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Abstract

This paper describes and compares two pioneering mobile
robot systems, which were recently deployed as interactive
tour-guides in two museums. Both robots demonstrated
safe and reliable navigation in proximity of people. They
also interacted with museum visitor through various means,
including the Web. Probabilistic algorithms and learning
are pervasive in their software architectures. This article
sketches the basic software, summarizes results, compares
the robots, and discusses open problems.

1 Introduction

In the near future, an increasing number of service robots
will have to work in close proximity to people, interact with
them, and perform tasks in populated environments, highly
dynamic and unpredictable. Problems of this sort arise in a
range of application domains, including janitorial services,
personal service robots, information kiosks, and robots in
the health care sector (e.g., nursing robots).

This paper describes the collective experience with two
deployed museum tour-guide robots. The first robot, Rhino
(shown in Fig. 1), operated for six days in May 1997 in
the Deutsches Museum Bonn. The second robot, Minerva
(Fig. 2), was installed for a total of 14 days in the Smith-
sonian’s National Museum of American History (NMAH),
during August/September of 1998. Both robots are between
1.2 and 1.5 meters in height, and they are equipped with
laser range finders, cameras, sonar sensors, and tactile sen-
sors. Their tasks involve approaching people, interacting
with them by replaying pre-recorded messages and display-
ing texts and images on on-board displays as well as safe
and reliable navigation in un-modified and populated envi-
ronments. The setting is uniquely suited to study some of
the generic problem in service robotics.

2 Project Goals

As noted above, the goal of this research is to contribute
to the development of a new generation of low-cost service
robots that directly interact with people. In particular, our
work pursues four central goals

1. Save and rapid navigation in dynamic and unpre-
dictable environments shared with people. Both robots

described here navigate safely in densely crowded public
places.

2. Effective human-robot interaction with individuals,
crowds of people and people who had no prior exposure
to robotics. Minerva, in particular, possesses a collection
of mechanisms targeted to appeal at people’s intuition.

3. Autonomous operation in unmodified environments.
Both robots differ from most closely related work in that
they did not require modifications of their environments.

4. Robotic tele-presencefor people at remote locations us-
ing the Internet. Both robots possess Web interfaces that
enabled people all around the world to command them
and perceive sensor data (e.g., camera images).

While the emphasis in the Rhino control system is on navi-
gation, the Minerva system is designed to improve the capa-
bilities of human-robot interaction and tele-presence. Min-
erva’s navigation system is an improved version of Rhino’s
navigation components. Additionally, Minerva possesses a
face to express moods, is able to learn how to best attract
people, and possesses a much improved Web interface. As
a result, Minerva was also much more effective in inter-
acting with people. Furthermore, Minerva employs a col-
lection of learning algorithms (e.g., for learning maps, or
model for composing tours) that facilitate the installation
and enable the robot to adapt continuously. These learning
algorithms significantly accelerate the installation of mobile
robots. Whereas Rhino’s installation in the Deutsches Mu-
seum Bonn took several weeks, Minerva’s installation took
a few days.

3 Rhino: Focus on Reliable Navigation in
Dynamic Environments

The control system of the first museum tour-guide robot
Rhino mainly focuses on safe and reliable navigation in
public and populated environments. Public environments,
such as museums, differ from more confined environments
(e.g., research labs) in that they are highly dynamic, unpre-
dictable, and often even hostile: People often seek to con-
fuse robots. Additionally, there generally are several un-
marked hazards such as staircases, or objects that cannot be



(a)

o1

o2

Laser range
finder

Tactiles

Infrared

Sonars

Stereo camera

(b)

Fig. 1: (a) Rhino, (b) Tour in the Deutsches Museum Bonn (Germany).

sensed, making safe navigation a challenging problem of
utmost importance.

Rhino’s navigation software is described in depth in [2];
therefore, we only summarize its main components here,
referring the interested reader to the article above.

3.1 Localization

Localization refers to the determination of the robot’s pose
(x-y location and bearing �) within its environment. Accu-
rate localization was a prerequisite for a collection of func-
tions: navigating to exhibits and taking images thereof for
the Internet, avoiding collisions with hazards such as stair-
cases that were otherwise undetectable with the robots’ sen-
sors, and finding people (as described below).

Rhino employs a grid-based version of Markov localiza-
tion [16], which typically localizes the robot with 10cm ac-
curacy. The (hand-drawn) metric map used by Rhino for
localization in the Deutsches Museum Bonn is shown in
Fig. 3 (black polygons only). In essence, Markov local-
ization maintains a probability density over robot poses,
which is updated whenever the robot moves (as measured
by odometry) or when it senses (e.g., using a laser range
finder). Fig. 3 illustrates Markov localization during global
localization (i.e., localization from scratch): After a single
sensor scan, the robot’s belief is distributed according to the
gray region in Fig. 3a (the darker a location, the more likely
it is). Fig. 3b depicts the robot’s belief after a second sensor
scan. Here the probability mass is centered at the correct
location, illustrating that two sensor scans are sometimes
sufficient to globally localize the robot. A derivation and
detailed description of the algorithm can be found in [4].

3.2 People Detection

In Rhino and Minerva alike, people detection serves a dual
goal. On the one hand, it is necessary for the robots’ in-
teractive components. Static objects that block a robot’s
path should be treated differently from people. On the other
hand, as shown in [5] it aids localization in crowded envi-
ronments: By filtering out sensor data corrupted by people,
the remaining sensor measurements are much better suited
for localization, and people cannot confuse the robot by sys-
tematically blocking its sensors.

Rhino and Minerva detect people by applying dedicated
filter on their proximity measurements [5]. Both robots
use the current pose distribution (localization result) to
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Fig. 2: (a) Minerva, (b) Tour in the Smithsonian’s National Museum of

American History (Washington, DC).

check the plausibility of sensor scans. Sensor scans that
“surprise” are attributed to people. Fig. 4a shows those
measurements—taken form a single 360� scan, which are
believed to correspond to obstacles. Those believed to cor-
respond to people (in the same sensor scan) are shown in
Fig. 4b. The filter worked extremely reliable, as detailed
experimental results in [5] document.

3.3 Collision Avoidance

The collision avoidance module controls the momentary
motion direction and velocity of the robot so as to avoid
collisions with obstacles—people and exhibits alike. To de-
termine the location of nearby objects, the robot screens its
sensors in regular time intervals (typically 3-4 times a sec-
ond). Additionally, the map is consulted to generate “fake”
(or: virtual) sensor readings that correspond to undetectable
hazards or obstacles (e.g., staircases).

At velocities of 70 cm/sec (maximum velocity during
the day) to 163 cm/sec (Minerva’s high speed under exclu-
sive Web control), inertia and torque limits impose severe
constraints on robot motion which may not be neglected.
Thus, the collision avoidance module takes the dynamics
into account. Under the typical dynamic constraints (limited
torque), it generates collision-free motion that maximizes
two criteria: progress towards the goal, and the robot’s ve-
locity. As a result, the robot can ship around smaller obsta-
cles (e.g., a person) without decelerating. The velocity is
updated four times a second [2].

3.4 Mapping

The map of the environment used by Rhino in the museum
is shown in Fig. 3 (black polygons only). During operation,
Rhino updates this map on-the-fly to accommodate changes
(e.g., stools that were dropped in narrowly confined areas
of the museum). Here Rhino employs occupancy grids [3].
Fig. 5b shows an example, where a large crowd of people
blocks a path around an obstacle. The figure shows the mod-
ified map, along with the new path generated by the path
planner described below.

Minerva goes a step further: The map is learned from
data (images, range data, odometry) collected while manu-
ally steering the robot through the museum. The problem of
building maps from data with imprecise odometry is known
as the concurrent mapping and localization problem [11],
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scan, at which point the robot uniquely knows its position.

which highlights its chicken-and-egg nature. Fig. 6 shows
two maps, one of the NMAH’s floor plan, and one of the
museum’s ceiling. The first is constructed using laser range
data, and the second using a B/W camera pointed upward.
Space constraints prohibit us from describing in detail our
approach to concurrent mapping and localization (see [19]).

3.5 Planning

Finally, each robot employs two planners, a motion plan-
ner for moving from one exhibit to another, and a mission
planner for scheduling tours and battery changes (Minerva
only).

The motion planner is a modified version of dynamic
programming [2], an algorithm similar to the popular A*.
It recursively computes the distance to a goal location from
all other locations, as depicted by the grayly-shaded area in
Fig. 5 (white symbolizes the goal location). This distance
function has the advantage that motion commands can be
computed for arbitrary locations, not just the current one;
hence, if people step in the robot’s way, the robot does not
have to do further computing to recover from a detour. Ad-
ditionally, our approach employs an efficient re-planning al-
gorithm to adapt plans to the ever-changing map [2]. Min-
erva’s motion planner additionally includes a strategy for
staying close to obstacles, in order to minimize the danger
of getting lost (a so-called coastal planner [12]).

The Rhino system uses GOLOG/GOLEX [6] for mission
planning and execution, which essentially executes pre-
programmed plans (with some modifications). Minerva’s
planner is based on RPL [1]. Using a learned a model of ex-
pected travel times it composes tours dynamically, to meet
a target duration of 6 minutes per tour.

4 Minerva: Improved Human Robot
Interaction

An analysis of the Rhino project clearly yielded the impor-
tance of interaction with people. In contrast to many other
forms of human-robot interaction (e.g., gestures [8, 9]), the
type interaction in public places like museums is short-term
and spontaneous. Characteristic for the museum domain, as
for many other applications of robots in public places, is the
fact that people cannot be expected to “know” how to op-
erate a robot. They typically spend very little time with the
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Fig. 4: The novelty filter sorts laser measurements into two categories: (a)

obstacles and (b) people.

machine, they often approach robots in crowds, and there
are no limitations on people’s age and/or technical exper-
tise. To accommodate this diverse mode of interaction, both
robots are equipped with an interface that somewhat resem-
bles people. While both robots are equipped with two cam-
eras mounted on a 2 DOF pan/tilt unit and with a device for
replaying pre-recorded messages, Minerva possesses a mo-
torized face shown in Fig. 7a, which served as a focal point
for interaction with people. Through four motors that con-
trolled the mouth and the eyebrows, Minerva is able to ex-
hibit a range of facial expressions, from happy to angry [13].

4.1 “Emotional” States

Minerva uses a finite state automaton to communicate inten-
tions to people, where state emulated “emotions.” The FSA
is shown in Fig. 7b. It is extremely simple. The default
mode is “happy,” which is expressed through the appropri-
ate face configuration. When people block the robot’s path
while giving a tour, it goes through progressively less happy
moods, by changing its facial expression and replaying the
appropriate message. In the worst case, Minerva reaches the
state “angry” and yells at the people phrases like “get out of
my way.”. The emotional state is reset to “happy” when
the robot manages to move 10 centimeters or more. Dur-
ing the deployment of Minerva we found the people clearly
recognized Minerva’s “emotional” state, acknowledged and
respected it in most cases, and gave way to the robot.

Rhino, in contrast, does not possess a face to express
“emotional” states. Instead, it uses its horn indicate its de-
sire for space. Unfortunately, most people regard the horn
rather entertaining, and intentionally step into the robots
way. As a result, Rhino was significantly less successful
in negotiating crowds.

4.2 Learning To Attract People

Minerva uses learning to attract people. The data were ac-
quired in regularly scheduled phases in between tours last-
ing one minute each, during which the robot actively tried to
attract people. Instead of telling it how to do this, feedback-
driven learning was employed for determining the best strat-
egy. Minerva uses a memory-based reinforcement learn-
ing approach [17] (no delayed award). Reinforcement is
received in proportion of the proximity of people; com-
ing too close, however, leads to a penalty (violating Min-
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Fig. 8: Web interfaces: (a) Rhino, (b) Minerva.
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Fig. 5: (a) Path planning with dynamic programming (b) On-line mapping.

erva’s space). Minerva’s behavior is conditioned on the cur-
rent density of people. Possible actions included different
strategies for head motion (e.g., looking at the nearest per-
son), different facial expressions (e.g., happy, sad, angry),
and different speech acts (e.g., “Come over,” “do you like
robots?”).

During the two weeks, Minerva performed 201 attraction
interaction experiments, each of which lasted one minute.
Over time, Minerva developed a “positive” attitude (say-
ing friendly things, looking at people, smiling). As shown
in Fig. 9, acts best associated with a “positive” attitude
attracted people the most. For example, when group-
ing speech acts and facial expressions into two categories,
friendly and unfriendly, we found that the former type of in-
teraction performed significantly better than the first (with
95% confidence). However, people’s response was highly
stochastic and the amount of data we were able to collect
during the exhibition is insufficient to yield statistical sig-
nificance in most cases; hence, we are unable to comment
on the effectiveness of individual actions. More findings are
discussed in [13].

4.3 Web Interfaces

Finally, both robots possess Web interfaces discussed in de-
tail in [14]. Here, too, Minerva’s interface is a progres-
sion resulting from insights made with Rhino’s interface.
Rhino’s control interface is spread over three different pages
shown in Fig. 8a, one for watching the museum, one for
monitoring the robot only, and one for control. While the
former pages display the robot’s location in the map, along
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Fig. 6: Maps acquired in the NMAH: (a) Floor plan (b) Ceiling.

with camera images recorded by the robot and a station-
ary camera, the latter enabled people to send the robot to
13 pre-defined locations. More than 2,000 people around
the world controlled the robot successfully. At times, more
than a hundred requests were pending in Rhino’s queue.

Rhino’s interface design suffers from three limitations:
The involvement of more than page made it difficult to si-
multaneously control the robot and watch its operation; The
definition of pre-selected target locations limits the users’
choice; The interface does not allow for shared control be-
tween museum visitors and the Web.

Minerva’s interface is designed to overcome these prob-
lems. Minerva possesses a day-time interface (not shown
here) and one for exclusive control, shown in Fig. 8b. In
both interfaces users control the robot through a single page.
In the exclusive control interface users can select arbitrary
target locations, which are assigned on a first-come-first-
serve basis. Web users have to register with a name, and the
robot announces every request which is fulfilled. Anecdo-
tal evidence suggests [14] that this interface is significantly
more successful towards our goal of providing people on
the Web with a “robotic tele-presence;” however, bandwidth
limitations, latency, and the lack of video/audio transmis-
sion from the Web user to the robot still make it hard to
turn this concept into reality. Consequently, the issue of us-
ing robots and the Internet to realize tele-presence remains
largely an issue for future research.

5 Experimental Results and Comparison

Both robots successfully led thousands of people through
the respective museums, explaining exhibits and interacting
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with them along the way. As Tab. 1 suggests, both robots
on average traversed more than 3km per day, at a compa-
rable average speed. During opening hours, the maximum
speed was limited to 70 cm/sec, which is similar to people’s
walking speed in a museum. At several Internet-only nights,
Rhino’s maximum speed was 80cm/sec, whereas Minerva
moved at a speed of up to 163 cm/sec. The difference is ac-
counted by different hardware limitations. Rhino’s presence
caused an estimated 50% increase in number of visitors in
this—relatively small—museum. No similar estimates ex-
ist for Minerva, as the Smithsonian is a huge museum with
large, natural fluctuations.

Minerva’s environment was an order of magnitude larger
and more crowded than Rhino’s. The center area of the
NMAH was a large open area, which made localization
more difficult than in Rhino’s environment. This was ac-
commodated by improved navigation algorithms (e.g., by
using a camera pointed towards the ceiling and by coastal
navigation). Both robots navigated safely and reliably, of-
ten at their physical speed limit.

Minerva’s interactive strategy is more elaborate than
Rhino’s. Minerva’s looks (in particular its face) and be-
havior appealed stronger to people’s intuition than Rhino.
When comparing both robots, we found that people un-
derstood Minerva’s actions and intentions much better than
that of Rhino, and they were typically more satisfied. For
example, Minerva was highly successful in asking people
for space when giving tours—when its face turned to a sad
or angry expression, people typically cleared the way. We
found that both robots maintained about the same average
speed (Minerva: 38.8 cm/sec, Rhino: 36.6 cm/sec), despite
the fact that Minerva’s environment was an order of magni-
tude more crowded. These numbers illustrate the effective-
ness of Minerva’s interactive approach to making progress.

Minerva also possessed an improved Web interface,
which enabled Web users to specify arbitrary target loca-
tions instead of choosing locations from a small pool of
pre-specified locations. Rhino’s Web interface prescribed
a small set of 13 possible target locations, which corre-
sponded to designated target exhibits. When under exclu-
sive Web control, Minerva was more than twice as fast
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interaction patterns.

as Rhino (see Table 1). In everyday operation, however,
the maximum speed of both robots was limited to walking
speed (70 cm/sec).

6 Related Work

A rich body of related work is reviewed in [2] (over 160
references) and [18]. Probably the first mobile robotic tour-
guide was developed by Horswill [7], whose robot Polly
gave tours to visitors of MIT’s AI Lab. This robot was
mostly reactive, strictly relying on visual cues to find peo-
ple, locations, and obstacles. Tape on the floor was nec-
essary to limit the robot’s operational range. More re-
cently (a year after Rhino was deployed), Nourbakhsh and
colleagues developed a similar tour-guide named Sage or
Chips [10]. Sage/Chips was directly inspired by Rhino. It
differs from the robots described here in several aspects:
It does not plan; Therefore, it follows a pre-planned path
through the museum; It uses large multi-colored markers
in the museum for localization; Its interaction is limited to
acknowledging when people block its way and replaying
pre-recorded multi-media explanations that explain the var-
ious exhibits. On the positive side, Sage/Chips can plug
itself into a wall-mounted charger and hence operation en-
tirely without human intervention. Neither of these robots
(Polly and Sage/Chips) has a Web interface. However, prior
to Rhino, the robot Xavier [15] could be controlled through
the Web.

7 Discussion and Open Problems

This article surveyed the major components of two robotic
museum tour-guides, pointing out the progression from a
first generation to a second. Probabilistic navigation algo-
rithm, paired with algorithms for user interaction and learn-
ing, led to a highly robust system that has been proven
to withstand the challenges that arise in densely populated
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Fig. 10: Example of Rhino’s trajectory for a 4.8 hour sequence, during

which people corrupt more than 50% of the robot’s sensor readings.

public areas.
We believe that these robots are initial examples of a

much richer, highly profitable application domain for ser-
vice robots: entertainment and education. In contrast to a
large number of existing service robot applications (e.g.,
janitorial robots), such robots do not stand in direct com-
petition to human labor; instead, they add to the educational
experience of people, and entertain them. As our initial
experience suggests, the concept is highly viable for mu-
seums, which face an increasing struggle to attract people
and deliver their educational messages. We also believe that
similar robots can be deployed profitably in shopping malls,
entertainment parks, hotels, trade shows, and so on.

The work reported here suggests a rich agenda for future
research. While the issue of navigation is relatively well-
understood, the issue of spontaneous short-term interaction
remains largely open—despite the fact that interaction is a
key ingredient of any successful service application. The
integration of speech recognition and a natural language in-
terface seems highly attractive for further developing this
concept. Additionally, using the Internet to establish a truly
bi-directional interaction (e.g., by transmitting acoustic and
visual data in both directions) is an issue that warrants fu-
ture research.
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