Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren,
Gregory J. Sparp, Sape J. Mullender, Jack Jansen, Guido van Rossum

llﬁmll}mmmll
{pn w&w«»&”a W .

TNOlLVYHELSNTI

WIADTHY SINNZ3AQ

December 1990/Vol.33, No.12/COMMUNICATIONS OF THE ACM

Y
]

he Amoeba project is a re-

search effort aimed at un-

derstanding how to con-

nect multiple computers in

a seamless way [16, 17, 26,

27, 31]. The basic idea is to
provide the users with the illusion
of a single powerful timesharing
system, when, in fact, the system is
implemented on a collection of
machines, potentially distributed
among several countries. This re-
search has led to the design and
implementation of the Amoeba dis-
tributed operating system, which is
being used as a prototype and vehi-
cle for further research. In this arti-
cle we will describe the current state
of the system (Amoeba 4.0), and
show some of the lessons we have
learned designing and using it over
the past eight years. We will also
discuss how this experience has in-
fluenced our plans for the next ver-
sion, Amoeba 5.0.

Amoeba was originally designed
and implemented at the Vrije
Universiteit in Amsterdam, and is
now being jointly developed there
and at the Centrum voor Wiskunde
en Informatica, also in Amsterdam.
The chief goal of this work is to
build a distributed system that is
transparent to the users. This con-
cept can best be illustrated by con-
trasting it with a network operating
system, in which each machine re-
tains its own identity. With a net-
work operating system, each user
logs into one specific machine—his
home machine. When a program is
started, it executes on the home
machine, unless the user gives an
explicit command to run it else-
where. Similarly, files are local un-
less a remote file system is explicitly
mounted or files are explicitly cop-
ied. In short, the user is clearly
aware that multiple independent
computers exist, and must deal with
them explicitly.

In contrast, users effectively log
into a transparent distributed sys-
tem as a whole, rather than to any
specific machine. When a program
is run, the system—not the user—
decides upon the best place to run
it. The user is not even aware of this

S T
— [

choice. Finally, there is a single,
system-wide file system. The files in
a single directory may be located on
different machines, possibly in dif-
ferent countries. There is no con-
cept of file transfer, uploading or
downloading from servers, or
mounting remote file systems. A
file’s position in the directory hier-
archy has no relation to its location.

The remainder of this article will
describe Amoeba and the lessons
we have learned from building it.
In the next section, we will give a
technical overview of Amoeba as it
currently stands. Since Amoeba
uses the client-server model, we will
then describe some of the more
important servers that have been
implemented so far. This is fol-
lowed by a description of how wide-
area networks are handled. Then
we will discuss a number of applica-
tions that run on Amoeba. Mea-
surements have shown Amoeba to
be fast, so we will present some of
our data. After that, we will discuss
the successes and failures we have
encountered, so that others may
profit from those ideas that have
worked out well and avoid those
that have not. Finally we conclude
with a very brief comparison be-
tween Amoeba and other systems.

Before describing the software,
however, it is worth saying some-
thing about the system architecture
on which Amoeba runs.

Technical overview of
Amoeba
System Architecture
The Amoeba architecture consists
of four principal components, as
shown in Figure 1. First are the
workstations, one per user, on
which users can carry out editing
and other tasks that require fast in-
teractive response. The worksta-
tions are all diskless, and are pri-
marily used in intelligent terminals
that do window management,
rather than as computers for run-
ning complex user programs. We
are currently using Sun-3s,
VAXstations and X-terminals as
workstations.

Second are the pool processors, a

COMMUNICATIONS OF THE ACM/December 1990/Vol.33, No.12

group of CPUs that can be dynami-
cally allocated as needed, used, and
then returned to the pool. For ex-
ample, the make command might
need to do six compilations; so six
processors could be taken out of the
pool for the time necessary to do
the compilation and then returned.
Alternatively, with a five-pass com-
piler, 5 X 6 = 30 processors could
be allocated for the six compila-
tions, further gaining speedup.
Many applications, such as heuristic
search in artificial intelligence (AI)
applications (e.g., playing chess),
use large numbers of pool proces-
sors to do their computing. We cur-
rently have 48 single board VME-
based computers using the 68020
and 68030 CPUs. We also have 10
VAX CPUs forming an additional
processor pool.

Third are the specialized servers,
such as directory servers, file serv-
ers, database servers, boot servers,
and various other servers with spe-
cialized functions. Each server is
dedicated to performing a specific
function. In some cases, there are
multiple servers that provide the
same function, for example, as part
of the replicated file system.

Fourth are the gateways, which
are used to link Amoeba systems at
different sites and different coun-
tries into a single, uniform system.
The gateways isolate Amoeba from
the peculiarities of the protocols
that must be used over the wide-
area networks.

All the Amoeba machines run
the same kernel, which primarily
provides multithreaded processes,
communication services, 1/0, and
little else. The basic idea behind the
kernel was to keep it small, to en-
hance its reliability, and to allow as
much as possible of the operating
system to run as user processes (i.e.,
outside the kernel), providing for
flexibility and experimentation.

Objects and Capabliities

Amoeba is an object-based system.
It can be viewed as a collection of
objects, each of which contains a set
of operations that can be per-
formed. For a file object, for exam-

a7

ple, typical operations are reading,
writing, appending, and deleting.
The list of allowed operations is
defined by the person who designs
the object and who writes the codes
to implement it. Both hardware
and software objects exist.

Associated with each object is a
capability [8], a kind of ticket or key
that allows the holder of the capa-
bility to perform some (not neces-
sarily all) operations on that object.
For example, a user process might
have a capability for a file that per-
mits it to read the file, but not to
modify it. Capabilities are protected
cryptographically to prevent users
from tampering with them.

Each user process owns some col-
lection of capabilities, which to-
gether define the set of objects it
may access and the types of opera-
tions that may be performed on
each. Thus capabilities provide a
unified mechanism for naming,
accessing, and protecting objects.
From the user’s perspective, the
function of the operating system is
to create an environment in which
objects can be created and manipu-
lated in a protected way.

This object-based model visible
to the users is implemented using
remote procedure call [5]. Associ-
ated with each object is a server
process that manages the object.
When a user process want to per-
form an operation on an object, it
sends a request message to the
server that manages the object. The
message contains the capability for
the object, a specification of the
operation to be performed, and any
parameters the operation requires.
The user, known as the client, then
blocks. After the server has per-
formed the operation, it sends back
a reply message that unblocks the
client. The combination of sending
a request message, blocking, and
accepting a reply message forms
the remote procedure call, which
can be encapsulated using stub rou-
tines, to make the entire remote
operation look like a local proce-
dure call. (For other possibilities see
(28]).

The structure of a capability is

FIGURE 1. The Amoeba Architecture.

FIGURIE 2. A Capability. The numbers are the current sizes in bits.

shown in Figure 2. It is 128 bits
long and contains four fields. The
first field is the server port, and is
used to identify the (server) process
that manages the object. It is in ef-
fect a 48-bit random number
chosen by the server.

The second field is the object
number, which is used by the server
to identify which of its objects is
being addressed. Together, the
server port and object number
uniquely identify the object on
which the operation is to be per-
formed.

The third field is the rights field,
which contains a bit map telling
which operations the holder of the
capability may perform. If all the
bits are 1s, all operations are
allowed. However, if some of the
bits are 0s, the holder of the capa-
bility may not perform the corre-
sponding operations. Since the
operations are usually coarse
grained, 8 bits is sufficient.

To prevent users from just turn-
ing all the 0 bits in the rights field
into 1 bits, a cryptographic protec-

tion scheme is used. When a server
is asked to create an object, it picks
an available slot in its internal ta-
bles, and puts the information
about the object in there along with
a newly generated 48-bit random
number. The index for the table is
put into the object number field of
the capability, the rights bits are all
set to 1, and the newly generated
random number is put into the
check field of the capability. This is
an owner capability, and can be
used to perform all operations on
the object.

The owner can construct a new
capability with a subset of the rights
by turning off some of the rights
bits and then XOR-ing the rights
field with the random number in
the check field. The result of this
operation is then run through a
(publicly known) one-way function
to produce a new 48-bit number
that is put in the check field of the
new capability.

The key property required of the
one-way function, f, is that given
the original 48-bit number, N (from

December 1990/Vol.33, No.12/COMMUNICATIONS OF THE ACM

S Y
—] m—

the owner capability) and the un-
encrypted rights field, R, it is casy
to compute C = f(N XOR R), but
given only C it is nearly impossible
to find an argument to f that pro-
duces the given C. Such functions
are known [9].

When a capability arrives at a
server, the server uses the object
field to index into its tables to locate
the information about the object. It
then checks to see if all the rights
bits are on. If so, the server knows
that the capability is (or is claimed
to be) an owner capability, so it just
compares the original random
number in its table with the con-
tents of the check field. If they
agree, the capability is considered
valid and the desired operation is
performed.

If some of the rights bits are 0,
the server knows that it is dealing
with a derived capability, so it per-
forms an XOR of the original ran-
dom number in its table with the
rights field of the capability. This
number is then run through the
one-way function. If the output of
the one-way function agrees with
the contents of the check field, the
capability is deemed valid, and the
requested operation is performed if
its rights bit is set to 1. Due to the
fact that the one-way function can-
not be inverted, it is not possible for
a user to “decrypt” a capability to
get the original random number in
order to generate a false capability
with more rights.

Remote Operations

The combination of a request from
a client to a server and a reply from
a server to a client is a remote opera-
tion. The request and reply mes-
sages consist of a header and a
buffer. Headers are 32 bytes, and
buffers can be up to 30 kilobytes. A
request header contains the capa-
bility of the object to be operated
on, the operation code, and a lim-
ited area (8 bytes) for parameters to
the operation. For example, in a
write operation on a file, the capa-
bility identifies the file, the opera-
tion code is write, and the parame-
ters specify the size of the data to be

S T
— | [~

written, and the offset in the file.
The request buffer contains the
data to be written. A reply header
contains an error code, a limited
area for the result of the operation
(8 bytes), and a capability field that
can be used to return a capability
(e.g., as the result of the creation of
an object, or of a directory search
operation).

The primitives for doing remote
operations are listed below:

get—request(req-header,
reg-buffer, reg-size)

put_reply(rep-header,
rep-buffer, rep-size)

do_operation(req-header,
reg-buffer, req-size,
rep-header, rep-buffer,
rep-size)

When a server is prepared to accept
requests from clients, it executes a
get_request primitive, which causes it
to block. When a request message
arrives, the server is unblocked and
the formal parameters of the call to
get_request are filled in with the in-
formation from the incoming re-
quest. The server then performs
the work and sends a reply using
put_reply.

On the client side, to invoke a
remote operation, a process uses
do_operation. This action causes the
request message to be sent to the
server. The request header con-
tains the capability of the object to
be manipulated and various param-
eters relating to the operation. The
caller is blocked until the reply is
received, at which time the three
rep- parameters are filled in and a
status returned. The return status
of do_operation can be one of three
possibilities:

1. The request was delivered and

has been executed.

2. The request was not delivered or
executed (e.g., server was down).

3. The status is unknown.

The third case can arise when the
request was sent (and possibly even
acknowledged), but no reply was
forthcoming. That situation can

COMMUNICATIONS OF THE ACM/December 1990/Vol.33, No.12

arise if a server crashes part way
through the remote operation.
Under all conditions of lost mes-
sages and crashed servers, Amoeba
guarantees that messages are deliv-
ered at most once. If status 3 is re-
turned, it is up to the application or
run time system to do its own fault
recovery.

Remote Procedure Calls

A remote procedure call actually
consists of more than just the re-
quest/reply exchange described
above. The client has to place the
capability, operation code, and pa-
rameters in the request buffer, and
on receiving the reply it has to un-
pack the results. The server has to
check the capability, extract the
operation code and parameters
from the request, and call the ap-
propriate procedure. The result of
the procedure has to be placed in
the reply buffer. Placing parame-
ters or results in a message buffer is
called marshalling, and has a non-
trivial cost. Different data repre-
sentations in client and server also
have to be handled. All of these
steps must be carefully designed
and coded, lest they introduce un-
acceptable overhead.

To hide the marshalling and
message passing from the users,
Amoeba uses stub routines [5]. For
example, one of the file system
stubs might start with:

int read_file(file_cap, offset,
nbytes, buffer, bytes_read)
capability_t *file_cap;
long offset;
long *nbytes;
char *buffer;
long *bytes_read;

This call read nbytes starting at off-
set from the file identified by
file_cap into buffer. If returns the
number of bytes actually read in
bytes_read. The function itself re-
turns 0 if it executed correctly or an
error code otherwise. A hand-writ-
ten stub for this code is simple to
construct: it will produce a request
header containing file_cap, the op-
eration code for read_file, offset,

and nbytes, and invoke the remote
operation:

do_operation(req_hdr, req_buf,
req_bytes, rep_hdr,
buf, rep_bytes);

Automatic generation of such a
stub from the procedure header
above is impossible. Some essential
information is missing. The author
of the handwritten stub uses several
pieces of derived information to do
the job.

1. The buffer is used only to re-
ceive information from the file
server; it is an output parameter,
and should not be sent to the
server.

2. The maximum length of the
buffer is given in the nbytes pa-
rameter. The actual length of
the buffer is the returned value
if there is no error and zero
otherwise.

3. File_cap is special; it defines the
service that must carry out the
remote operation.

4. The stub generator does not
know what the server’s opera-
tion code for read_file is. This
requires extra information. But,
to be fair, the human stub writer
needs this extra information too.

In order to be able to do auto-
matic stub generation, the inter-
faces between client and servers
have to contain the information
listed above, plus information
about type representation for all
language/machine combinations
used. In addition, the interface
specifications have to have an in-
heritance mechanism which allows
a lower-level interface to be shared
by several other interfaces. The
read_file operation, for instance,
will be defined in a low-level inter-
face which is then inherited by all
file-server interfaces, the terminal-
server interface, and the segment-
server interface.

The Amoeba Interface Lan-
guage (AIL) is a language in which
the extra information for the gen-
eration of efficient stubs can be
specified, so that the AIL compiler

can produce stub routines automat-
ically [33]. The read_file operation
could be part of an interface (called
a class in AIL) whose definition
could look something like this:

class simple_file_server [100..199] {
read_file(*,
in unsigned offset,
in out unsigned nbytes,
out char buffer
[nbytes:NBYTES]);

write_file(*,...);

From this specification, AIL can
generate the client stub of the ex-
ample above with the correct mar-
shalling code. It can also generate
the server main loop, containing
the marshalling code correspond-
ing to the client stubs. The AIL
specification tells the AIL compiler
that the operation codes for the
simple_file_server can be allocated
in the range 100 to 199; it tells
which parameters are input param-
eters to the server and which are
output parameters from the server,
and it tells that the length of buffer
is at most NBYTES (which must be
a constant) and that the actual
length is nbytes.

The Bullet File Server, one of the
file servers operational in Amoeba,
inherits this interface, making it
part of the Bullet File Server inter-
face:

class bullet_server [200..299] {
inherit simple_file_server;
creat_file(*,...);
g
AIL supports multiple inheritance
so the Bullet server interface can
inherit both the simple file inter-
face and, for instance, a capability
management interface for restrict-
ing rights on capabilities.
Currently, AIL generates stubs
in C, but Modula stubs and stubs in
other languages are planned. AIL
stubs have been designed to deal
with different representations—
such as byte order and floating-
point representation—on client
and server machines.

Threads
A process in Amoeba consists of

one or more threads that run in
parallel. All the threads of a process
share the same address space, but
each one has a dedicated portion of
that address space of use as its pri-
vate stack, and each one has its own
program counter. From the
programmers’s point of view, each
thread is like a traditional sequen-
tial process, except that the threads
of a process can communicate using
shared memory. In addition, the
threads can (optionally) synchro-
nize with each other using mutexes
or semaphores.

The purpose of having multiple
threads in a process is to increase
performance through parallelism,
and still provide a reasonable se-
mantic model to the programmer.
For example, a file server could be
programmed as a process with mul-
tiple threads. When a request
comes in, it can be given to some
thread to handle. That thread first
checks an internal (software) cache
to see if the needed data are pres-
ent. If not, it performs remote pro-
cedure call (RPC) with a remote
disk server to acquire the data.

While waiting for the reply from
the disk, the thread is blocked and
will not be able to handle any other
requests. However, new requests
can be given to other threads in the
same process to work on while the
first thread is blocked. In this way,
multiple requests can be handled
simultaneously, while allowing each
thread to work in a sequential way.
The point of having all the threads
share a common address space is to
make it possible for all of them to
have direct access to a common
cache—something that is not possi-
ble if each thread is its own address
space.

The scheduling of threads within
a process is done by code within the
process itself. When a thread
blocks, either because it has no
work to do (i.e., on a get_request) or
because it is waiting for a remote
reply (i.e., on a do_operation), the
internal scheduler is called, the
thread is blocked, and a new thread
can be run. Thus threads are effec-
tively co-routines. Threads are not

December 1990/Vol.33, No.12/COMMUNICATIONS OF THE ACM

{7
i<

pre-empted, that is, the currently
running thread will not be stopped
because it has run too long. This
decision was made to avoid race
conditions. There need be no worry
that a thread, when halfway
through updating some critical
shared table, will be suddenly
stopped by some other thread start-
ing up and trying to use the same
table. It is assumed that the threads

in a process were all written by the
same programmer and are actively
cooperating. Thatis why they are in
the same process. Thus the interac-

o

LIl

Lo
UCLWCCII

th Cddb in
same process is quite different from
the interaction between two threads
in different processes, which may
be hostile to one another and for
which hardware memory protec-
tion is required and used. Our eval-
uation of this annrnarh is discussed
later.

PR b
Lwu e

LY T
SSrVers

The Amoeba kernel, as we de-
scribed, essentially handles commu-
nication and some process manage-
ment, and little else. The kernel
takes care of sending and receiving
messages, scheduling processes,
and some low-level memory man-
agement. Everything else is done by
user processes. Even capability
management is done entirely in
user space, since the cryptographic

techniaue discussed Par‘!pr makes i 1t

virtually impossible for users to
generate counterfeit capabilities.
All of the remaining functions
that are norma]ly associated with a
modern operating system environ-
ment are performed by servers,
which are just ordinary user pro-
cesses. The file system, for exam-
ple, consists of a collection of user
processes. Users who are not happy
with the standard file system are
free to write and use their own.
This situation can be contrasted
with a system like Unix™, in which
there is a single file system that all
applications must use, no matter

how inannraonriate it ma
LAWY lllu..ll\ll\.lyl l(ll.\, II. 1a

[24] for example, the numerous
problems that Unix creates for
database systems are described at
great length.

v ha In
y o€, in

1)
=l

In the following sections we will
discuss the Amoeba memory
server, process server, file server,
and directory server, as examples
of typical Amoeba servers. Many
others exist as well.

The Memory and Process

In many applications, processes
need a way to create subprocesses.
In Unix, a subprocess is created by
the fork primitive, in which an exact

the Of 151110.1
made. This process can then run
for a while, attending to house-
keeping activities, and then issue an
exec primitive to overwrite its core
image with a new program.

In a distributed system, this
model is not attractive. The idea of
first building an exact copy of the
process, possibly remotely, and
then throwing it away again shortly
thereafter is inefficient. Conse-

auent Amachna w1cee o different
“l““"“f’ AMOEDBaA UsSes a auierent

strategy. The key concepts are seg-
ments and process descriptors.

A segment is a contiguous chunk
of memory that can contain code or
data. Each segment has a capability
that permits its holder to perform
operations on it, such as reading
and writing. A segment is some-
what like an in-core file, with simi-
lar properties.

A process descriptor is a data

structure that nrnvu‘lpg inform

process is

ation
about a stunned process, that is, a
process not yet started or one being
debugged or migrated. It has four
components. The first describes the
requirements for the system where
the process must run: the class of
machines, which instruction set,
minimum available memory, use of
special instructions such as floating
point, and several more. The sec-
ond component describes the lay-
out of the address space: number of
segments and, for each segment,
the size, the virtual address, how it
is mapped (e.g., read only, read-
write, code/data space), and the
capability of a file or segment

taining the contents of the segment.

can
COn-

Unicx is a registered trademark of AT&T Bell
Laboratories.

COMMUNICATIONS OF THE ACM/December 1990/Vol.33, No.12

The third component describes the
state of each thread of control:
stack pointer, stack top and bottom,
pIUgIdIIl counter, pI()LCbbUI staius
word, and registers. Threads can be
blocked on certain system calls (e.g.,
get_request); this can also be de-
scribed. The fourth component is a
list of ports for which the process is
a server. This list is helpful to the

kernel when it comes to hnﬂ"Pang

incoming requests and replying to
port-locate operations.

A process is created by executing
the following steps.

I. Get the process descriptor for
the binary from the file system.
2. Create a local segment or a file
and initialize it to the initial envi-
ronment of the new process.
The environment consists of a
set of named capabilities (a
primitive directory, as it were),
and the arguments to the pro-

rece {1 v
LL65 il viuXx

argv).
3. Modify the process descriptor to
make the first segment the envi-
ronment segment just created.
OCIIU UlC pI ocess deSLrlptor io
the machine where it will be exe-

cuted.

+a

When the processor descriptor
arrives at the machine where the
process will run, the memory server
there extracts the capabilities for
the remote segments from it, and
fetches the code and data segments

from wherever thev reside by using
from whe ng

the capabilities to perform READ
operations in the usual way. In this
manner, the physical locations of all
the machines involved are irrele-
vant.

Once all the segments have been
filled in, the process can be con-
structed and the process started. A
capability for the process is re-
turned to the initiator. This capa-
bility can be used to kill the process,

or it can be passed to a debugger to

stun (suspend) it, read and write its
memory, and so on.

The File Server

As far as the system is concerned, a
file server is just another user pro-
cess. Consequently, a variety of file

AR [¥V |
| o HvE
. L
servers haove haae ity £
STIVETd 1iavl UCCTi Wrilcii 107

Amoeba in the course of its exis-
tence. The first one, Free Univer-
sity Storage System (FUSS) [15] was
designed as an experiment in man-
aging concurrent access using opti-
mistic concurrency control. The
current one, the bullet server was
designed for extremely high per-
formance [30, 31, 32].

The decrease in the cost of disk
and RAM memories over the past
decade has allowed us to use a radi-
cally different design from that
used in Unix and most other oper-
ating systems. In particular, we
have abandoned the idea of storing
files as a collection of fixed-size disk
blocks. All files are stored contigu-
ously, both on the disk and in the
server’s main memory. While this
design wastes some disk space and
memory due to fragmentation
overhead, we feel that the enor-
gain in performance
than offsets the small extra cost of
having to buy, say, an 800 MB disk
instead of a 500 MB disk in order to
store 500 MB worth of files.

The bullet server is an immuta-
ble file store. Its principal opera-
tions are read_file and create_file.
(For garbage collection purposes
there is also a delete_file operation.)
When a process issues a read_file re-
quest, the bullet server can transfer

the antire file to the client in a2 cin-
ne entre iue o the caient in a sin

mang mara
Hious mMore

gle RPC, unless it is larger than the
maximum size (30,000 bytes),

which case multiple RPCs are
needed. The client can then edit or
otherwise modify the file locally.
When it is finished, the client issues
a create_file RPC to make a new ver-
sion. The old version remains intact
until explicitly deleted or garbage
collected. It should be noted that
different versions of a file have dif-

ferent canabilities

1CICNL CapaDIIILICs, SO UACY a2l L0

SO thpy can co-

exist, allowmg for the straightfor-
ward implementation of source
code control systems.

The files are stored contiguously
auucu lll |,uc filc
server’s memory (currently 12
Mbytes). When a requested file is
not available in this memory, it is
loaded from disk in a single large

MNMMA Aratatina an A ~dd
L7IVify UPC] auuu ana storea

contig-
uously in the cache. (Unlike con-
ventional file systems, there are no
“blocks” used anywhere in the file
system.) In the creat_file operation
one can request the reply before
the file is written to disk (for speed),
or afterwards (to know that it has

been successfully written).

When the bullet server is booted,
the entire “i-node table” is read into
memory in a single disk operation
and kept there while the server is
running. When a file operation is
requested, the object number field
in the capability is extracted, which
is an index into this table. The entry
thus located gives the disk address

as well as the cache address of the
ile (if nrecent) No diclk

The 3 PrOsCily. (8O Q5K

access is needed to fetch the
“i-node” and at most one disk access
is needed to fetch the file itself, if it
is not in the cache. The simplicity of
this design trades off some space
for high performance.

contiouo: us
conuguscu

The Directory Server

The bullet server does not provide
any naming services. To access a
file, a process must provide the rel-
evant capability. Since working with
128-bit binary numbers is not con-
venient for people, we have de-
signed and implemented a direc-
tory server to manage names and

canahilitioc
Capaciities.

The directory server manages
multiple directories, each of which
is a normal object. Stripped down
to its barest essentials, a directory
maps ASCII strings onto capabili-
ties. A process can present a string,
such as a file name, to the directory
server, and the directory server re-
turns the capability for that file.
Using this capability, the process
can then access the file.

In Unix terms,

ann Unix 1S

opened, the capabillty is retrieved
from the directory server for use in
subsequent read and write opera-
tions. After the capabilily has been
feiched from the uirectory Server,
subsequent RPCs go directly to the
server that manages the object. The
directory server is no longer in-

volved.

nll‘\pn a ..l!\. l°

wichh a

Te 2o 1t i yimdo e 4 4 wmmliog chos ol
it is lllllJUl tant to reairize tnat LcC

directory server simply provides a
mapping function. The client pro-
vides a capability for a directory (in
order to specify which directory to
search) and a string, and the direc-
tory server looks up the string in
the enprlﬁed (‘ler(‘fan and returns

the capability assoc1ated with the
string. The directory server has no
knowledge of the kind of object
that the capability controls.

In particular, it can be a capabil-
ity for another directory on the
same or a different directory
server—a file, a mailbox, a data-
base, a process capability, a segment
capability, a capability for a piece of
hardware, or anything else. Fur-
thermore, the capability may be for
an object located on the same ma-
chine, a different machine on the
local network, or a capability for an
object in a foreign country. The

nd 1l tinn of the oghiect i¢
nature and location of the Ooject is

completely arbitrary. Thus the ob-
jects in a directory need not all be
on the same disk, for example, as is
the case in many systems that sup-
port “remote mount” operations.
Since a directory may contain
ntries for other directories, it is
p0551ble to build up arbitrary direc-
tory structures, including trees and
graphs. As an optimization, it is
possible to give the directory server

a complete path, and have it follow

it as far as it can, returning a single
capability at the end.

Actually, directories are slightly
more general than just simple map-
pings. It is commonly the case that
the owner of a file may want to have
the right to perform all operations
on it, but may want to permit others
read-only access. The directory
server supports this idea by struc-
turing directories as a series of

TOWS, One ner nl’\lprt
TOows, onc por jeC,

Figure 3.

The first column gives the string
(e.g., the file name). The second
column gives the capability that
5ues with that blllllg
ing columns each apply to one user
class. For example, one could set up
a directory with different access
rights for the owner, the owner’s

as chnnrn n

SOWD NN

1 llC T Cllldlll'

December 1990/Vo0l.33, No.12/COMMUNICATIONS OF THE ACM

group, dIl(l OLIlCrb, as in UIllX, Dul.
other combinations are also possi-
ble.

The capability for a directory
specifies the columns to which the
holder has access as a bit map in

part of the rights field (e.g., 3 bits).
Thus in Ficure 3, the bits 001 might

hus in Figure 3, the bits 001 migh
specify access to only the other col-
umn. Earlier we discussed how the
rights bits are protected from tam-
pering by use of the check field.
To see how l'“ui.iltlplc coluimins are
used, consider a typical access. The
client provides a capability for a
directory (implying a column) and a
string. The string is looked up in
the directory to find the proper
row. Next, the column is checked
against the (singleton) bit map in
the rights ﬁeld, to see which col-
umn should be used. Remember
that the cryptographic scheme pre-
viously described prevents users
from modifying the bit map, hence
accessing a forbidden column.
Then the entry in the selected
row and column is extracted. Con-
ceptually this is just a capability,
with the proper rights bits turned
on. However, to avoid having to
store many capabilities, few of
which are ever used, an optimiza-
tion is made, and the entry is just a
bit map, b. The directory server can
then ask the server that manages

the ohiect to return 2 new canahbility
g OOjCCL 10 Iéuurn a nnéw Capasuily

with only those rights in 4. This new
capability is returned to the user
and also cached for future use, to
reduce calls to the server.

The directory server supports a
number of operations on directory
objects. These include looking up
capabilities, adding new rows to a
directory, removing rows from di-
rectories, listing directories, inquir-
ing about the status of directories
and nl’nprtq

tories. There is also provision for
performing multiple operations in
a single atomic action, to provide
for fault tolerance.

Furthermore, there is also sup-
port for handling replicated ob-
jects. The capability field in
Figure 3 can actually hold a set of
capabilities for multiple copies of

ant" rlplphng I"ITF{‘~

S T = v
| [[~ —
Object name Capabllity Owner | Group | Other
capt 11111 | 11000 _‘IUOOO
games_dir cap2 11111 | 10000 | 10000
paper.t cap3 11111 | 00000 | 00000
prog.c cap4 11111 | 11100 | 10000

FIGURE 3. A directory with three user classes, four entries, and five rights.

each object. Thus when a process
looks up an hhlP(‘f it can retrieve
the entire set of capabilities for all
the copies. If one of the objects is
unavailable, the others can be tried.
The technique is similar to the one
used b oy Eden [2 LLUJ In addition, it is
possible to instruct the system to
automatically generate replicas and
store them in the capability set, thus
freeing the user from this adminis-
tration.

In addition to supporting repli-
cation of user objects, the directory
server is itself duplicated. Among
other properties, it is possible to
install new versions of the directory
server by killing off one instance of

it inctalling o new version ac the
i, Instaning a new version as ind

replacement, killing off the other
(original) instance, and installing a
second replacement also running
the new code. In this way bugs can
be repaired without interrupting
service.

wide-Area Amoeba

Amoeba was designed with the idea
that a collection of machines on a
local area network (LAN) would be

ahle to communicate gver a nnr‘p-

anl ¢ communicait over a wiQe

area network with a similar collec-
tion of remote machines. The key
problem here is that wide-area net-
works are slow and unreliable, and
use protocols such as X.25, TCP/IP,
and OSI; they do not use RPC. The
primary goal of the wide-area net-
working in Amoeba has been to
achieve transparency without sacri-

COMMUNICATIONS OF THE ACM/Dccember 1990/Vol.33, No.12

ficing performance [29]). In partic-
ular, it is undesirable that the fast
local RPC be slowed down due to
the existence of wide-area commu-
nication. We believe this goal has
been achieved.

The Amoeba world is divided
into domains, each domain being an
interconnected collection of local
area networks. The key aspect of a
domain (e.g., a campus), is that
broadcasts done from any machine
in the domain are received by all
other machines in the domain, but
not by machines outside the do-
main.

The importance of broadcasting
has to do with how ports are located

in Amoeha. When a nrocess does an
In Amoena. yWwnen a process aoes an

RPC with a port not previously
used, the kernel broadcasts a locate
message. The server responds to
this broadcast with its address,
which is then used and also cached
for future RPCs.

This strategy is undesirable with
a wide-area network. Although
broadcast can be simulated using a
minimum spanning tree [7] it is
expensive and inefficient. Further-
more, not every service should be

avallable worldwide. For example, a
laser printer server in the physics
building at a university in Califor-
nia may not be of much use to cli-
ents in New York.

Both of these problems are dealt
with by introducing the concept of
publishing. When a service wishes to
be known and accessible outside its

own domain, it contacts the Service
vy gemailn, it contacts the service

for Wide-Area Networks (SWAN)
and asks that its port be published
in some set of domains. The SWAN
publishes the port by doing RPCs
with SWAN processes in each of
those domains.

When a port is published in a
domain, a new process called a
server agent is created in that do-
main. The process typically runs on
the gateway machine, and does a

ool _ronost 11
geéi-requesi us

port. Itis quiescent until its server is
needed, at which time it comes to
life and performs an RPC with the
server.

Now let us consider what hap-
pens when a process tries to locate a
remote server whose port has been
published. The process’ kernel
broadcasts a locate, which is re-
trieved by the server agent. The
server agent then builds a message

and l'x')nrle lt toa link nrocess on the
a a ¥ 58

na aart AKX On ing

ino the remote server’s
Ing tne remote servers

gateway machine. The link process
forwards it over the wide-area net-
work to the server’s domain, where
it arrives at the gateway, causing a
client agent process to be created.
This client agent then makes a nor-
mal RPC to the server. The set of
processes involved here is shown in
Figure 4.

The beauty of this scheme is that
it is completely transparent. Nei-
the kernel

ther user processes nor

know which processes are local and
which are remote. The communica-
tion between the client and the
server agent is com pletely local,

Ciann
Similar 1y,

ualug I.llC llUlllldl
the communication between the cli-
ent agent and the server is also
completely normal. Neither the cli-
ent nor the server knows that it is
talking to a distant process.

Of course, the two agents are
well aware of what is O'Q!ng on, but
they are automatically generated as
needed, and are not visible to users.
The link processes are the only
ones that know about the details of
the wide-area network. They talk to
the agents using RPC, but to each
other using whatever protocol the
wide-area network requires. The

point of splitting off the agents

ni
l\lL‘

rom h link n S IS ©
rom mep Is U

cOom-
S Lo

pletely isolate the technical details
of the wide-area network in one
kind of process, and to make it eas-
ier to have multiway gateways,
which would have one type of link
process for each wide-area network
type to which the gateway is at-
tached.

It i1s important to note that this
design causes no performance deg-
radation for local communication.
An RPC between a

server on the same LLAN proceeds
at full speed, with no relaying of
any kind. Clearly there is some per-
formance loss when a client is talk-
ing to a server located on a distant
network, but the limiting factor is
normally the bandwidth of the
wide-area network, so the extra
overhead of having messages being
relayed several times is negligible.

Another useful aspect of this
To start

client and 2
citent anda a

is tc management,
15 cnl

its managem
with, services can only be published
with the help of the SWAN server,
which can check to see if the system
administration wants the port to be

published. Another important con-
trol is the ability to prevent certain
processes (e.g., those owned by stu-
dents) from accessing wide-area
services, since all such traffic must
pass through the gateways, and var-
ious checks can be made there. Fi-
nally, the gateways can do account
ing, statistics gathering, and
monitoring of the wide-area net-
work.

the oatewavs can do account-

[Y| Py g

MPPFIIGCULTIvInns

Amoeba has been used to program
a variety of applications. We will
now describe several of them, in-
cluding Unix emulation, parallel
make, traveling salesman, and
alpha-beta search.

Unix Emulation

One of the goals of Amoeba was to
make it useful as a program devel-
opment environment. For such an
edit

12 ey
CQiIloTs,

environment,
compilers, and numerous other
standard software. It was decided
that the easiest way to obtain this

software was to emulate Unix and

anae aads
One ndcéas

then
e

to run Uni
then tor

compilers and other
of it.

Using a special set of library pro-
cedures that do RPCs with the
Amoeba servers, it has been possi-
ble to construct an emulation of the
Unix system call interface—which
was dubbed Ajax—that is good
enough that about 100 of the most
common utility programs have
been ported to Amoeba. The

Amoeba user can now use most of
AMeeDA UsSer <an now use most of

the standard editors, compilers, file
utilities and other programs in a
way that looks very much like Unix,
although in fact it is really Amoeba.

A aeaawn Server Ildb UCCII IJI UVl(lC(J io
handle state information and do

fork and exec in a Unix-like way.

Paraliel Make
As shown in Figure 1, the hardware
on which Amoeba runs contains a
processor pool with several dozen
processors. One obvious applica-
tion for these processors in a Unix
environment is a parallel version of
make {10]. The idea here is that
when make discovers that muuiplt‘:
compilations are needed, they are
run in parallel on different proces-
SOTS.

Although this idea sounds sim-
ple, there are several potential
problems. For one, to make a single

target file,
]

commands may have to be exe-
cuted, and some of these may use
files created by earlier ones. The
solution chosen is to let each com-

Liee Llarl
L D1OCK

nand execute in parallel)
when it needs a file being made but
not yet fully generated.

Other problems relate to techni-
cal limitations of the make program.
For example, since it expects com-
mands to be run sequentially,
rather than in parallel, it does not
keep track of how many processes it
has forked off, which may exceed
various system limits.

Finally, there are programs, such
as yacc [11] that write their output

n fixed name files, such as y.tab.c.
When multiple yacc’s are running in
the same directory, they all write to
the same file, thus producing gib-

December 1990/Vol.33, No.12/COMMUNICATIONS OF THE ACM

£ thaca mra Ll ems I
1 tnese prooicin

been dealt with by one means or
another, as described in [2].

The parallel compilations are
directed by a new version of make,
calied amake. Amake does not use
traditional makefiles. Instead, the
user tells it which source files are
needed, but not their dependen-
cies. The compilers have been mod-
ified to keep track of the observed
dependencies (e.g., which files they

in fact included)

After o comnila-
i fact mncuaeaqa).

After a compila-
tion, this information goes into a
kind of minidatabase that replaces
the traditional makefile. It also keeps
track of which flags were used,
which version of the compiler was
used, and other information. Not
having to even think about
makefiles, not even automatically
generated ones, has been popular
with the users. The overhead due
to managing the database is negligi-

l\ln but the speedup due to paral-

lehzamon depends strongly on the
input. When making a program
consisting of many medium-sized
files, considerable speedup can be
achieved. However, when a pro-
gram has one large source file and
many small ones, the total time can
never be smaller than the compila-
tion time of the large one.

The Traveling Salesmaoan

In addition to various experiments
with the Unix software, we have
also tried programming some ap-
plications in parallel Typical appli-
caiions are ihe tl‘a‘vcung salesmaii
problem {13] and alpha-beta search
[14] which we briefly describe here.
More details can be found in [3].

In the traveling salesman prob-
lem, the computer is given a start-
ing location and a list of cities to be
visited. The idea is to find the
shortest path that visits each city
exactly once, and then return to the
starting place. Using Amoeba we
have programmed this application
in parallel by having one pool pro-
cessor act as coordinator, and the
rest as slaves.

For example, suppose the start-
ing place is London, and the cities

to be wvisited include New York,
Sydney, Nairobi, and Tokyo. Th