) Spanning Trees

127

Figure 4a. Physical Network Latency

Figure 4b. Physical Network Resilience

Figure 4c. Physical Network Power Consumption

The Bluetooth and WiFi configurations were evaluated against each
other using a common configuration at the Spanning Tree level in
both cases (we chose an SP configuration that is designed to
minimise power consumption). In Figure 4a, the ‘latency’ graph
shows that WiFi incurs significantly less latency than Bluetooth
(over nodes B-O—i.e. 14 non-root nodes): average reporting
latency for the latter was 2,912ms, compared to just 38ms with
WiFi. The ‘resilience’ graph (in Figure 4b) again shows Wifi

performing significantly better than Bluetooth: the average number
of routes from each node is 13.2 for Wifi compared to just 4.4 for
Bluetooth. Finally, the ‘power consumption’ graph (in Figure 4c)
shows that Bluetooth consumes significantly less power than the
lowest power WiFi configuration. The average per-hop power
consumption was 0.44 Watts for Bluetooth and 2.35 Watts for
WiFi.

In summary, and as expected, WiFi offers lower latency and higher
resilience than the Bluetooth configuration, but consumes
significantly more power. It is also interesting to note that for each
of the three properties evaluated there are significant variations
across the nodes. This implies that a decision as to the optimal time
at which a reconfiguration operation should be initiated ought
ideally to be informed by data from multiple nodes in the tree. Last
but not least, the energy figures are in lines with those measured in
Table 1 - the power consumed by local computation during
reconfiguration is negligible compared to the power consumed due
to network use.

Spanning Tree configurations The SP and FH overlay network
configurations were evaluated against each other (using the WiFi
network configuration in both cases); the results are seen in Figure
5.

Figure 5a. Spanning Tree Latency

Figure 5b. Spanning Tree Resilience

Physical Network Latency

1

10

100

1000

10000

B C D E F G H I J K L M N O

Node ID

BT
WiFi

Reporting

 Latency

 (mS)

Physical Network Resilience

0

2

4

6

8

10

12

14

16

B C D E F G H I J K L M N O

Node ID

WiFi

BT

Routes

To

Gateway

Physical Network Power Consumption

0

500

1000

1500

2000

2500

3000

B C D E F G H I J K L M N O

Node ID

BT

WiFi

Av. Power

Consum.

(mw)

Spanning Tree Latency

0

10

20

30

40

50

60

70

B C D E F G H I J K L M N O

Node ID

Reportin
g

Latency

 (mS)

SP
FH

Spanning Tree Resilience

0

1

2

3

4

5

6

7

8

9

10

B C D E F G H I J K L M N O

Node ID

Routes

Affected

by

Failure

SP
FH

128

Figure 5c. Spanning Tree Power Consumption

In Figure 5a, the ‘latency’ graph shows FH performing significantly
better than SP: the average reporting latency with FH was 11
milliseconds compared to 28 milliseconds for SP. As expected,
reporting latency in both cases tends to increase with separation
from the gateway node (the nodes to the right of the bar chart
happen to be those that are physically located furthest from the
root). On the ‘resilience’ graph (in Figure 5b) FH again performs
significantly better than SP: the average number of nodes affected
by node failure in FH was 1.29, as compared to 2.64 for SP. Finally,
the ‘power consumption’ graph (in Figure 5c) shows that FH
consumes significantly more power than SP: the average per-hop
power consumption was 3.39 Watts for FH and 2.35 Watts for SP.

In summary, FH is significantly better than SP in terms of latency
and resilience, but consumes significantly more power. Again there
are significant variations from node to node. These differences
between the FH and SP topologies, and between individual nodes
tends to show that the main drivers for these measurements lay
outside of the Overlay Framework and the Flood-WSN profile,
whose impact is probably negligible compared to other influencing
factors, such as the lengths of routes, and the characteristics of the
wireless technologies in use.

Triggering Reconfiguration: Reconfiguration is supported in our
sensor network though the Distributed Component Framework
facility included in the Overlays Framework (see Section 2.4). The
reconfiguration opportunities arising from the above analysis, and
the associated ‘triggers’ that drive the system from one
configuration to another are expressed with declarative
configuration rules, summarised in Figure 6 in the form of a state
transition diagram (to avoid excessive presentational complexity,
the diagram represents a drastically simplified view of the
implemented system). We also show a representative pseudo-code
configuration rule relating to one of the transitions (the top one).

As can be seen, the triggers/rules are partly based on the factors of
latency, resilience and power consumption discussed above; but
they also include two additional application-specific triggers. The
first of these, High_Flow, is based on attaching a video camera to
some of the nodes, pointing this at the river surface, and estimating
river flow rates by carrying out some simple image processing on
the resultant images.

Figure 6. Reconfiguration states and triggers (simplified)

 In the other, Flood_Predicted, the trigger is provided by so-called
point prediction models [3] which provide localised predictions of
water depth based on the collated readings of depth sensors in the
immediate locality. Interestingly, the computations underlying
High_Flow and Flood_Predicted run in a distributed manner on the

GridStix nodes themselves; and the open overlays framework is
used to instantiate additional overlays to handle the coordination
involved in these distributed computation (cf. the principle of
supporting multiple co-existing overlays).

3.4 Evaluating the cost of reconfiguration
While dynamic DCF-based reconfiguration clearly enables system
utility to be optimised for varying environmental conditions, there is
a cost associated with each reconfiguration operation in terms of the
time taken to perform the reconfiguration, and the power consumed
by the additional CPU and network activity. These are significant
costs: time taken reconfiguring is time during which the network is
out of commission (involving lost sensor readings); and consuming
additional power clearly increases the risk of losing nodes due to
power depletion. We therefore carried out experiments to evaluate
the cost of reconfiguration in our case study scenario. We focused
on reconfiguration at the Spanning Tree level as this avoids
network-specific overheads that would inevitably impact
measurements involving switching between the two physical
networks.

Figure 7a shows the per-node time required to reconfigure
between FH and SP spanning trees for the same topology that was
used in Section 3.2. The average time required was 1878 ms. To put
this in perspective, at typical sensing rates used in the case study
this implies an average loss of less than one message (0.36
messages).

Spanning Tree Power Consumption

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

B C D E F G H I J K L M N O

Node ID

Av.

Power

Consu.

(mW)
FH
SP

129

Figure 7a. Reconfiguration times

Figure 7b. Reconfiguration costs in terms of power

Figure 7b shows the per-node power costs associated with
reconfiguration from FH to SP and vice versa (there is a difference
in cost between the two directions because the DCF was configured
to employ the current overlay to support reconfiguration
operations). When reconfiguring from FH to SP, network power
costs an average of 44.2 milliwatt hours of battery life per node.
When switching from SP to FH, network power costs average 23.5
milliwatt hours. But to put this in perspective, the maximum power
consumed during overlay reconfiguration for any node (46 milliwatt
hours) is equivalent to less than 0.05% of the battery capacity of a
GridStix, which in combination with the infrequent nature of
reconfiguration is effectively negligible.

Overall, it can be seen that the power and time overheads of
reconfiguration are relatively small, particularly compared to the
potential benefits of optimising the system to current conditions.

For comparison, and in order to apportion the share of the
Framework’s mechanisms in reconfiguration costs, average
overheads for local reconfiguration in the Framework are provided
in Table 4. This shows that the frameworks reconfiguration
overhead is quite reasonable, averaging 198 ms, and roughly only
represents one tenth of the reconfiguration time observed on each
node, the rest being due to the latency of message passing that is

required to support distributed coordination, and thus outside of the
Open Overlays structure.

Table 4. Time overhead of Reconfiguration.

 Overhead (ms)

Component Creation 118

Component Binding 69

Component Connection 11

Total 198

3.5 Conclusion
This case study shows that different level of network heterogeneity
(here both in wireless technologies, and in overlay topologies) can
easily be captured into the structures of our Overlays-Framework.
The decomposition of overlay plug-ins into three standard
components also encourages reuses, and allows developers to
support a wide scope of alternative configurations at a relatively low
cost in terms of memory footprint and implementation effort.

Finally, the performance figures we presented show that the use of
the framework has no obvious detrimental impact of the overall
performance of the flood prediction network, and that the
reconfiguration mechanisms embedded in the framework cause
acceptable overheads, two crucial preconditions for the deployment
of our technology in real applications.

4. LESSONS LEARNT AND DISCUSSION
In this section, we expand on the conclusion of the case-study
evaluation and we present the lessons we have learnt on the benefits
of our Open Overlays framework as we applied it to a number of
different domains. We discuss qualitatively the advantages of the
framework in terms of software development, and present some
more extensive performance figures in terms of memory footprint
and configuration times for some of the many plug-ins we have
already implemented.

We finish this section with a general discussion of the value we see
in the fundamental notion of overlays as an architectural principle
for heterogeneous middleware.

4.1 Benefits of the open overlays framework
We evaluate the effectiveness of the open overlays framework
against the following four criteria:

i) Generality: To what extent can the framework be generally
applied in terms of different network services deployed in
different network environments; and how general is the
overlay pattern in developing overlays?

ii) Ease of Use: How easy is it for a developer to use the
framework, and extend it with new functionality?

iii) Configurability: To what extent can the framework be
configured to meet specific requirements and environments
(an in-depth evaluation of reconfigurability is provided in
Section 3)?

iv) Resource Overhead: Is the overhead incurred to support
generality, configurability and reconfigurability acceptable?

Generality As an indicator of generality, we have developed a
substantial set of overlay plug-ins of which Table 5 lists eight. From

Reconfiguration Time

0

500

1000

1500

2000

2500

B C D E F G H I J K L M N O

Node ID

Time

(mS)

Power Cost of Reconfiguration

0

20

40

60

80

100

120

B C D E F G H I J K L M N O

Node ID

Power

Consum.

(mWH)

Local CPU
FH to SP
SP to FH

130

this list, the generality in terms of the network services provided is
clear: we cover KBR protocols (e.g. Chord and Pastry), a DHT
overlay, multicast protocols (e.g. Scribe and TBCP), gossip
overlays (Scamp), and more specialised overlays such as a node
failure monitoring overlay, and a spanning tree overlay for fan-in
routing. Table 5 also shows the configurability options offered by
each overlay plug-in (in brackets, following the descriptions), and
illustrates that the framework can be generally applied in different
network environments (thus addressing network heterogeneity): e.g.
we can use the Spanning Tree overlay in a wireless sensor network
(see Section 3); and we can choose different multicast protocols for
different networks: e.g. TBCP for wide area networks, or Scamp for
wireless networks.

These various implementations also provide a strong and
comprehensive evaluation of the overlay pattern: all eight were
straightforwardly implemented in terms of the three defined
elements (i.e. control, state and forward), providing clear evidence
that the pattern applies generally to different overlay types.
Moreover, each of the implementations exhibits a clear and natural
separation of concerns in contrast to many monolithic
implementations.

As shown in Figure 8, one of the eight overlays, i.e. Pastry
KBR, was further decomposed to investigate finer-grained
configurability and reconfigurability (for example, the control
element is composed of sub-components corresponding to distinct
Pastry algorithms, i.e. for joining, leaving, maintenance and repair).
This decomposition demonstrates that the overlay pattern can itself
be extended to meet the complexities of individual overlays and yet
still be supported by the framework.

Figure 8. Extending the overlay pattern in the Pastry KBR

plug-in

Ease of use The framework has been used by over 15 programmers,
from a range of institutions, with different levels of programming
experience, in a number of system development projects (e.g.,
projects developing middleware for sensor networks, resource
discovery, and publish-subscribe). Some of these programmers
contributed as ‘plug-in developers’, some as ‘framework
configurers and users’, and some as both. From observation and
discussion were able to draw the following conclusions:

Table 5. Descriptions of some implemented overlay plug-ins

Overlay

Name

Description and configurability options

Chord
KBR

A KBR overlay based on Chord [44] (options:
standard or ‘dependable’ control element; 2 choices of
supporting overlay)

DHT Data storage overlay (options: standard or
‘dependable’ control element; used atop any KBR
overlay)

Pastry
KBR

A KBR overlay based on Pastry [41] (options: supports
alternate overlay maintenance algorithms)

Failure
Monitor

Monitoring overlay based on [45]; detects and
disseminates node failure info (options: used atop any
gossip overlay)

SCAMP Scaleable Group Membership overlay with gossip-
based forwarding [21] (options: 2 choices of
supporting overlay)

Scribe Multicast based on [7] (options: used atop any KBR
overlay)

Spanning
Tree

Tree overlay for fan-in routing (options: shortest path
or fewest hop tree configurations; used atop either Wifi
or Bluetooth ‘overlays’)

TBCP Wide area multicast overlay [35] (options: standard or
‘dependable’ control element; 2 choices of supporting
overlay)

i) Plug-in developers generally understood and followed the
approach implied by the overlay pattern, and to this extent
their solutions are easily deployable by third party application
developers. A caveat is that in some cases control, forward
and state were not completely separated into distinct
components. This is an area where further software
engineering support might benefit both the plug-in developer
and the framework configurer/ user.

ii) A typical overlay plug-in is developed in a time frame of 2 to
8 weeks depending on the complexity of the overlay.

iii) Framework users found it relatively easy to apply the existing
profiles of the framework; but in cases where new
configuration rules needed to be defined, they expressed the
need for clearer documentation of the set of attributes and
context values understood by the framework.

Hence, despite the fact that the evidence is primarily anecdotal, and
that there are areas of possible improvement, we believe that it is
reasonably safe to conclude that third parties can use the framework
with relative ease.

Configurability To measure the extent of the configurability of the
framework we calculated the numbers of possible configurations in
each of four profiles (i.e. an ‘empty’ profile consisting of only the
framework itself, a ‘WSN’ profile for wireless sensor network
environments, a ‘multicast’ profile for multicast overlays, and a
‘full’ profile containing all of the foregoing; see Table 6). The
numbers, which are summarised in the rightmost column of Table 6,
result from an exhaustive enumeration of all the configurations
reachable via the ‘top-down recursive instantiation’ process
described in Section 2.3, applied to the set of plug-ins available in
each profile (for example, TBCP can be configured with either a

131

standard or a ‘dependable’ control element, and it can be layered
over TCP and UDP transport ‘overlays’ and thus yields 4
configurations at its level). The results show that the more complex
and well-populated profiles support a very large number of possible
configurations; e.g. the ‘full’ profile has 26,999; this does not mean
that programmers must write 27,000 rules, rather the approximately
30 rules for the full profile combine to offer many potential
configurations. But, more importantly, because of the top-down
recursive instantiation process, all of these configurations are
meaningful. This is because the architecture of the framework
disallows invalid instantiations. This can be compared to other
configurable toolkits such as Ensemble [46] or JGroups
(www.jgroups.org) which, despite supporting millions of
combinations, offer a much smaller number that are actually useful
(because these use event-based component bindings that allows
components to be connected to any other in any order).

Furthermore, the overlay pattern contributes significantly to the
configurability of the framework by supporting fine-grained
configuration of individual overlays. Consider, for example, a
Gnutella implementation with either a random-walk-based, or a
flooding-based forwarder; or a tree overlay with a control element
that either contains or doesn’t contain a self-repair algorithm. This
applies equally when the overlay pattern is decomposed. For
example, our Pastry example above supports two alternative
implementations of the maintenance sub-component: one version,
which is based on the original Pastry algorithm, employs frequent
leaf set broadcasts over TCP connections; the other employs UDP-
based keep-alive messages to monitor the state of its leaf set. The
latter algorithm is less robust to network wide failure or malicious
attack, but generates far fewer network messages.

Resource overhead To assess the price paid for its generality, ease-
of-use and configurability, we quantified the resource overhead
incurred by the open overlays framework in three experiments. All
of these employed components from Gridkit 1.5/ OpenCOM v1.3.5
(available from http://gridkit.sourceforge.net), executing on a Java
1.5.0.10 virtual machine on a networked workstation with a 3.0
GHz Pentium 4 processor, 1 Gbyte of RAM and running Windows
XP.

The first experiment (see Table 6) investigated the static storage

footprint costs of each profile; i.e. the disk space required to store
the framework, components and configuration rules. This measure
is important as it illustrates the cost of storing not only a starting
configuration but also any reconfigurations that may subsequently
be applied. It can be seen from Table 6 that the base framework
requires 60K before any plug-ins are added. Note that the
configuration rules take a lot of storage (usually at least 2KBytes)
because they are coded in XML. A more efficient representation
might be better for profiles that are both complex and designed to be
applied in resource-scarce environments.

Table 6. Configurability results and overheads for framework

profiles

Profile No.

plug-

ins

No.

config.

rules

Disk mem.

for config.

rules (KB)

Disk mem

for plug-

ins (KB)

Total No. of

configs

available

Empty 0 0 0 60 1

WSN 7 6 16 146 4

Multicast 21 19 59 169 89

Full 40 31 87 252 26,999

Table 7. Performance times and dynamic memory costs of

typical configurations

Configuration

Name

#plug-

ins

#Conns Profile Config.

time (ms)

Dynamic

mem. (KB)

Empty 0 0 Full N/A 10,448

Empty 0 0 Sensor N/A 8,352

Spanning tree 5 12 Sensor 191 11,452

Spanning tree 5 12 Full 193 15,264

TBCP 6 12 Full 211 15,144

SCAMP 5 9 Full 152 13,708

Scribe/KBR 9 27 Full 486 16,652

Scribe + TBCP 13 39 Full 592 16,972

TBCP+SCAMP 10 21 Full 281 15,308

In the second experiment (see Table 7) , we evaluated dynamic

memory overhead by measuring the RAM footprint of overlay plug-
ins while they were in operation (i.e. joined to a running overlay).
We can see from Table 7 that the basic framework with no plug-ins
is responsible for a high percentage of the overall footprint (65% on
average; note, however, that this figure includes 6,392 Kbytes for
the JVM and 600 KBytes for the OpenCOM kernel). We can again
reduce overhead in a given deployment through the profiling
mechanism (different profiles will have different numbers of
configuration rules in memory). More complex configurations, e.g.
the layering of Scribe over a Chord KBR, or TBCP and Scamp
deployed in parallel, obviously increases the footprint size, but by a
small margin, e.g. adding Scamp to TBCP results in a 164 Kbytes
increase.

Finally, the third experiment (again, see Table 7) investigated
configuration performance by measuring the time needed to
configure new plug-ins based on a sample of configurations from
the different profiles (e.g. TBCP in the full profile, etc.). While it is
clear that configuration performance is largely tied to the
complexity of the configuration in terms of the numbers of
configuration rules and plug-ins involved, and the number of inter-
component connections etc., the overall cost of configuration
(including rule evaluation and component initialisation) is largely
negligible compared to time for a node to join an overlay (e.g.
Pastry averages 5 to 10 seconds for node joins). The costs of (DCF-
based) distributed configuration (i.e. overlay deployment) need not
be much more costly than this depending on the protocol used (e.g.
Scamp [21]).

4.2 Assessing the open overlays concept
To evaluate the open overlays concept, we examine how successful
we have been in achieving the desired properties of virtualisation of
the network resource, co-existence of overlays, and layering of
overlays to compose network services. In terms of virtualisation,
Section 4.1 has illustrated the range of overlays that can be
virtualised by common interfaces, e.g. multicast and DHT network
resources. These have then been utilised to build a wide range of
higher level middleware services, e.g. publish-subscribe, group
middleware [24] and sensor middleware (see Section 3) that are
independent of the network service; i.e. the middleware can be
deployed in different networked environments without
modification. This work has demonstrated that virtualisation is
indeed a powerful concept when incorporated within an overall
(configurable and reconfigurable) middleware architecture. This is

132

also something that is quite unique in that existing middleware
platforms/ paradigms do not yet support network virtualisation.

In terms of co-existence, our experience shows that i) overlays can
be deployed in parallel, ii) this is indeed a useful service to offer,
and iii) the overheads of co-existence are reasonable. This is best
illustrated by the sensor network scenario in Section 3, which
utilises three separate overlays. One outstanding issue is the
management of co-existence, in particular in terms of QoS
properties. We are currently investigating the potential role of the
work by Cooper [8] in addressing this problem. Finally, in terms of
layering we have shown that relevant overlays can usefully be
stacked on top of each other, e.g. the Scribe overlay (or the DHT)
can be stacked on top of either Pastry or Chord. Similarly, in the
scenario in Section 3 we layer a Spanning Tree overlay on top of
either Bluetooth or 802.11b networks. The layering process is
guided by top-down recursive instantiation and the use of uniform
interfaces, and promotes the reuse of lower-level overlay plug-ins.

5. RELATED WORK
Specialised middleware As mentioned in the introduction, one
approach to dealing with heterogeneity is to develop a series of
specialist middleware platforms for particular domains of operation.
This approach has been most prevalent in the mobile computing
domain, with a wide variety of platforms emerging including:
context-aware and adaptive technologies [6, 37]; particular
interaction paradigms [16, 14]; and more specific techniques to deal
with disconnection [29]. Some interesting techniques have also
emerged to deal with heterogeneity in service discovery platforms,
including the ReMMoC platform from Lancaster [22] and the
INDISS work at INRIA [5]. Specialist middleware technologies
have also emerged in areas such as distributed multimedia [47, 17]
and grid computing [19, 20].

There is currently strong interest in middleware for sensor networks.
This is a relatively new development building on the early
experiences with operating systems in this area. Middleware
approaches for wireless sensor networks seek to provide abstract
programming models that offer a more global distributed systems
management perspective, often enabling multiple applications to co-
exist and share the underlying sensor infrastructure. A good survey
of middleware for sensor networks can be found in [26], which
includes a taxonomy for sensor middleware featuring database-
inspired approaches, tuple-space approaches and event-based
approaches as important sub-classes.

It is clear that significant advances have been made in terms of
specialist techniques for particular environmental or application
domains. Despite these advances, though, the specialist middleware
approach has a number of very significant limitations. In particular,
these solutions remain narrow in scope and do not help with
problems such as interoperability with other domains. In addition,
they are all developed independently of each other and there is no
support for the re-use of software in other domains, i.e. there is no
common architectural framework.

Configurable and reconfigurable middleware There has been
considerable interest over the last decade in techniques that support
configurability and reconfigurability in middleware. Such
techniques typically rely on underlying reflective support including
both structural and behavioral reflection. Examples of key reflective
middleware platforms include the work at Lancaster mentioned
above, the families of platforms developed at the University of
Illinois at Urbana Champaign [30, 39], ExORB [40], Arctic Beans

[1] and RAPIDWare [42]. This paper follows this general approach
and reflection lies at the heart of our proposal for open overlays.

Other researchers are investigating the potential role of aspect-
oriented programming in supporting configurable (and in some
cases reconfigurable) middleware platforms [48, 31]. This is in
many ways complementary to reflective middleware, seeking higher
level aspect-oriented constructs to express the weaving of cross-
cutting concerns in middleware. Indeed, some implementations in
this area build on top of reflective middleware technology [18].

Overlay Frameworks As mentioned in the introduction, the
networking community has been carrying out a significant volume
of research directed towards the development of network overlays.
However, most of this research has been targeted towards the
implementation of application specific protocols such as peer-to-
peer substrates or multicast solutions. In this section, we focus on
the smaller number of initiatives focusing on middleware
frameworks to support overlay software.

iOverlays [32] was one of the earliest attempts to define a
framework for the support of overlay networks. Essentially,
iOverlays is low-level software cross-connect that forwards
messages according to a script that embodies the semantics of a
particular overlay. ODIN-S [8] also provides a framework for
overlay development, with an emphasis on managing resources for
overlays that share common nodes, i.e. co-existent overlays. As
such this work is strongly complementary to ours. [34] also explores
the co-existence of multiple overlay networks across nodes, in
particular demonstrating that the maintenance and deployment of
one overlay (in this case Pastry) can utilise the behaviour of another
(a gossip protocol) to improve its operation. Both these systems
illustrate use-cases that can be generally developed using our open
overlays framework.

Other solutions target the declarative description of overlay
networks and the subsequent automatic generation of code to
implement the desired virtual network abstraction (cf. model-driven
engineering) [2, 38, 33]. This is an interesting approach to
managing the complexity of configurable middleware. The above
solutions focus almost entirely on configuring overlay networks, i.e.
on tool support for the generation of a given overlay style. There is
little or no work on the subsequent management of overlays,
specifically reconfiguration as context changes. In addition, all of
the above are stand-alone toolkits and are not integrated into
broader middleware architectures. We acknowledge that currently
our framework is not as declarative as these approaches in that low-
level overlay code (e.g. in Java or C++) must be created first before
being plugged into our framework. However, we do believe the two
approaches are complementary and we are investigating model-
driven approaches for generating code to insert into the open
overlays framework.

6. CONCLUSIONS AND FUTURE WORK
We have presented and evaluated our concept of open overlays and
its associated framework—a framework that is designed to
comprehensively address the ‘network heterogeneity’ problem in
the context of middleware architecture. In our evaluation of the
open overlays concept, we have argued for the usefulness of
network virtualisation in a middleware context, the usefulness of
supporting multiple overlays per node and the stacking of overlays,
and the benefits of structuring overlay plug-ins according to the
overlay pattern. In terms of the framework-specific evaluation, we
have focused on the framework’s generality, its ease of use for both
plug-in developers and configurers/ users, the practicability of its

133

configuration and reconfiguration capabilities (employing top-down
recursive instantiation, declarative rule-based configuration and
reconfiguration, and distributed deployment and reconfiguration),
and the fact that it incurs only a modest resource overhead.
Furthermore, we have presented a detailed case study of network
heterogeneity and at the same time demonstrated the use of our
framework in a challenging, WSN-based, application context in
supporting multiple overlays, and dynamically reconfiguring them
according to current environmental conditions.

In current work, we are integrating an overlay-independent
dependability subsystem [36] into the framework. This can
significantly simplify the ‘control’ element of participating overlay
plug-ins by factoring out the task of overlay maintenance and
delegating this to the framework. We also have a PhD project that is
using the open overlays framework as the basis of a sub-framework
specialising in ad-hoc routing protocols in MANETs.

In future work, we are particularly interested in supporting
challenging scenarios involving ‘extreme’ network heterogeneity of
the type discussed in the introduction (e.g. involving systems that
span a sensor network, a fixed grid environment, and a loosely-
connected MANET). This is a fundamentally challenging issue in
that it is not yet understood even how to design overlays that can
successfully span such environments, let alone an overarching
framework. In addressing this challenge, we do not foresee major
problems in applying the basic tenets of our framework on
individual nodes; it will be the distributed deployment and
reconfiguration issues involving DCFs that will present the major
challenges (e.g. making appropriate choices in terms of distributed
versus centralised configurators, quiescence and validation
algorithms, membership protocols, etc.).

More widely, we believe that users of mainstream middleware will
increasingly demand overlay support, and so the challenge will arise
of how best to integrate the open overlays concept, or a variant of it,
in such platforms. We hope that the experiences reported in this
paper will be of relevance in this.

7. ACKNOWLEDGEMENTS
This work has been carried out in the EPSRC-funded Open
Overlays project (GR/S68521/01) and the NWDA-funded NW Grid
project. We would also like to acknowledge the valuable
contributions of several colleagues including Gareth Tyson, Chris
Cooper, David Duce, Musbah Sager, Wei Li, Laurent Mathy and
Wei Cai.

8. REFERENCES
[1] A. Andersen, G. S. Blair, V. Goebel, R. Karlsen, T. Stabell-Kul

and W. Yu. Arctic Beans: Configurable and Reconfigurable
Enterprise Component Architectures. IEEE Distributed

Systems Online, 2 (7), November 2001.

[2] S. Behnel and A. Buchmann. Overlay Networks -
Implementation by Specification. In Proceedings of the

ACM/IFIP/Usenix International Middleware Conference,
pages 401-410, Grenoble, France, November 2005.

[3] K. Beven, R. Romanowicz, F. Pappenberger, P. Young and M.
Werner. The Uncertainty Cascade in Flood Forecasting. In

Proceedings of the ACTIF meeting on Flood Risk, Tromsø,
Norway, October 2005.

[4] G. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F.
Costa, H. Duran-Limon, T. Fitzpatrick, L. Johnston, R.
Moreira, N. Parlavantzas and K. Saikoski. The Design and

Implementation of Open ORB V2. IEEE Distributed Systems

Online, 2(6), September 2001.

[5] D. Bromberg and V. Issarny. INDISS: Interoperable
Discovery System for Networked Services. In Proceedings of

the ACM/IFIP/Usenix International Middleware Conference,
pages 164-183, Greoble, France November 2005.

[6] L. Capra, W. Emmerich and C. Mascolo. CARISMA: Context-
Aware Reflective Middleware System for Mobile
Applications. IEEE Transactions on Software Engineering,
29(10):929-945, October 2003.

[7] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
SCRIBE: A Large-scale and Decentralized Application-level
Multicast Infrastructure. IEEE Journal on Selected Areas in

Communications (JSAC), 20(8):1489–1499, October 2002.

[8] B. Cooper. Trading off Resources Between Overlapping
Overlays. In Proceedings of the ACM/IFIP/USENIX 7th

International Middleware Conference, pages 101-120
Melbourne, Australia, December 2006.

[9] C. Cortes, G. Blair and P. Grace. A Multi-protocol Framework
for Ad-hoc Service Discovery. In Proceedings of the 4th

International Workshop on Middleware for Pervasive and Ad-

Hoc Computing (MPAC ‘06), Melbourne, Australia,
November 2006.

[10] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L.
Mottola, G. Picco, T. Sivaharan, N. Weerasinghe and S.
Zachariadis. The RUNES Middleware for Networked
Embedded Systems and its Application in a Disaster
Management Scenario. In Proceedings of the. 5th IEEE

International Conference on Pervasive Computing and

Communications (PERCOM’07), pages 69-78, White Plains,
New York, March 2007.

[11] G. Coulson, G. Blair, D. Hutchison, A. Joolia, K. Lee, J.
Ueyama, A. Gomes and Y. Ye. NETKIT: A Software
Component-Based Approach to Programmable Networking.
ACM SIGCOMM CCR, 33(5): 55-66, October 2003.

[12] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, K., and J.
Ueyama, J. A Component Model for Building Systems
Software. In Proceedings of Software Engineering and

Applications (SEA’04), Cambridge, MA, USA, ACTA Press,
ISBN 0-88986-425-X, November 2004.

[13] G. Coulson, D. Kuo and J.Brooke. Sensor Networks + Grid
Computing = A New Challenge for the Grid? IEEE

Distributed Systems Online, 7(12),
http://dsonline.computer.org/portal/pages/dsonline/2006/12/o1
2002.html, December 2006.

[14] G. Cugola, A. Murphy and G. Picco. Content-Based Publish-
Subscribe in a Mobile Environment. Handbook of Mobile

Middleware, Corradi, A., and Bellavista, P. eds., pages 257-
285, Auerbach Publications, 2006.

[15] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz and I. Stoica.
Towards a Common API for Structured P2P Overlays. In
Proceedings of the 2nd International Workshop on Peer-to-

Peer Systems (IPTPS), pages 33–44, Berkeley, CA, USA,
February 2003.

[16] N. Davies, A. Friday, S. Wade and G. Blair. L2imbo: A
Distributed Systems Platform for Mobile Computing. Mobile

Networking Applications, 3(2):143-156, August 1998.

134

[17] V. Eide, F. Eliassen and O. Lysne. Supporting Distributed
Processing of Time-based Media Streams. In Proceedings of

Distributed Objects and Applications (DOA’01), pages 281-
288, IEEE, Rome, Italy, September 2001.

[18] M. Fleury and F. Reverbel. The JBoss Extensible Server. In

Proceedings of the ACM/IFIP/USENIX International

Middleware Conference, pages 344-373, Rio, Brazil, June
2003.

[19] I. Foster. Globus Toolkit Version 4: Software for Service-
Oriented Systems. In Proceedings of the IFIP International

Conference on Network and Parallel Computing, Springer-
Verlag LNCS 3779, pages 2-13, 2006.

[20] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field
and J. Darlington. ICENI: Optimisation of Component
Applications within a Grid Environment. Parallel Computing,
28(12):1753–1772, December 2002.

[21] A. Ganesh, A. Kermarrec and L. Massoulie. SCAMP: Peer-to-
peer lightweight membership service for large-scale group
communication, In Proceedings of the 3rd Int.Workshop on

Networked Group Communication, London, UK, 2001.

[22] P. Grace, G. Blair and S. Samuel. ReMMoC: A Reflective
Middleware to Support Mobile Client Interoperability. In
Proceedings of the International Symposium on Distributed
Objects and Applications (DOA), pages 1170-1187, Catania,
Sicily, Italy, November 2003.

[23] P. Grace, G. Coulson, G. Blair, L. Mathy, W. Yeung, W. Cai,
D. Duce, and C. Cooper. GridKit: Pluggable Overlay
Networks for Grid Computing. In Proceedings of the

International Symposium on Distributed Objects and

Applications, pages 1463-1481, Cyprus, October 2004.

[24] P. Grace, G. Coulson, G. Blair and B. Porter. Deep Middleware
for the Divergent Grid. In Proceedings of the 6th

IFIP/ACM/USENIX International Middleware Conference,
pages 334-353, Grenoble, France, November 2005.

[25] P. Grace, G. Coulson, G. Blair and B. Porter. A Distributed
Architecture Meta Model for Self-Managed Middleware. In

Proceedings of the 5th International Workshop on Adaptive

and Reflective Middleware (ARM ‘06), co-located with
Middleware 2006, Melbourne, Australia, November 2006.

[26] K. Henricksen and R. Robinson. A Survey of Middleware for
Sensor Networks: State-of-the-art and Future Directions. In

Proceedings of the International Workshop on Middleware

For Sensor Networks, Melbourne, Australia, November 06,
MidSens ‘06, Vol. 218, ACM Press, 2006.

[27] V. Hingne, A. Joshi, T. Finin, H. Kargupta and E. Houstis.
Towards a Pervasive Grid. In Proceedings of the 17th

International Symposium on Parallel and Distributed

Processing, IPDPS, Nice, France, April 2003.

[28] D. Hughes, P. Greenwood, G. Coulson, G. Blair, F.
Pappenberger, P. Smith and K. Beven. An Intelligent and
Adaptable Flood Monitoring and Warning System. In

Proceedings of the 5th UK E-Science All Hands Meeting

(AHM’06), Nottingham, UK, September 2006
http://www.allhands.org.uk/2006/proceedings/proceedings/.

[29] A. Joseph, A. de Lespinasse, J. Tauber, D. Gifford and M.
Kaashoek. Rover: a Toolkit for Mobile Information Access. In

Proceedings of the 15th ACM Symposium on Operating

Systems Principles, Copper Mountain, Colorado, United

States, Jones, ed., SOSP ’95, pages 156-171, ACM Press,
December 1995.

[30] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. Magalhães
and R. Campbell. Monitoring, Security, and Dynamic
Configuration with the dynamicTAO Reflective ORB. In

Proceedings of the IFIP International Conference on

Distributed Systems Platforms and Open Distributed

Processing (Middleware’2000), pages 121-143, New York,
NY, USA, April 2000.

[31] B. Lagaisse and W. Joosen. True and Transparent Distributed
Composition of Aspect-Components. In Proceedings of the

International ACM/IFIP/Usenix Middleware Conference,
LNCS 4290, pages 42-61, Melbourne, December 2006.

[32] B. Li, J. Guo and M. Wan. iOverlay: A Lightweight
Middleware Infrastructure for Overlay Application
Implementations. In Proceedings of the ACM/IFIP/USENIX

International Middleware Conference (Middleware 2004),
pages 135-154, Toronto, Canada, October 2004.

[33] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe and I.
Stoica. Implementing Declarative Overlays. SIGOPS OSR,
39(5):75-90, 2005.

[34] B. Maniymaran, M Bertier, and A. Kermarrec. Build One, Get
One Free: Leveraging the Coexistence of Multiple P2P
Overlay Networks. In Proceedings of ICDCS 2007, Toronto,
Canada, June 2007.

[35] L. Mathy, R. Canonico and D. Hutchinson. An Overlay Tree
Building Control Protocol. In Proceedings of the 3rd

International COST264 Workshop on Networked Group

Communication, pages 76–87, London, UK, November 2001.

[36] B. Porter, F. Taiani and G. Coulson. Generalised Repair for
Overlay Networks. In Proceedings of International Symposium

on Reliable Distributed Systems (SRDS 2006), pages 132-142,
Leeds, UK, October 2006.

[37] O. Riva. Contory: A Middleware for the Provisioning of
Context Information on Smart Phones. In Proceedings of the

ACM/IFIP/USENIX International Middleware Conference,
pages 219-239, Melbourne, Australia, December 2006.

[38] A. Rodriguez, C. Killian, S. Bhat, D. Kostic and A. Vahdat.
MACEDON: Methodology for automatically creating,
evaluating, and designing overlay networks. In Proceedings of

the USENIX/ACM Symposium on Networked Systems Design

and Implementation (NSDI2004), pages 267-280, San
Francisco, CA, USA, March 2004.

[39] M. Roman, D. Mickunas, F. Kon and R. Campbell. LegORB
and Ubiquitous CORBA. In Proceedings of the Workshop on

Reflective Middleware, IFIP/ACM Middleware’2000, IBM
Palisades Executive Conference Center, NY, April 2000.

[40] M. Roman and N. Islam. Dynamically Programmable and
Reconfigurable Middleware Services. In Proceedings of the 5th

ACM/IFIP/USENIX International Conference on Middleware,
pages 372–396, Toronto, Canada, November 2004.

[41] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-Peer
Systems. In Proceedings of the ACM/IFIP/USENIX

International Conference on Middleware, pages 329-350,
Heidelberg, Germany November, 2001.

[42] S. Sadjadi, P. McKinley and E. Kasten. Architecture and
Operation of an Adaptable Communication Substrate. In

135

Proceedings of the 9th IEEE International Workshop on Future

Trends of Distributed Computing Systems (FTDCS’03), pages
46–55, San Juan, Puerto Rico, May 2003.

[43] A. Sage and C. Cuppan. On the Systems Engineering and
Management of Systems of Systems and Federations of
Systems. Information, Knowledge, Systems Management, 2(4):
325-345, 2001.

[44] I. Stoica, R. Morris, R. Karger, M. Kaashoek and H.
Balakarishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications, In Proceedings of ACM SIG-

COMM, pages 149-160 San Diego, August 2001.

[45] R. van Renesse, Y. Minsky and M. Hayden. A Gossip-Based
Failure Detection Service. In Proceedings of the 1st IFIP

International Conference on Middleware, pages 55–70, Lake
District, UK, September 1998.

[46] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D.
Karr. Adaptive Systems Using Ensemble. Software Practice

and Experience, 28(9): 963–979, August 1998.

[47] G. Xiaohui and K. Nahrstedt. An Event-Driven, User-Centric,
QoS-aware Middleware Framework for Ubiquitous
Multimedia Applications. In Proceedings of 9th ACM

Multimedia (Multimedia Middleware Workshop), Ottawa,
Canada, October 2001.

[48] C. Zhang and H. Jacobsen. Refactoring Middleware with
Aspects. IEEE Transactions on Parallel and Distributed

Systems, 14(11):1058-1073, November 2003.

136

