Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland

Experiences with Software Product Family Evolution

Claudio Riva and Christian Del Rosso
Software Architecture Group
Nokia Research Center
Iltamerenkatu 11-13, 00180
Helsinki, Finland
claudio.riva, christian.delrosso@nokia.com

Abstract and mobile phones) where they need to deliver a customized
software system for the various products.
The evolution of product family typically oscillates be- A software product family is a collection of products that

tween growing and consolidating phases. The migration share common requirements, features, architectural con-
path starts from a copy/paste approach that offers the fastestcepts, and code, typically in the form of software compo-
time-to-market and then moves towards a mature softwarenents. In this article we investigate the problems that affect
platform that offers a higher throughput of products. We the evolution of a product family and we introduce two tech-
have identified several issues that harm the evolution of theniques that we commonly use for coping with those prob-
family: new requirements that can break the architectural lems: architecture assessmeandarchitecture reconstruc-
integrity of the family, increasing level of bureaucracy in tion.
the organization and a slower process of change. In this
article we present two approaches for coping with the fam- 2. Product Fami|y Evolution
ily evolution: architecture assessment and architecture re-
construction. We also present Nokia case studies where the Software product families are rarely created right away
methods have been successfully applied. but they emerge when the domain is mature enough to sus-
tain the long-term investments. The typical pattern is to start
with a small set of products (often just one). If the busi-
1. Introduction ness starts to generate profits or looks profitable in the fu-
ture, new products are introduced in the market. New prod-
ucts are typically copy pasted versions of the existing ones
with some additional new features. Most of the differences
are achieved at the software level, while the hardware plat-
form remains quite unchanged. On the wave of success, the
software embedded in the products becomes a global asset
fhat becomes in use in several sites worldwide at the same
time. Many sites embed the same software in their local

The concept of software product family originates from
the hardware industry where hardware product firsesble
the production of numerous variants of products and a sig-
nificative reduction of operational costs by sharing most of
the assets. In the recent years the software has become
dominant part in an increasing number of embedded prod-

;J.Cts a?c:hn IS o:‘jtent affevcvtmg the qtl_Ja“tty "’;ﬂdtthe dtell\f/etrhy products and often make their own local modifications (e.g.
Ime of the products. Ve can estimate that most o ecustomization, updates, patches). As soon as the business

delays in the release of embedded products !S due to Sc?ft'becomes more mature, new investments are needed for con-
ware rather than hardware faults. To cope with the multi-

tude of soft iant ired b industrial prod tsolidating the software assets. At this point, the various set
ude of software variants required by an incustrial proauct ¢ products are migrated towards a product family in order
line, the software assets have been organized in softwar

%o keep all the software variants under control. The migra-

Erodutct fanf1|||es datndt,r;chus,fihe paradlljgrg dOf deO(:;:Ct Imzhats tion process affects the software parts and the organization
een transferred o the software embedded In the products, o e The organization needs to adjust its operating pro-

Thig paradigm shift has happe_ned for most of industries PO~ cedures to support the global management of the products
ducing embedded products (like cars, consumer electron|c§ifecycle (from requirements engineering to testing). The

IFor the discussion in this article software product line and software SOftware variants have tq turn into afle?(ible platfqrm where
product family can be considered synonymous. the products of the family can be derived from in a more

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland

flexible way. We can identify five different patterns or ap-
proaches that appear at different stages of the evolution:

controlled way. But that's not all. The platform be-
comes a well-defined entity in the organization with
its release plan, roadmap for the new features, coding

copy/paste: the software variants are created by copying conventions, idioms, testing procedures, architectural

platform: the concept of software platform emerges when

and modifying the existing products. It is the fastest
approach for creating a new product and it is typically
used when the organization is entering or creating a
new business. All the resources are focused in the
implementation of new features without a strict con-
trol redundancy that the variants create. This approach
minimizes the risks of development but it maximize
the entropy. This approach gives the highest flexibility
for creating new products and entering in a new mar-
ket. Verhoef et al. describes this processafiware
mitosis[8].

with a set of configuration parameters. The parameters
allow to enable/disable parts of the code, to select par-
ticular algorithms and to configure the modules. Al-
though the method is simple and allows to create nu-
merous variants from a small set of bases, it has several
drawbacks concerning the maintainability and evolv-
ability of the code.

component-based:the variable functionality of the soft-

ware is factored into separate software components
and assigned to different development teams with a
clear separation of concerns. The variants are achieved
by plugging different components into a common soft-
ware framework. The granularity of the components
can range from single classes to entire subsystems.
The correct granularity is often a trade-off between
the flexibility/maintainability: few large components

reuse more software but are harder to compose an
maintain, small components might embed too little
functionality. The correct size is often reached after

pact on most of the software engineering activities of
the organization, especially for the integration phase of

the components in the products. The component-basecf

approach can be considered a key milestone towards aC

flexible product family.

the organization starts to consolidate its experience in
a mature domain. The goal is to maximize the reuse of
the software components among the products and the

documents, training material. The development teams
are organized in a matrix structure. On one dimen-
sion there are theomponent factorieand theplatform
managementeam responsible for the development of
the software components and for the maintenance of
the platform. On the other dimension there is pined-

uct developmenorganization responsible for the de-
velopment of the products. The crucial phase of the
product development is the integration where the dif-
ferent components have to be integrated in the coherent
way.

configuration: The variability is embedded in the software optimized platform: the optimized platform tries to over-

come with the integration problems of the platform ap-
proach. Most of the resources are spent during the in-
tegration of the platform components when architec-
tural mismatches or bugs have to be carefully analyzed
and solved by the component owners. The optimized
platform solves this problem by enabling the feature-
based derivation of the products. The platform offers a
rich set of configurable features. The product integra-
tor selects and configures the features to be included
in the product and the real integration is automatically
achieved by the platform. This has been envisioned in
our previous work [1].

In real product families the five approaches can coexist
at different extent. In a highly dynamic domain, the prod-
uct family is more directed in the direction of copy/paste

approach that offers the fastest time-to-marker. In a stable
d‘jomain, the platform approach is a better choice because
It maximizes the consolidation of the assets. Verhoef et al.
describes the same concept usinggtev and prune model

. - [8].
some time. The component-based approach has an Imi;row and prune phases. In the grow phase, the product fam-
ily is free of exploiting new opportunities without much ar-
hitectural governance using the copy/paste approach (this
ads to the software mitosis phenomena causing a large in-
rease of clones and variants). In the prune phase, the weak
branches of the family are removed and the successful prod-
ucts are re-organized in order to be consolidated in the fam-
ily (re-balancing the robustness and the governance that was

lost during the mitosis phase).

The product family is typically oscillating between

throughput of the family. The platform provides a co- 3. Product Family Architecture

hesive set of services, libraries, software components
and product frameworks that are used for building the

We present a typical example of a Nokia's product fam-

products. The basic services (e.g. telecom protocols,ily architecture. The main goal of the product family ar-
hardware drivers, graphical libraries, common appli- chitecture is to describe the commonality and variability of
cations) become globally available in a precise and the family in order to make explicit the variation points of

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland

the products. We use a conceptual hierarchial frameworkthe uncontrolled growing phase, changes have to be well
for describing the elements of the product family architec- documented and motivated. It also emerges a new hierarchy
ture. We can identify at least four layers of genericity: the of managers, architects, feature owners, component design-
reference family architecturlayer, thefamily architecture ers that are responsible for preserving the integrity of the
layer, thelead product architecturtayer and theopy prod- product family architecture and for approving the changes.
uctlayer. Enforcing the architectural governance requires a certain
The reference family architecture describes the global level of bureaucracy but this is also a threat for the flexi-
architectural style that is valid for all the products of the bility of the family. This tendency towards stiffness is often
family: architectural significant requirements, architectural opposed by practices that increase the flow of communi-
rules, patterns, component types, communication infras-cation among different teams, for example by introducing
tructure, runtime issues. The architects can derive the soft-architects that are responsible for heterogenous technology
ware architecture for the product families from the reference areas.
family architecture.
The mobile phones are grouped into product families ac-4.2 Slow process of change
cording to the Ul styles, features, telecom standards and
hardware generations. This represents a first level of varia- There are cases when the change requests for new fea-
tions where the products are grouped in macro-families (e.g.tures have to go through a long approval process. If we
GSM, TDMA or UMTS). For each product family, the fam- consider the four-layer architecture of the Section 3, a typ-
ily architecture describes the services and features that arécal scenario is the following. A new feature is detect by
available in the platform. They may include the protocol the product development team at the lowest level. If it is
stacks, the OS, the Ul kernel, basic applications and hard-a local feature and it does not have an impact on the fam-
ware drivers. ily, it is just implemented in the local product. If it has a
Each family contains a reference product implementa- possible impact on the family, the feature has to be passed
tion that we indicate as lead product architecture. This prod-over and over to higher levels where its impact is carefully
uct is considered to be the most typical one of the family. assessed. In the worst case a change request may reach the
It is derived from the family by copying the common ele- reference architecture level. This happens when the new
ments from the family architecture and by instantiating the feature requires a critical change at the core of the family
abstract elements. The purpose of the lead product architec(for instance, adding a streaming video functionality might
ture is to provide a reference architecture for the other prod-require changed in the operating system). At some point the
ucts and to clearly document the variations points availablechange request may be reject or delayed to avoid the nega-
within the family. tive impact that its implementation would have on the archi-
At the bottom of the hierarchy, there is the copy product. tecture. A slow process of change is an inevitable drawback
This is typically copied from the lead product and adapted for avoiding features that could break the architectural in-
to the specific product requirements. This represent the fi-tegrity of the family.
nal product architecture and it is the starting point for the)
development project (mainly focused on feature configura-4-3 Over-designed platform

tion, integration and testing).
The design of a new software platform is a long-term ac-

tivity where considerable resources are spent for designing
a generic-enough platform to support the long-term evolu-
) _) tion of the product family. There is often the risk of design-
In the Section 2 we have presented five different ap- jng a platform that is too generic for what is really needed
proached for organizing a product family and in the Section by the products. There is a sort of auto-inducted tendency
3 we have presented a typical product family architecture. ot searching for the best software design that can handle
In this section, we discuss several problems that typically g)| the possible situations. This often leads to the creation

4. Product family issues

concern the evolution of a product family. of far too complex software frameworks that are very dif-
_ ficult to instantiate. This tendency should be limited and
4.1 Increasing Bureaucracy the design activity should investigate the good-enough ar-

chitectures rather than the best solutions.
The migration towards a product family is a process that

introduces bureaucracy in the organization. The software4.4 Spaghetti dependency

process becomes more complex due to the introduction of

new procedures that have to be followed when creating a A main goal of a product family is to share software
new product or modifying the platform. Differently from among several products. Since the owners of the software

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland

components (i.e. the component factories) and the users ob. Software Architecture Assessments for
these components (i.e. the product development teams) are Product Families
different, for each product there is an inevitable network

of dependencies. Common problems are: the interfaces of - architectural assessment is an essential part of the sys-
the components change without notice, long queues for theem architecting process that is targeted to evaluate the de-
change request of widely used components, the clients ofgree of fulfillment of quality, or non-functional, require-
the components are unknown (the dependencies are oftefhents. Recent research has focused on the application of
only V|S|ble_ in the code). Moreoyer, soft_/vare depende_:nmes architectural assessment to software systems [7], [11], [2]
can be easily mapped to human interactions among different,s \vell as to software product families [9], [12].
development teams and in a multi-site geographically dis- cyrrently, the literature about the issue of evolution is
tributed environment managing these interactions is a chal-gc1ce (with exceptions such as [4]), and there is no es-
lenge. Minimizing and controlling the software dependen- apjished best practice that guides into this particular dis-

cies of the family is a key activity for the organization. cipline.
I . Several architectural assessment practices and meth-
4.5 Feature reallocation ods exist. Examples are ATAM [13], SAAM [10] and

experience-based assessments [3]. None of the existing
methods is specifically tuned for product family architec-
ture. Also, case study reports from industrial settings are

In the typical scenario the features of the product family
architecture are instantiated in the specific product architec-
ture. However, during the consolidation phase the feature
in the products can be re-allocated to the platform. In this
case, it is necessary to move the implementation of the fea
ture out of the product and integrated it with the platform.
This often happens when a feature that has been exploite
in one product has been successful and, thus, other products
want to use it. In this process, we need to ensure that the e Evaluate and improve the architecture of certain soft-
feature can be supported in the entire family. ware system, with special focus on qualitative at-

tributes.

Product families include products that share common re-
‘guirements, features architectural artifacts, and components
r simply code. The business reasons behind architecture
(gssessment can range among the following:

4.6 Cross-family reuse

e Evaluate the conformance of a software system to stan-

There are cases when it is necessary to share software dards.

components among different product families for reducing
development costs (for example, when migrating one prod-
uct family to the latest hardware that is already in used by
another family). The first problem is that there can be archi- e Identify the skills needed for implementing the system.
tectural mismatches among the families (e.g. different op- . L . .
erating systems) and these differences have to be assessed.® Validate the partitioning for implementing the system
The second problem concern the ownership of the common ~ Within a certain organization.
software. In many cases, itis possible that the product fam- o |gentify the risks related to a particular architecture.
ily has little influence on the software development some-

where else. This situation often leads to a long integration. Many of these are believed to be important side bene-
fits of assessments, which cannot be properly classified as

4.7 Introduction of new requirements goals. However, these beliefs have not been experimentally
proved. The input of the architecture assessment is (ob-
In a dynamic market it is critical to handle the forth- viously) the available documentation and knowledge about
coming requirement in time. Even though the problem of the architecture. Its primary outcome is the assessment re-
incorporating new requirements is not specific to product port. Optimally, the defects and shortcomings identified
family architecture, the process has to accomplish an everduring the assessments and captured in the report lead to
more difficult task. The variability of the products must be an improvement of the architecture and of its documenta-
considered when evolving the architecture and it must betion. In the specific case of product families, architecture
carefully verified if a requirement for a product can lead to assessment is usually done for different business reasons.
break the product family architecture. In the analysis of the Software product families are designed to support several
forthcoming requirements must be ascertained how easy igproducts bearing different features. To ensure fast product
to add them to the current architecture and estimates thederivation, the software that is common to a certain prod-
work needed for the implementation. uct family is ported in new products. This emphasizes the

e Check whether certain qualitative requirements are sat-
isfied by the product family architecture.

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland

role of assessments, as in the case study that we describim the product family. As a first step, we had to define the or-

below. We describe a case study that we performed in orderder in which the stakeholders would have been interviewed.
to evaluate the capability of a large software product family Therefore, we divided the stakeholders in three broad cate-
to evolve and support certain new (major) requirements. gories, to interview in this order:

1. Those responsible for collecting forthcoming require-
ments and evaluating their potential impact on the ar-
chitecture.

5.1 Case study

The scope of the assessment included a fairly large sub-
set of Nokia’'s mobile terminal product family software. 2. Experts on a specific part of the software product fam-
Currently available mobile terminals have reached a con- ily or on a key quality attribute.
siderable level of sophistication. However, with the evolu-
tion of the mobile networks that is foreseen to take place 3. Those responsible for the development and mainte-
in the next few years, a number of major new requirements ~ hance of the software product family architecture at a
will have to be incorporated. Such requirements include, high level.

but are not limited to, the addition of several new applica- Wi h as loqistics all Do . |
tions (especially in the multimedia domain) and the support € strove (as much as ogistics allowe)'to Interview people
from these three categories in a sequential order (i.e. people

for new hardware and communication protocols. Moreover, ‘ : bof le f ‘ b. and |
the speed of launch of new features is (and is expected to rom category a betore people from category b, and people

continue) increasing, and the product life cycle symmetri- from category b before people from category c). We associ-

cally decreasing in duration. This poses an emphasis or]ated the completion of each category with a milestone of the

flexibility and modifiability of the software product fam- assessment project. The first phase included the elicitation

ily architecture. The main objective of the assessment was?f key tnemzjsfct;:narlos. From tr:e u;)ter\{lﬁ\l/v S Wﬁ.te I|ct|ted t_?ﬁ
to estimate the capability of the existing architecture to in- current and future requirements about the architecture. -1he

corporate such new requirements, and to highlight poSSi_result of this phase is a list of scenarios forevolut|f)n. T_hese
ble problems in this process. Our first step was to define usually consist of one or more questions such as "how is the

the scope of the architectural assessment that was to takgrchitecture going to evolve to support requirement X?” The

place. The software system we assessed is very large aanderstanding of the requirements allowed us to establish
it is being developed in different sites by teams that do ,not and plan the list of the stakeholders to be interviewed during

regularly communicate. Architects and developers work in the f_oll_o_wmg phase. The f'”f?' result of the assessment was
a distributed fashion on product development. We identi- & prioritized list of the technical and organizational issues
fied the number of stakeholders for the architecture to be in'hat émerged across the whole assessment. The document

the order of several dozen. The method we had applied incontaining the requirements and their estimated impact also

our previous assessments [12] consisted of a scenario-baseff@s handed as a deliverable.

walkthrough that took place during a brainstorming session

(meeting). This method has proved to be effective when the5-2 Results

stakeholder team (that performs the walkthrough) is of rea-

sonable size, so that communication during the meeting can Our case study was essentially an experience-based as-
happen smoothly. However, we had to face many stakehold-sessment. The result consists of a document that lists of po-
ers who had seldom met before the assessment, and wertential problems in the current product family architecture.
located in separate, often very far sites. Additionally, most Among other things, the document contained a set of views
stakeholders were believed to be expert of a relatively small(in the IEEE 1471 sense) of the current architecture. Since
domain area (e.g. system performance, usability, impact ofthe assessment focused on evolution, we had to dedicate a
new requirements, low-level software). For these reasonsfairly large fraction of the total effort to eliciting new key

we chose to perform personal interviews with every stake- scenarios and periodically checking the assumptions and fu-
holder lasting about two hours and focusing on the issuesture requirements. We did this all the way through the as-
to which each of them could contribute (as estimated to thesessment, based on both the existing documentation about
best of our and the chief architect’'s knowledge). The in- the architecture and on the material extracted from the in-
terviews were semi-structured, and during the course of theterviews that we had already performed. We structured the
dialogue the interviewer guided the interviewees based alsareport according to the problem domain. Under each sub-
on information gathered previously. The interviews were domain, we described the status of the architecture of the
intended to be as open as possible, since we needed to elicitorresponding implementation, all the issues that the inter-
opinions about highly technical issues that depend on bothviewees reported, as well as the (ongoing and advocated)
the architecture and implementation of certain feature setsimprovement activities in the different development units.

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland

We tried to perform an analysis of the issues that were pre-been fixed elsewhere, evidently without proper communica-
sented, rather than simply reporting what we heard from thetion. The assessment partially helped overcome this prob-
stakeholders. The report concludes with a series of hints onlem. Moreover, the report we produced still serves as a sort
potential risks and weaknesses. In addition, we extractedof "white paper” on the status of the product family archi-

a table (tightly integrated with the report) containing about tecture and the main problems it suffers from. In several
65 potential action points. Every action point consisted of instances we have noticed different opinions between ar-
the following elements: business problem, problem, solu- chitects on where certain problems originated and on the
tion, components affected and "real action”. The businessmethods that could be used to solve them. In a few cases
problem highlighted the main business reason that justifieswe were proposed improvement activities without a clear
spending resources on solving the problem, (e.g. better usestatement of what problems they were meant to solve. All
experience). Every problem could have several solutions,the claims must necessarily be based on the technical evi-
which we categorized by means of the potential impact on dence supported by facts and, possibly, measurements. |If
the architecture (including but not limited to the number of no proof supports certain claims, then follow-up activities
components affected). The "real action” was aimed to man- must be undertaken in order to define the problems in a
agement in order to address the problem, or further studymore objective way. For instance, it is not enough to hear
unclear issues. This ensured that adequate follow-up activi-that some product has low usability: you have to perform
ties would be started and associated to a responsible persosimulations with real users to evaluate this specific quality
and a deadline. The activities springing from such action attribute. During the course of our interviews, we noticed
points would become the practical impact of the assessmenthat some stakeholders tended to minimize the relevance of

on the organization. the problems, thus assuming an "everything can be solved”
attitude. Others, however, were more pessimistic, implying
5.3 Lessons learned that "the whole company will suffer from this if we don't

do something soon”. As always, the truth lies somewhere
: inthe middle. The assessment coordinators must try to keep
In this section we will present_ a nu_mber of mterestlng_ balance and report facts as they are, with as little emotional
lessons that we have learned during this case study. We W'"bias as possible. For this reason, it is important that the
put them in form of advice, trusting to provide valuable ma- assessment team be part of an external organization. When

;enalk:‘or other apphcgtlons c;f ,S'lm'lar”TeIhOdglr?gl'esa Th? the assessment coordinators are part of the organization that
act that our case study was fairly well focused helped us In ;g responsible for developing the architecture, their opin-

_understaang the_domam relatively quickly, and in bu_'ld' ion is naturally subject to more biasing and influence. The
ing on the information that we had gathergd during previous o 44ns can be various, from trusting your close colleagues
mtervu_aws tc_) gradually refine the material. The structure words more than others to having a vested interest in pro-
of the interview forced stakeholders to concentrate on very moting a positive evaluation of the architecture. All these

specific issues, and instances where different stakeholderg;; . +tions must be avoid during assessments. For the rea-

repeatedly quoted a certain issue as a problem increased thgonS we list above, we recommend (and will keep on) pro-
validity of their claims. In order to guarantee focus, the

fth be clearly d ibed and moting architectural assessments as a periodical task during
scope of the assessment must be clearly described and exy, o, o rchjtecture development life cycle. Our as well as other

plained before each interview. We gave every St""kehoIderresearchers' previous case studies provide strong evidence

the opportunity to comment on and refine it if they wished. that the benefits of assessments far surpass their cost. We

Before the mterwrv]avxés,lwe alsodgave a_lf_br(;ef ch]verwew ofthe o qvocate the continuation of research in the field, as well as
assessment methodology, anc specilied what we expectegne publication of more industrial experience reports. These

the outcome to be, thus giving the stakeholders a somewhaly, 14 4150 aim for a quantitative and qualitative compari-

cleglr |c|iea Off thhg enureltp))ro.cesi_ ﬁnd of the pracnca;l 'r:npaCtson of interview-based versus brainstorming-based scenario
and value of their contribution. The main purpose of the as-\ - hrough methods.

sessment task was to identify and highlight possible weak-
nesses of the product family architecture. However, almost . .
all stakeholders rated its role as a communication vehicle 8- Architecture Reconstructlon and Confor-

as very important. This is consistent with previous research ~ mance Checking

work on the subject, but was particularly evident in our case

study, where the size of the architecture under assessment The evolution of a family is mainly driven by two forces:
and the geographical and organizational distribution of the the consolidation of the assets in the platform and the cre-
development and maintenance departments naturally hamation of new products. The platform slowly evolves by in-
pered communication. In more than one instance we camecorporating the new architectural requirements, while new
into a stakeholder who quoted a problem that had alreadyproducts are added by introducing new features. This ap-

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland

proach is supported by a combination of forward and re- Organizational view: describing the organization of the
verse engineering. Forward engineering activities are nec- development activities (projects, programs, sites).
essary to develop the new features during the grow phase.

Reverse engineering [5] activities are mainly concerned
with the consolidation of the assets:

A more detailed description of the reconstruction method
can be found in [14]. In this section we discuss the product
family aspects of the reconstruction and present two case
e recovering the updated product architecture (as op-studies.

posed to the intended architecture that was in the minds ~ The reconstructions activity starts with the identification

of the architects) of the architectural concepts of the product family. Every

software system is built according to a particular architec-

e monitoring the organization of the components in the tural style. The style defines the types of building blocks

platform that can be used to compose the system (e.g. components,
classes, applications) and the communication infrastructure
that enables the components to interact at runtime (e.g. soft-
ware busses, remote procedure calls, function calls). Those
concepts represent the way developers think of a system,
and they must become the first class entities, the terminol-
The main goal of our architecture reconstruction method is 09y of the reconstruction. The reference architecture de-
to recover architectural models that the architects can usescribes the global architectural style for the family and it
to comprehend the actual implementation of the products.is typically the source of information for this phase. In
The focus of our reconstruction is mainly on the architec- the case the reference architecture is not available, it has
tural significant aspects of the products (e.g. the logical de-to be recovered from the existing products. This phase is
pendencies among the software components). conducted with the experts of the system through a series

Architecture reconstruction [14] deals with the task of Of scenario-based evaluations of the system. During this
recovering the past design decisions that have resulted ifPhase, the architecturally significant requirements (ASR) of
the present implementation of the system. The design de_the family are detected. Itis important to re-document them
cisions are about the concepts that represent the buildingPecause every architecture has been designed to support
blocks of the system and the structure that describes how thé&ome specific requirements. Understanding the ASRs allow
different software entities are connected. Similar to arche- to understand the motivations of certain design choices.
ology, which aims at studying man’s past through scientific ~ The second phase concerns with exploration of the soft-
analysis of the material remains of his cultures, architec- ware and starts by extracting a raw model of the system.
ture reconstruction is a reverse engineering activity that in- A raw model is a collection of basic facts known about the
fers the architectural rationale from the available artifacts System at a low level of abstraction. The facts can be ex-
(e.g. code, design documents, interviews with the systemtracted with a variety of methods: lexical or parser-based
experts). tools for analyzing the source code, profiling tools for the

The outcome of the reconstruction is typically presented dynamic information (e.g. message passing, process spawn-

using multiple views [6] that show different aspects of the NG, inter-process communication), manual analysis of de-
architecture: sign documents, and interviews with the developers. Not all

the facts are directly available and some must be inferred.
Component view: describing the major components, their The raw model is typically a large and unstructured
interfaces and their logical relationships data set (containing tens of thousands of entities and rela-
) o) tions). We can enrich the model by classifying and struc-
Task/Process view:describing the task allocation of the yring the model elements in hierarchies and by removing
architectural entities and showing the inter task com- grchjtecturally irrelevant information. The classification is
munications conducted by interviewing the architects. For each logi-
cal component, we have identify its counterpart in the re-
constructed model and we add the mapping to the model.
In the final model, the logical dependencies among the soft-
ware components should become visible. The model is typ-
Deployment view: describing the physical location of ically presented using the multiple views previously dis-
components in the processing units. cussed and using different presentation formats (UML di-
agrams, hyperlinked documents, graphs).
Feature view: describing the run-time implementation of The final step is to check the conformance of product ar-
a feature at a high level of abstraction. chitectures against the architectural rules. The reference ar-

e coping with the architectural dependencies within the
platform and among products.

¢ enforcing the conformance to the architectural rules

Development view: describing the organization of the
source code files and their relationships (for example,
include dependencies)

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland

chitecture and the family architecture contain several rules6.2 Case study 2
that have to be valid for all the products of the family. Once
we have extracted the updated architectural model we can e applied the reconstruction method for recovering the
check for this conformance. This check can be automatedarchitecture of one Nokia mobile phone that now serves as
and executed periodically to identify the products that are a platform for other products. The first goal was to recover
violating the rules. the current object oriented design of the system. With the
tools we have extracted a model that contains the conven-
tional C++ constructs (such as classes, methods, variables)
6.1 Case study 1 and their dependencies (such as inheritances, method calls
and variable accesses). We have organized the entities in
logical groups according to the available design documents
and according to the suggestions from the architects. The
extracted model allows the architects to analyze the depen-
features are typically developed independently and concur—der.]Cles among the high-level logical subsystems and to ex-
amine the internal structure. The second goal was to de-

rently by different component factories. The component ; . .
y by P b ._tect the dependencies between the implementation and the
factories regularly release software components that are in-

tegrated in the products. In the integration phase, a set Ofexternal packages. We customized the extraction tools in

features are combined together and presented in the user ingrder to detect the specific dependencies (such as asyn-

terface (Ul) in a simple and coherent way. Some key chal- chronous messages) that were requested by the architects.

. The final model allows the architects to navigate a complete
lenges concern how to control the dependencies among the

X - architectural model starting from a high-level view of the
component factories, how to ensure the compatibility of the X : .
. : .~ system. The models also provided fresh architectural infor-
interfaces, and how to ensure that the architectural rules dlc'mation for creating the platform of a new product family
tated by the reference architecture are enforced in the prod- '
ucts. The reconstruction method helps the architects to ex-)
tract the actual architectural configuration of the products 7. Conclusions
and to examine the component dependencies at different
levels of detail. The dependencies are represented with mes- We have identified five approaches for creating a product
sages passed among the components and by C-like functiofamily and the problems related to their evolution. In real
calls within the components. With the component view the product families the five approaches co-exist at the same
architects can look at the logical dependencies among theime. We have proposed two methods for coping with the
components and they can detect the clients and suppliers foevolution of the family: architecture assessment and archi-
each component. With the development view the architectstecture reconstruction. The architecture assessment is typ-
can examine the source code organization and the includécally applied during the grow phase of the product fam-
dependencies. With the task view, the architects can examily in order to evaluate the new requirements and their im-
ine how the components are grouped in different OS tasks,pact on the product family architecture. The architecture
and they can analyze the inter-task communication due toreconstruction is typically applied during the consolidation
the exchange of messages. With the management view, it iphase in order to understand the actual implementation of
possible to look at the organization of the component fac- the products, to integrate product features in the platform
tories and their dependencies (caused by component usagend to maintain the architectural integrity of the platform.
among different factories). With the geographical view, itis Our case studies show that the two proposed methods have
possible to look at the geographical distribution of the com- been beneficial for containing the risks implied by the evo-
ponents in the development sites. With the feature view, |lution of the Nokia product families.
the architects can create Message Sequence Charts (MSC)
showing the implementation of a set of features at the COM-p aferences
ponent level. The charts are based on the traces dynamically
generated by the execution of the features on the target sys-) .
tem. The reconstruction method supports the architectural 11 M- A-and R. C. Architectural evolution of legacy product

e . families. Fourth International Workshop on Product Family
concepts that are clearly specified in the reference architec- Enqineering PEE-4 47-55. October 2001
. . . gineering 4pages , Octoper .

ture. In this way, the architects can automatically create the [2] G. Booch. Conducting a software archi-
views from the implementation of the products, and they tecture assessment. Rational white paper,
can look at and manage the assets from a high-level per- http://rational.com/products/whitepapers/391.jsp
spective. They can also validate their mental models with [3] J. Bosch.Design and Use of Software Architecturesddi-
the concrete architecture. son Wesley, 2000.

We have tailored the reconstruction method for the anal-
ysis of a Nokia product family. In the product family, the

Proc. of the International Workshop on Principles of software evolution (IWPSE 2003), Sept. 1-2, 2003, Helsinki, Finland

[4] J. Bosch and P. Bengtsson. Component evolution in product
line architectures.Proceedings of the International Work-
shop on Component-Based Software Engineefifg§9.

[5] E. J. Chikofsky and J. H. C. Il. Reverse engineering and
design recovery: A taxonomylEEE Software pages 13—
17, Jan. 1990. Definitions of a number of key notions in
the field of reverse engineering are proposed. Forward and
reverse engineering, redocumentation, design recovery, re-
structuring, and reengineering are described.

[6] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. lvers,
R. Little, R. Nord, and J. Stafford. Documenting software
architectures: Views and beyond. 2003.

[7] A. G. et al. Recommended best industrial practice for soft-
ware architecture evaluationTechnical Report CMU/SEI-
96-TR-025, Software Engineering Institute, Pittsburgh

[8] D. Faust and C. Verhoef. Software product line migration
and deploymentSoftware Practice and Experience, to ap-
pear, 2003.

[9] M. Jazayeri, F. van der Linden, and A. R&oftware Archi-
tecture for Product FamiliesAddison Wesley, 2000.

[10] R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-
based analysis of software architecturédEEE Software
pages 47-55, November 1996.

[11] B. L., C. P., and K. R. Software Architecture in Practice
Addison Wesley, 1998.

[12] A. Maccari. Experiences in assessing product family soft-
ware architecture for evolutiotnternational conference on
Software Engineering (ICSEyay 2002.

[13] K.R., K. M., and P. Clements. Atam: A method for architec-
ture evaluation.Technical Report CMU/SEI-2000-TR-004,
Software Engineering Institute, Pittsburg?000.

[14] C. Riva. Architecture reconstruction in practicBroceed-
ings of the IFIP Working Conference on Software Architec-
ture, 2002.

