

Abstract

At Northeastern University we are building a number of
courses upon a common embedded systems platform. The goal
is to reduce the learning curve associated with new
architectures and programming environments. The platform
selected is based on the Analog Devices Blackfin digital
signal processor.

In this paper we discuss our recent experience developing
anew undergraduate embedded systems lab. Students learn to
utilize the embedded DSP platform to address a number of
different applications, including controller design, RS-232
communication, encryption, and image processing. This
platform provides a rich design exploration sandbox replete
with programming and simulation tools. We describe our use
of this platform in our Microprocessor-based Design
Laboratory and discuss how this platform can be used in a
range of classes.

I. INTRODUCTION
At Northeastern University, our electrical and computer

engineering students pursue 5-year B.S. degrees and gain
workplace experience with up to 1.5 years of cooperative
education. To better prepare our students for the hands-on
work of the real world, we are building a common educational
platform allowing development in real-world systems, while
reducing the learning curve associated with working on a new
platform.

Such a platform must support a range of classical topics
including signal processing, controls, computer architecture,
and embedded systems. But the platform’s tools must also be
easy to use, and the associated documentation and pedagogic
material must be sufficiently rich. Additionally, the platform
must be practical enough that implementations using it at least
hold the attentions of students and at best ignite their
imaginations.

We have selected the Blackfin architecture from Analog
Devices (ADI) to provide such a platform. The Blackfin
combines the functionality of a digital signal processor with
that of a micro-controller unit. The architecture supports a
number of tool-chains, operating systems, and development
environments.

In 2003, our Digital Signal Processing class began using the
ADI Blackfin. Based on very positive student feedback with
this platform, we have begun to deploy this platform in a
number of classes. In the Summer/Fall of 2005, our

Microprocessor-based Design lab was redesigned to use the
Blackfin. The following Spring 2006 semester, the revised lab
was offered for the first time. The lab presented the concepts
of performing basic I/O, micro-control program design, RS-
232 communication, encryption, and image processing.

It is our goal for this lab to provide a platform upon which
our students quickly build. Our experience to date is that
students taking the DSP course that utilizes this platform in
the lab, utilize this same set of tools to implement their senior
capstone projects.

The objective of this paper is to describe our very positive
experiences with this platform, and to discuss our future plans
to build off this experience by replicating it in other labs. The
rest of the paper is organized as follows. Section II discusses
related work. Section III gives a brief introduction to the
Blackfin processor architecture. Section IV describes the
hardware platform and the supporting materials for the lab.
Section VI concludes the paper and Section V describes how
this model can be extended to future labs.

II. RELATED WORK
ADI supports academic programs through their University

Program Initiative [1]. This program makes available a series
of online training modules, including videos, PDF transcripts,
presentation slides, and some code examples; workshops and
seminars in North America, Europe, and China; and training
publications [2]–[4].

A number of universities around the world have begun to
utilize the ADI Blackfin EZ-KIT platform to support their
classes. EZ-KIT evaluation boards integrate a Blackfin
processor with a range of peripherals. The ECE-ADI Project
at University of Calgary has a rather extensive collection of
audio, video, microcontroller labs, and presentation materials
[5]. The University of Massachusetts Lowell new Handy
Board [9] utilizes the Blackfin. A one-day course at the
University of Parma, Italy provides hands-on experience using
the Blackfin [6]. California Polytechnic State University has
utilized the Blackfin in a course and has also described how it
could be used to revamp an entire curriculum [7]. This most
recent adoption has motivated the curricular changes at
Northeastern to adopt the Blackfin EZ-KIT.

III. BLACKFIN PROCESSOR
The Blackfin was designed to provide micro-controller

(MCU) and digital signal processing (DSP) functionality in a
single processor, while allowing flexibility between the needs
of control and DSP. With this duality in mind, the Blackfin

Experiences with the Blackfin Architecture in an Embedded Systems Lab

Michael Benjamin, David Kaeli, Richard Platcow
Department of Electrical and Computer Engineering

Northeastern University
Boston, MA 02115

Fig. 1. Blackfin BF561 processor overview [17].

incorporates a Single Instruction, Multiple Data (SIMD)
processor with features such as a variable-length RISC
instructions, software-programmable on-chip PLL, watchdog
timer, real-time clock, memory management unit, 100 Mbps
serial ports (SPORTs), UART controllers (with IRDA
support), and SPI ports. The MMU supports multiple direct
memory access (DMA) channels for data transfers between
peripherals and SDRAM, FLASH, SRAM memory
subsystems, and also supports configurable on-chip
instruction and data caches. The Blackfin hardware supports
8-bit, 16-bit, and 32-bit arithmetic operations - but is
optimized for 16-bit operations.

A. Architecture

The Blackfin architecture is based on the Micro Signal
Architecture [15] developed jointly by Analog Devices (ADI)
and Intel, which includes 32-bit RISC instruction set and 8-bit
video instruction set with dual 16-bit multiply-accumulate
(MAC) units. ADI has been able to achieve a balance between
the needs of DSP and MCU with the Blackfin instruction set
architecture. Using C/C++, a developer can rely on the
compiler to generate highly dense yet computationally
efficient code; or the developer can write targeted assembly.
For real-time needs, operating system support becomes critical
- the
Blackfin supports memory protection and supports a number
of operating systems.

Development on the Blackfin is supported by a number of
tool chains, including ADI’s VisualDSP++ Integrated
Development and Debugging Environment (VDSP++ IDDE)
and GCC. Supported operating systems include INTEGRITY
[8] and velOSity [10] from Green Hills Software, ThreadX

[11] from Express Logic, Nucleus from Mentor Graphics [12],
Fusion [13] from Unicoi Systems, and the μClinux embedded
Linux/micro-controller project [14].

Blackfin comes in both single-core (e.g., BF533, BF535
and BF537) and dual-core (e.g., BF561) models. The
organization of the BF561 used in our Microprocessor-based
Lab is shown in Figure 1. This chip provides for symmetric
multiprocessing, while also providing low power
consumption.

IV. LAB ENVIRONMENT
The Microprocessor Lab course was co-requisite to the

Microprocessor-based Design course, which met twice weekly
for 100-minute lectures. The lab section consisted of 15
undergraduates, most in their junior year. The students
worked in groups of 3 or 4 in the laboratory.

The course was split into 5 individual experiments over a
14-week semester - each lab consisting of two 2-hour
sessions. A sixth student-designed lab was also assigned, in
which students proposed a project that could easily lead to an
engineering capstone design project (all seniors are required
to complete a capstone project in their senior year). The labs
were conducted every other week to provide students ample
time to write up their reports. In addition to the textbook [16]
used in the course, a number of hardware and software
manuals were used from ADI [17]–[20].

A. Goals of the Lab

In addition to our fundamental goal to strengthen students’
comprehension and retention of lecture material, additional
goals for the lab course were:

Fig. 2. Analog Device’s Blackfin BF561 EZ-KIT Lite evaluation board.

• To balance breadth and depth of embedded systems
education.

• To encourage students to develop skills for problem
solving, group/time management, and self-learning.

• To prepare students for technical writing in industry
and academia.

To balance breadth and depth, we chose to use the C language
and the VDSP++ IDDE. Assembly is discussed in the course
lectures, and we show in lab how students can use inline
assembly in C subroutines. To encourage independence in
problem solving and learning, students were assigned a
student-design lab and used Wikipedia articles as reference
material. To strengthen technical writing, each report had an
“executive summary” generally describing the lab and a
“technical abstract” to address such detail.

B. Equipment

In this lab we utilize the Blackfin BF561 EZ-KIT Lite
evaluation board (shown in Figure 2). The BF561 board
integrates an ADSP-BF561 symmetric dual-core processor
designed for consumer multimedia into an evaluation board
which includes 64MB of SDRAM, 8MB FLASH, stereo audio
channels (2 input/3 output), video jacks (3 input/3 output),
UART/RS232 line driver/receiver, 20 LEDs, 5 push buttons
(1 reset, 4 programmable flags), JTAG ICE 14-pin header and
and expansion interface.

Our lab setup includes an Ontrak ADR101 serial data
acquisition interface board. This allows us to interface the

BF561 with a relay using a RS-232 protocol and a basic
string-as-command interface (see Figure 3).

Fig. 3. Ontrak ADR101 serial data acquisition interface (using RS232).

C. Programming Environment
We utilize the ADI VDSP++ programming framework in the
lab, shown in Figure 4. This framework is quite extensive and
we are only able to touch on the basics in this lab (in the
future we are looking to utilize this platform in a freshman
programming class). Section V provides a discussion of how

Fig. 4. Analog Device’s Visual DSP++ 4.0 IDDE.

advanced labs might further exploit the capabilities provided
by VDSP++.

D. Experiments

Next we describe the series of experiments assigned to the
students. They are presented in the order in which they are
assigned.

1) Basic Input/Output: This lab introduces how to use the
programming tools provided in order to produce input and
output. In the first part of lab, the students develop a simple C
program for standard I/O. In the second part, they evaluate a
definite integral using the Monte Carlo method. In the third
part, students use push-buttons and LEDs on the BF561
EZKIT Lite board to implement simple board-level I/O. The
students use Monte Carlo simulation code [21] to evaluate

dxe
x

∫
−1

0
2
1 2

 - corresponding to the probability density

function for a Gaussian distribution (without the scaling

factor
πσ 2

1
, where 2σ denotes the variance). This

exercise is intended as a demonstration of the available C
functionality on the Blackfin and also as a conceptual
introduction to the theoretical topics of stochastic and
numerical methods.

To demonstrate simple I/O, one group’s solution was to
develop a simple game similar to Simon. The game controls
two LEDs in the bottom row, and are located close to a
pushbutton.The game awards a point to the user if the user hits
the correct button in time, and keeps score in binary on the top
row of the LEDs.

A solution was given to the students that featured a tennis
game. LEDs light one row at a time in succession, moving
from one side to another. The direction changes as the
appropriate racket button is pressed.

2) Washing Machine Controller: This lab covers how to
implement an abstract finite state machine (FSM) model of a
washing machine in an embedded controller design. In the
first step, the students produce the FSM and implement it in C,
using stdin and stdout to prototype sensors and control
devices. An example FSM is given in Figure 5.

In the second step, students revise their I/O function to use
a UART controller library which sends strings to a Windows
XP Hyper Terminal session via an RS-232 interface. Finally,
the students build a washing machine prototype using a
breadboard, LEDs for outputs to the controller (such as valves
to supply and drain water, and a motor to agitate the load) and
switches for inputs to the controller (e.g., water-level sensors,
door open/close sensors, etc.).

Fig. 5. Example of FSM for washing machine control.

3) RS-232 Communication: In this lab students use the
UART controller on the BF561 to interface with the
ADR101 and the breadboard washing machine prototype
they built in the previous lab. To verify their designs, the
program writes the correct ADR commands to a Hyper
Terminal session. In their reports, the students were asked
to explain the RS232/UART communication step-by-step.

4) Encryption: In this lab, the students implement an RSA
cryptography scheme that encrypts a text file and sends the
encrypted characters from one BF561 to another. The data
is then decrypted and displayed on the VSDP++ console.
To encourage self-learning, the students were instructed to
a read`Wikipedia articles that explained the overall RSA
algorithm and numerical methods for exponentiation.

The basic RSA cryptography scheme discussed is
summarized as follows. To transform a character with the
ASCII value of x into an encrypted number c we can use r
(the public exponent), and n (the public modulus, which is
the product of two random, private prime numbers n = p ×
q) using the following equation:

encrypt(x) = xr mod n = c (1)

Similarly to transform a decrypted number c into a

character with the ASCII value of x, we use s (the private
exponent) and n (again, the public modulus).

decrypt(c) = cs mod n = x (2)

For very large values of r and s, the exponentiation

requires the use of a numerical method (such as the Square-
and Multiply algorithm, binary or modular exponentiation).
The student reports discuss which numerical method was
best, in terms of Big-O notation, execution time and
number of operations, and also how to solve
communication problems (e.g., detecting when the value of
an encrypted character was greater than the range of
character values, how to send integers as strings, etc.).
Students also address the RSA Factoring Challenge [22] -

in particular what the meaning of recent factorizations of
challenge numbers such as (RSA-640 in November 2005)
implies about the security of encryption keys.

5) Image Processing: Given the complexity of introducing
image processing in this lab, limitations were placed on the
scope of this experiment. We assumed the lab would use a
single frame of video. The frame would be represented by a
file in RGB24 format (24-bits for red, green, and blue –
each one byte) with a pixel represented by a line, each RGB
value comma-separated on the line.

The first part of the lab is to read the image, convert it to
RGB565 using a given C macro, and display it in
VDSP++’s Image Viewer. The file took some time to load
because of the USB interface - but using a high-
performance PCI (HPPCI) emulator the loading of the file
was very fast. The second part of the lab is to develop code
for filtering out pixels below a fixed threshold. The third
part of the lab is to perform a fire detection given a video
frame. The students applied the same simple filter, but this
time the threshold corresponded to the colorspace occupied
by fire. Figure 6 shows the before and after results for
filtering based on the colorspace corresponding to fire.

6) Student-Design: This final lab was intended to be act in
part as a segue to capstone design. Students were allowed
to design their own final lab but were not required to fully
implement the design. Each group wrote a proposal that
included:

• the goals and motivations of the work
• related work
• problem(s) addressed
• solution(s) proposed
• justification of the approach (listing advantages

and disadvantages)
• a time schedule for implementation (with Gantt

charts)
• division of work between group members

(a) Before filtering

Fig. 6. Video frame processing.

(b) After filtering (with a darken transform)

• any deliverables (such as data collection or
prototyped product)

• market considerations for product(s), or
contribution to field(s) for research

E. Student Feedback

The Spring 2006 lab consisted of only 15 students, but
students were asked to fill out an anonymous web survey to
rate the lab. On average, most students found the lab to
both difficult but very useful. Students answered that they
had learned as much as expected, improved their time-
management skills, found the group-based evaluations
somewhat useful, found the Wikipedia articles very useful,
and overall felt that the balance of breadth and depth was
good.

V. EXTENSIONS
The new Microprocessor-based Design Lab is only in its

first year and will continue to be refined. We plan to
improve both the hardware and software aspects of the
platform. We are also providing materials online for other
labs to use and to encourage interested persons to help
develop the work.
Some features of the VDSP++ IDDE were mentioned but
not dealt with thoroughly. Advanced labs could incorporate
profiling using the VDSP++ Profile Guided Optimization
6
 (PGO) Tool. Once students discovered hot code in their
programs, assembly code could be hand tuned (a typical
exercise of commercial implementations). Also, because
the Blackfin can use a variety of development platforms,
the lab would be well served to incorporate GCC/μClinux
as an example of an alternative tool chain.
In addition to improving software-related topics, there
remains room for improving hardware-related topics.
Taking advantage of both BF561 cores for performance and
power should be explored (for instance, the first lab might
implement a doubles game, with the rows and buttons
corresponding to a one-ball, four player game). In the

future, we hope to make use of the extender boards
available for the BF561 such as the USB-LAN board for
disk I/O or network communication; and the FPGA board
for acceleration. Indeed, we would like the students to
utilize the FPGA more heavily in different steps in the labs.
Also because the instruction and data caches are
configurable, an advanced discussion of caching should be
included.
Finally, as an outgrowth of the lab, we have developed a
website for the Northeastern University Blackfin Labs
NEUfin Project. The goal of the project is provide for an
open discussion and development of relevant labs and
tutorials for others. The material produced by the project is
intended to be shared with other schools. The website is
located at:
http://www.ece.neu.edu/groups/nucar/BFLab

VI. SUMMARY
Northeastern University is adopting a common

embedded platform to be used in a number of
undergraduate courses.
The Blackfin architecture has been selected upon which to
base this platform because of its DSP and MCU
functionality, its support of operating systems and
programming languages, its documentation, its use in
industry, and also for ADI’s commitment to support
universities. Already this platform has been used in the
Digital Signal Processing Lab and Microprocessor-based
Design Lab. Both labs were received very well by the
students and provided a wide range of educational material.

Future courses which will use this platform include the
digital logic design lab and the hardware description
language course (using the FPGA extender board). The
goal will be to see the hardware/software co-design tradeoff
of utilizing an FPGA versus high-level language. There are
also plans to incorporate elements of these tools into the
undergraduate Computer Architecture course.

ACKNOWLEDGMENT
The authors would like to thank Mimi Pichey, Giuseppe

Olivadoti, Richard Gentile, and Ken Butler from Analog
Devices for their generous donation of Blackfin EZ-KIT
Lite evaluation boards, software, and extender boards, and
for their support of this project. The authors would also like
to acknowledge the efforts of Kaushal Sanghai who
provided technical support on the BF561.

REFERENCES
[1] http://analog.com/processors/resources/
teachingResources.html, University Program Teaching
Resources, Analog Devices web page.
[2] http://www.demosondemand.com/clients/
analogdevices/001/page/, Blackfin Online Learning and
Development, Analog Devices web page.
[3] http://www.analog.com/processors/epWebCasts/,
Webcasts, Analog Devices web page.
[4]
http://www.analog.com/processors/training/index.
html, Learning & Development, Analog Devices web page.
[5] http://www.enel.ucalgary.ca/People/Smith/
ECE-ADI-Project/Index/originalindex.htm, ECE-ADI
Project Home Page, University of Calgary.
[6] http://ee.unipr.it/SHARC2116x/, Hands-on ADI DSP 1-
day
course, University of Parma Italy.
[7] Diana Franklin and John Seng, Experiences with the Blackfin
architecture
of Embedded Systems Education, ICSA-2005, Workshop on Computer
Architecture Education, 2005.
7
[8] http://www.ghs.com/products/rtos/integrity.html,
INTEGRITY Real-Time Operating System, Green Hills Software web
page.
[9] http://robots.net/article/1866.html, A New and
Improved
Handy Board.

[10] http://www.ghs.com/products/velosity.html,
velOSity
Real-Time Operating System, Green Hills Software web page.
[11] http://www.rtos.com/txtech.asp, ThreadX Technical
Features,
Express Logic website.
[12] http://www.mentor.com/products/embedded_
software/nucleus_rtos/index.cfm, Nucleus Real-Time
Operating System, Mentor Graphics web page.
[13]
http://www.unicoi.com/fusion_rtos/rtos_blackfin.
htm, Fusion embedded RTOS for Blackfin, Unicoi Systems web page.
[14] http://blackfin.uclinux.org, Blackfin μClinux Project,
web
page
[15] http://www.intel.com/design/msa/highlights.pdf,
Micro Signal Architecture from ADI and Intel.
[16] Tammy Noergaard, Embedded Systems Architecture: A
Comprehensive
Guide for Engineers and Programmers, First edition, Elsevier Inc, 2006.
[17] Analog Devices, Inc., One Technology Way, Norwood, MA 02062.
ADSP-BF561 Blackfin Processor Hardware Reference, revision 1.0
edition,
July 2005, Part Number 82-000561-01.
[18] Analog Devices, Inc., One Technology Way, Norwood, MA 02062.
ADSP-BF53x/BF56x Blackfin Processor Programming Reference, revision
1.0 edition, June 2005, Part Number 82-000556-01.
[19] Analog Devices, Inc., One Technology Way, Norwood, MA 02062.
VisualDSP++ 4.0 Getting Started Guide revision 1.0 edition, January
2005, Part Number 82-000420-01.
[20] Analog Devices, Inc., One Technology Way, Norwood, MA 02062.
VisualDSP++ 4.0 C/C++ Compiler and Library Manual for Blackfin
Processor revision 3.0 edition, January 2005, Part Number 82-000410-
03.
[21] Richard Johnsonbaugh and Martin Kaelin, C for Scientists and
Engineers,
Chapter 5, pages 192-195, First edition, Prentice-Hall, 1997.
[22] http://www.rsasecurity.com/rsalabs/challenges/
factoring/, The RSA Factoring Challenge FAQ, RSA Security web
page.

