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ABSTRACT

This paper examines how VI-based interconnects can be
used to improve I/O path performance between a database
server and the storage subsystem. We design and imple-
ment a software layer, DSA, that is layered between the
application and VI. DSA takes advantage of specific VI fea-
tures and deals with many of its shortcomings. We provide
and evaluate one kernel-level and two user—level implemen-
tations of DSA. These implementations trade transparency
and generality for performance at different degrees, and un-
like research prototypes are designed to be suitable for real—
world deployment. We present detailed measurements us-
ing a commercial database management system with both
micro-benchmarks and industrial database workloads on a
mid-size, 4 CPU, and a large, 32 CPU, database server.

Our results show that VI-based interconnects and user—
level communication can improve all aspects of the I/O path
between the database system and the storage back-end. We
also find that to make effective use of VIin I/O intensive en-
vironments we need to provide substantial additional func-
tionality than what is currently provided by VI. Finally,
new storage APIs that help minimize kernel involvement
in the I/O path are needed to fully exploit the benefits of
VI-based communication.

1 INTRODUCTION

User—level communication architectures have been the sub-
ject of recent interest because of their potential to reduce

communication related overheads. Because they allow di-
rect access to the network interface without going through
the operating system, they offer applications the ability to
use customized, user—level I/O protocols. Moreover, user—
level communication architectures allow data to be trans-
ferred between local and remote memory buffers without
operating system and processor intervention, by means of
DMA engines. These features have been used with suc-
cess in improving the performance and scalability of parallel
scientific applications. The Virtual Interface (VI) architec-
ture [10] is a well-known, industry—wide standard for system
area networks based on these principles that has spawned a
number of initiatives, such as the Direct Access File Systems
(DAFS) [11], that target other important domains.

In this paper, we study the feasibility of leveraging VI-
based communication to improve I/O performance and scal-
ability for storage—centric applications and in particular
database applications executing real-world online transac-
tion processing loads. An important issue in database sys-
tems is the overhead of processing 1/O operations. For real-
istic on-line transaction processing (OLTP) database loads,
I/O can account for a significant percentage of total execu-
tion time [26]. Achieving high transaction rates, however,
can only be realized by reducing I/O overheads on the host
CPU and providing more CPU cycles for transaction pro-
cessing. For this reason, storage architectures strive to re-
duce costs in the I/O path between the database system
and the disk subsystem.

In this work we are primarily interested in examining
the effect of user—level communication on block I/O perfor-
mance for database applications. We focus on improving
the I/O path from the database server to storage by using
VI-based interconnects. High—performance database sys-
tems typically use specialized storage area networks (SANs),
such as Fibre Channel (FC), for the same purpose. We pro-
pose an alternative storage architecture called VI-attached
Volume Vault (V3) that consists of a storage cluster which
communicate with one or more database servers using VI.
Each V3 storage node in our cluster is a commodity PC
consisting of a collection of low—cost disks, large memory, a
VI-enabled network interface, and one or more processors.
V3 is designed for real-world deployment in next genera-



tion database storage systems, and as such addresses issues
dealing with reliability, fault-tolerance, and scalability that
would not necessarily be considered in a research prototype.
V3 has also been deployed and tested in customer sites.

Because VI does not deal with a number of issues that are
important for storage applications, we design a new block-
level I/O module, DSA (Direct Storage Access), that is lay-
ered between the application and VI (Figure 1). DSA uses
a custom protocol to communicate with the actual storage
server, the details of which are beyond the scope of this
paper. DSA takes advantage of specific VI features and
addresses many of its shortcomings with respect to I/O-
intensive applications and in particular databases. DSA ex-
ploits RDMA capabilities and incurs low overheads for ini-
tiating I/O operations and accessing the network interface.
More importantly, DSA deals with issues not addressed by
VI. For example, VI does not provide flow control, is not
suited for applications with large numbers of communica-
tion buffers or large numbers of asynchronous events, and
most existing VI implementations do not provide strong re-
liability guarantees. In addition, although certain VI fea-
tures such as RDMA can benefit even kernel-level, legacy
APIs, the current VI specification is not well-suited for this
purpose.

We evaluate three different implementations of DSA, one
kernel-level implementation and two user-level that trade
transparency and generality for performance at different de-
grees. We present detailed measurements using a commer-
cial database management system, Microsoft SQL Server
2000, with both micro-benchmarks and industrial database
workloads (TPC-C') on a mid-size (4 CPU) and a large (32
CPU) database server with up to 12 TB of disk storage.

Our results show that:

1. Effective use of VI in I/O intensive environments re-
quires substantial modifications and enhancements to
flow control, reconnection, interrupt handling, memory
registration, and lock synchronization.

2. VI-based interconnects and user—level communication
can improve all aspects of the I/O path between the
database system and the storage back-end and result
in transaction rate improvements of up to 18% for large
database configurations.

3. New storage APIs that help minimize kernel involve-
ment in the I/O path are needed to fully exploit the
benefits of VI-based communication.

The rest of the paper is organized as follows. Section 2
presents the V3 architecture and the various DSA imple-
mentations. Section 3 presents our performance optimiza-
tions for DSA. Section 4 presents our experimental plat-
forms and Sections 5 and 6 discuss our results. Finally, we
present related work in Section 7 and draw our conclusions
in Section 8.

2 SYSTEM ARCHITECTURE

To study feasibility and design issues in using user—level
communication for database storage, we define a new stor-

age architecture that allows us to attach a storage back-end
to database systems through a VI interconnect. This sec-
tion provides a brief overview of the VI-attached Volume
Vault (V3) architecture and then focuses on DSA and its
implementations.
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Figure 1: V3 Architecture overview.
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2.1 V3 Architecture

Figure 1 shows the overall V3 architecture. A V3 system
consists of database servers (V3 clients) and storage nodes
(V3 servers). Client configurations can vary from small-
scale uniprocessor and SMP systems to large-scale mul-
tiprocessor servers. Clients connect to V3 storage nodes
through the VI interconnect.

Each V3 server provides a virtualized view of a disk (V3
volume). To support industrial workloads and to avoid sin-
gle points of failure, each V3 server node has redundant
components (power supplies, system disks, network inter-
faces, etc.). Each V3 volume consists of one or more phys-
ical disks attached to V3 storage nodes. V3 volumes can
span multiple V3 nodes using combinations of RAID, such
as concatenation and other disk organizations. With cur-
rent disk technologies, a single V3 volume can provide more
than 2 TB of storage. Since existing VI networks support a
large number of nodes (up to 128), a multi-node V3 back-
end can provide more than 250 TB of storage. V3 uses
large main memories as disk buffer caches to help reduce
disk latencies [31].

While the V3 back-end can provide storage to any appli-
cation, it is designed specifically with database applications
in mind. A V3 server is structured differently from a typical
disk subsystem. It is controlled by custom software (Fig-
ure 1) that includes several modules: a request manager,
a cache manager, a volume manager, and a disk manager.
The server employs a lightweight pipeline structure for the
I/0 path that avoids synchronization overheads and allows
large numbers of 1/O requests to be serviced concurrently.
The V3 server code runs at user level and communicates
with clients with user—level, VI primitives. Because the fo-
cus of this work is on the feasibility of using VI for database



storage, we do not elaborate further on V3’s internal struc-
ture, although we refer to its properties when appropriate.

2.2 DSA Implementations

Direct Storage Access (DSA) is a client-side, block-level I/O
module specification that is layered between the application
and VI. DSA deals with issues not supported in VI but are
necessary for supporting storage 1/0O intensive applications
and takes advantage of VI-specific features.

The new features provided by DSA include flow con-
trol, retransmission and reconnection that are critical for
industrial-strength systems, and performance optimizations
for alleviating high-cost operations in VI. DSA’s flow con-
trol mechanism allows for large numbers of outstanding re-
quests and manages client and server buffers appropriately
to avoid overflow errors. DSA includes optimizations for
memory registration and deregistration, interrupt handling,
and lock synchronization issues to minimize their perfor-
mance impact. These issues are discussed in greater detail
in Section 3.

DSA takes advantage of a number of VI features. It
uses direct access to remote memory (RDMA) to reduce
overheads in transferring both data and control informa-
tion. I/O blocks are transferred between the server cache
and application (database) buffers without copying. Issuing
I/0 operations can be done with a few instructions directly
from the application without kernel involvement. Moreover,
1/0 request completion can happen directly from the V3
server with RDMA. Finally, DSA takes advantage of the low
packet processing overhead in the NIC and allows for large
numbers of overlapping requests to maximize I/O through-
put even at small block sizes.

We discuss one kernel and two user—level implementa-
tions of DSA. Our kernel-level implementation is necessary
to support storage applications on top of VI-based intercon-
nects by using existing operating system APIs. Our user—
level implementations allow storage applications to take ad-
vantage of user—level communication. Figure 2 shows the
I/0 path for each DSA implementation. The I/O path in-
cludes three basic steps: (i) register memory, (ii) post read
or write request, and (iii) transfer data. Next, we briefly
discuss each implementation.

Kernel-level Implementation: To leverage the bene-
fits of VI in kernel-level storage APIs we provide a kernel—
level implementation of DSA (kDSA). kDSA is implemented
on top of a preliminary kernel-level version of the VI speci-
fication [10] provided by Giganet [17]. The API exported by
kDSA is the standard I/O interface defined by Windows for
kernel storage drivers. Thus, our kernel-level implementa-
tion for DSA can support any existing user—level or kernel—
level application without any modification. kDSA is built
as a thin monolithic driver to reduce the overhead of go-
ing through multiple layers of software. Alternative imple-
mentations, where performance is not the primary concern,
can layer existing kernel modules, such as SCSI miniport
drivers, on top of kDSA to take advantage of VI-based in-
terconnects. In our work, we optimize the kernel VI layer

for use with DSA. Our experience indicates that a num-
ber of issues, especially event completions are different from
user—level implementations. In particular, we find that al-
though kernel-level VI implementations can provide opti-
mized paths for I/O completions, the user-level specifica-
tion of the VI API [10] does not facilitate this approach.

User—level Implementations: To take advantage of the
potential provided by user—level communication we also pro-
vide two implementations of DSA at user level. These im-
plementations differ mainly in the API they export to ap-
plications.

wDSA is a user—level implementation of DSA that pro-
vides the Win32 API and replaces the Windows standard
system library, kernel32.d11. wDSA filters and handles all
I/0 calls to V3 storage and forwards other calls to the native
kernel32.d11 library. wDSA supports the standard Win-
dows I/O interface and therefore can work with applications
that adhere to this standard API without modifications.

wDSA communicates with the V3 server at user—level and
it eliminates kernel involvement for issuing 1/O requests.
Requests are directly initiated from application threads with
standard I/0O calls. wDSA still requires kernel involvement
for I/O completion due to the semantics of kernel32.d11
I/O calls. Since wDSA is unaware of application I/O se-
mantics, it must trigger an application—specific event or
schedule an application—specific callback function to notify
the application thread for completions of I/O requests. In-
terrupts are used to receive notifications from VI for V3
server responses. Upon receiving an interrupt, wDSA com-
pletes the corresponding I/O request and notifies the ap-
plication. Support for these mechanisms may involve extra
system calls, eliminating many of the benefits of initiating
I/0 operations directly from user-level. Moreover, we find
that implementing kernel32.d11l semantics is non—trivial
and makes wDSA prone to portability issues across differ-
ent versions of Windows.

¢DSA is a user-level implementation of DSA that pro-
vides a new I/O API to applications to exploit the benefits
of VI-based communication. The new API consists pri-
marily of 15 calls to handle synchronous or asynchronous
read/write operations, I/O completions, and scatter/gather
I/Os. Similarly to any customized approach, this imple-
mentation trades off transparency for performance. The
new ¢DSA API avoids the overhead of satisfying the stan-
dard Win32 1/O semantics and hence is able to minimize
the amount of kernel involvement, context switches, and in-
terrupts. However, this approach requires cognizance of the
database application’s I/O semantics, and, in some cases,
modification of the application to adhere to this new API.

The main feature of ¢DSA relevant to this work is an
application—controlled 1/O completion mode. Using the
c¢DSA interface, applications choose either polling or inter-
rupts as the completion mode for I/O requests. In polling
mode, an I/O completion does not trigger any event or
callback function, and the application explicitly polls the
I/0 request completion flag. ¢DSA updates the flag using
RDMA directly from the storage node. By doing this, it
can effectively reduce the number of system calls, context
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Figure 2: The I/O path in each of our three DSA implementations.

switches, and interrupts associated with I/O completions.
An application can switch from polling to interrupt mode
before going to sleep, causing 1/O completions to be handled
similarly to wDSA.

To evaluate ¢DSA we use a slightly modified version of
Microsoft SQL Server 2000. This version of SQL Server
2000 replaces the Win32 API with the new API provided by
c¢DSA. Since the completion flags in the ¢cDSA API are also
part of the Win32 API, the modifications to SQL Server
2000 are minor. We note that ¢DSA also supports more
advanced features, such as caching and prefetching hints
for the storage server. These features are not used in our
experiments and are beyond the scope of this paper.

3 SYSTEM OPTIMIZATIONS

In general, our experience shows that VI can be instru-
mental in reducing overheads in the I/O path. However,
we have also encountered a number of challenging issues in
using VI-based interconnects for database storage systems
including memory registration and deregistration overhead,
interrupt handling, and lock synchronization. To deal with
these issues, we explore various optimizations for DSA and
quantify their impact on performance in Section 6. Because
wDSA must precisely implement the semantics defined by
the Win32 API, opportunities for optimizations are severely
limited and not all optimizations are possible. For this rea-
son, we focus mostly on optimizations for kDSA and ¢DSA.

3.1 VI Registration and Deregistration

Memory registration and deregistration are expensive op-
erations that impact performance dramatically when per-
formed dynamically. I/O buffers in VI need to remain
pinned until a transfer finishes. Current VI-enabled NICs
have a limitation on how much memory they can register.
For instance, the Giganet cLan card [17] we use allows 1
GB of outstanding registered buffers and takes about 10us
to register and deregister an 8K buffer. When the num-
ber of registered buffers exceeds this limit, the application
needs to deregister memory and free resources on the NIC.
The simple solution of pre-registering all I/O buffers at ap-

plication startup cannot be applied in database systems,
since they use large caches and require large numbers of
I/O buffers. Given that we need to dynamically manage
registered memory, previous work for user—level communi-
cation [8, 4] has shown how the NIC can collaborate with
host—level software (either kernel or user—level) to manage
large amounts of host memory. These solutions have been
evaluated in cases where the working set of registered mem-
ory is small. However, database systems use practically all
available I/O cache for issuing I/O operations so the ex-
pected hit ratio on the NIC translation table would be low.
Moreover, in SQL Server 2000 virtual to physical mappings
can be changed by the application, providing no simple way
to invalidate cached registrations without access to source
code or interception of system calls.

In our work, we first optimize the existing VI code and
we eliminate pinning and unpinning from the registration
and deregistration paths. In kDSA the Windows I/O Man-
ager performs these operations and passes pinned buffers to
kDSA. In ¢DSA we use the Address Windowing Extensions
(AWE) [22] to allocate the database server cache on physi-
cal memory. AWE is a feature of Windows for IA32 (x86)
systems with large amounts of physical memory. The AWE
extensions provide a simple API that applications can use
to allocate physical memory and map it to their virtual ad-
dress space. Applications can then access large amounts of
physical memory by manually mapping the regions of inter-
est to virtual addresses with low-overhead calls. Application
memory allocated as AWE memory is always pinned.

Finally, we use a new optimization, called batched deregis-
tration to reduce the average cost of deregistering memory.
VI-enabled NICs usually register consecutive I/O buffers in
successive locations in a NIC table. DSA uses extensions
to the VI layer (kernel or user-level) to divide this NIC ta-
ble into small regions of one thousand consecutive entries
(4 MB worth of host memory). Instead of deregistering
each I/0 buffer when the I/O completes, we postpone buffer
deregistration for a short period of time and deregister full
regions with one operation when all buffers in the region
have been completed. Thus, we perform one deregistration
every one thousand 1/O operations, practically eliminating
the overhead of deregistration when 1/0 buffers are short—
lived. Note that if a single buffer in a region is not used



then the whole region will not be deregistered, consuming
resources on the NIC. Finally, registration of I/O buffers
cannot be avoided, unless we delay issuing the related I/O
operation. For this reason, we register 1/O buffers dynami-
cally on every I/0.

3.2 Interrupts

Interrupts are used to notify the database host when an
asynchronous I/O request completes. To improve per-
formance, database systems issue large numbers of asyn-
chronous I/0O requests. In V3, when the database server
receives a response from a V3 storage node, the DSA layer
needs to notify the database application with a completion
event. DSA uses interrupts to receive notifications for I/0O
responses from the NIC. As in most operating systems, in-
terrupt cost is high on Windows, in the order of 5-10us on
our platforms. When there is a large number of outstand-
ing I/Os, the total interrupt cost can be prohibitively high,
in excess of 20-30% of the total I/O overhead on the host
CPU. In this work, we use interrupt batching to reduce this
cost as described next.

kDSA uses a novel scheme to batch interrupts. It ob-
serves the number of outstanding I/O requests in the I/O
path and if this number exceeds a specified threshold it dis-
ables explicit interrupts for server responses. Thus, instead
of using interrupts, kDSA checks synchronously for com-
pleted I/Os during issuing new I/O operations. Interrupts
are re—enabled if the number of outstanding requests falls
below a minimum threshold; this strategy avoids unneces-
sarily delaying the completion of I/O requests when there
is a small number of outstanding 1/Os. This method works
extremely well in benchmarks where there is a large num-
ber of outstanding I/O operations, as is the case with most
large—scale database workloads.

cDSA takes advantage of features in its API to reduce
the number of interrupts required to complete I/O requests.
Upon I/0O completion, the storage server sets via RDMA a
completion flag associated with each outstanding I/O op-
eration. The database server polls these flags for a fixed
interval. If the flag is not set within the polling interval,
c¢DSA switches to waiting for an interrupt upon I/O com-
pletion and signals the database appropriately. Under heavy
database workloads this scheme almost eliminate the num-
ber of interrupts for I/O completions.

3.3 Lock Synchronization

Using run—time profiling we find that a significant percent-
age of the database CPU is spent on lock synchronization
in the I/O path. To reduce lock synchronization time we
optimize the I/O request path to reduce the number of
lock/unlock operations, henceforth called synchronization
pairs. In kDSA we perform a single synchronization pair in
the send path and a single synchronization pair in the re-
ceive path. However, besides kDSA, the Windows 1/O Man-
ager uses at least two more synchronization pairs in both
the send and receive paths and VI uses two more, one for
registration/deregistration and one for queuing/dequeuing.

Thus, there is a total of about 810 synchronization pairs
involved in the path of processing a single I/O request.
c¢DSA has a clear advantage with respect to locking, since
it has control over the full path between the database server
and the actual storage. The only synchronization pairs that
are not in our control are the four in the VI layer. In ¢DSA
we also lay out data structures carefully to minimize pro-
cessor cache misses. Although it is possible to reduce the
number of synchronization pairs in VI by replacing multiple
fine—grain locks with fewer, coarser—grain locks, preliminary
measurements show, that the benefits are not significant.
The main reason is that VI synchronization pairs are pri-
vate to a single VI connection. Since DSA uses multiple
VI connections to connect to V3 storage nodes, in realistic
experiments this minimizes the induced contention.

4 EXPERIMENTAL PLATFORM

To cover a representative mix of configurations we use two
types of platforms in our evaluation: a mid-size, 4—way and
an aggressive, 32-way Intel-based SMP as our database
servers. Tables 1 and 2 summarize the hardware and soft-
ware configurations for the two platforms. The database
system we use is Microsoft SQL Server 2000. Our mid-
size database server configuration uses a system with four
700MHz Pentium II Xeon processors. Our large database
server configuration uses an aggressive, 32—way SMP server
with 800MHz Pentium II Xeon processors. The server is
organized in eight nodes, each with four processors and 32
MB of third-level cache (total of 256 MB). The server has a
total of 32 GB of memory organized in four memory mod-
ules. The four memory modules are organized in a uniform
memory access architecture. Every pair of nodes and all
memory modules are connected with a crossbar intercon-
nect with a total of four crossbar interconnects for the four
pairs of nodes.

| Component | Mid-size | Large |
CPU 4 x 700 MHz PII | 32 x 800 MHz PII
Cache/CPU
L1 (I/D) 8KB/8KB 8KB/8KB
L2 (Unified) 1MB 2MB
L3 (Unified) N/A 32MB/Node
Memory 4 GB 32 GB
# PCI slots 2 96
(66 MHz, 64bit)
NICs 4 cLan 8 cLan
# Local Disks 176 640
Windows Version 2000 AS XP
DBase Server | SQL Server 2000 SQL Server 2000
Database Size 1TB 10 TB
# Warehouses 1,625 10,000

Table 1: Database host configuration summary for the mid—
size and large database setups.

Each V3 storage server in our experimental setup con-
tains two, 700 MHz Pentium II Xeon processors and 2-3
GB of memory. Each database server connects to a num-



Component | Mid-size | Large |
# V3 Nodes 4 8
CPU 2 x 700 MHz PII 2 x 700 MHz PII

Cache/CPU

L1 (I/D) 8KB/8KB 8KB/8KB
L2 (Unified) 1MB 1MB
Memory/Node 2GB 3GB
V3 Cache/Node 1.6GB 2.4GB
Disk Type SCSI, 18GB FC, 18GB
10K RPM 15K RPM
Disk Controller UltraSCSI 320 Mylex eXtreme
RAID 3000 [23]
Total # Disks 60 640
Total Disk Space 1TB 11.5 TB
Windows Version | 2000 Workstation | 2000 Workstation

Table 2: V3 server configuration summary for the mid—size
and large database setups.

ber of V3 nodes as specified in each experiment. In all our
experiments, the same disks are either connected directly
to the database server (in the local case), or to V3 storage
nodes. Both the mid-size and the large configurations use
a Giganet network [17] with one or more network interface
cards (NICs) that plug in PCI-bus slots. The user—level
communication system we use is an implementation of the
VI Specification [13] provided by Giganet [17]. For commu-
nicating in the kernel, we use a kernel level implementation
of a subset of the VI specification that was initially pro-
vided by Giganet and which we optimize for our system. In
our setups, the maximum end-to-end user-level bandwidth
of Giganet is about 110 MB/s and the one-way latency for
a 64-bytes message is about 7 us.

5 MICRO-BENCHMARK RESULTS

We use various workloads to investigate the base perfor-
mance of V3 and the different DSA implementations. We
first examine the overhead introduced by DSA compared to
raw VI. Then we examine the performance of V3-based I/O
when data is cached and finally we compare the performance
of V3 against a configuration with local disks.

In our experiments, the V3 configuration uses two nodes,
a single application client that runs our micro-benchmark
and a single storage node that presents a virtual disk to
the application client. The disk appears to the client as
a local disk. The local case uses a locally-attached disk,
without any V3 software. We use kDSA as representative
of the DSA implementations, and comment on the others
where appropriate. All configurations use the same server
implementation.

We mainly present three types of statistics for various
I/O request sizes: response times, throughput, and exe-
cution time breakdowns. The I/O request size is usually
fixed in a given database configuration but may vary across
database configurations. We use request sizes between 512
and 128K bytes, which cover all realistic I/O request sizes
in databases. For these measurements, the cache block size

is always set to 8 KB.

5.1 DSA Overhead

We first examine the overhead introduced by DSA com-
pared to the raw VI layer (Figure 3). The raw VI latency
test includes several steps: (1) the client registers a receive
buffer; (2) the client sends a 64 bytes request to the server;
(3) the server receives the request; (4) the server sends the
data of requested sizes from a preregistered send buffer to
the client using RDMA; (5) the client receives an interrupt
on the VI completion queue; (6) the client deregisters the
receive buffer, and repeats. All these steps are necessary
to use VI in the I/O path for database storage. In this
experiment, we always use polling for incoming messages
on the server and interrupts on the client. The reason is
that, in general, polling at this level will occupy too much
CPU time on the client (the database server) and can only
be used in collaboration with the application. Therefore,
besides the typical message packaging overhead and wire
latency, the VI numbers shown in Figure 3 also include reg-
istration/deregistration cost (5-10 microseconds each) and
interrupt cost on the client (5-10 microseconds).
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Latency of raw VI and DSA for various request

The V3 latency tests are measured by reading a data
block from the storage server using each of the three DSA
implementations. We see that V3 adds about 15-50 us over-
head on top of VI. This additional overhead varies among
the different client implementations. ¢DSA has the least
overhead, up to 15% better than kDSA, and up to 30% than
wDSA because it incurs no kernel overhead in the I/O path.
wDSA has up to 20% higher latency than kDSA. Since there
is only one outstanding request in the latency test, optimiza-
tions like batching of deregistrations and interrupts are not
helpful here.

To better understand the effect of using VI-based inter-
connects on database performance, we next examine the
source of overhead in the different implementations. Fig-
ure 4 provides a breakdown of the DSA overhead as mea-
sured on the client side. This is the round—trip delay (re-
sponse time) for a single, uncontended read I/O request as
measured in the application. We instrument our code to
provide a breakdown of the round—trip delay to the follow-
ing components:



0 V3 Storage Server M Node-to-Node Latency B CPU Overhead
0.2

0.16

0.12
0.08 4
‘En
0 T T T T T T

kDSA wDSA cDSA kDSA WwDSA cDSA

10 Size=2KB 10 Size=8KB

Time(milliseconds)

Figure 4: Response time breakdown for a read I/O request.

e (CPU overhead is the overhead spent by the CPU to ini-
tiate and complete I/O operations. This overhead is
incurred in full on the host CPU and is one of the most
important factors in determining overall database sys-
tem performance. Since database servers tend to issue
a large number of I/O operations, high CPU overheads
reduce the number of cycles available to handle client
requests and degrade overall performance.

e Node-to—node latency includes the processing overhead
at the NIC, the data transfers from memory over the
PCI bus to the NIC at the sender the transfer over the
network link, and the transfer from the NIC to memory
at the receiver.

e V3 server overhead includes all processing related to
caching, disk I/O, and communication overhead on the
V3 server.

For smaller I/0 sizes (2 KB), the cost of I/O processing
on the storage server is about 20% of the total cost. For
larger I/0O sizes, e.g. 8 KB, where communication latency
becomes more pronounced, storage server overheads as a
percentage of the total cost decreases to about 9%. c¢DSA
has the lowest CPU overhead among the three, with wDSA
incurring nearly three times more overhead than ¢DSA. The
primary reason is that ¢DSA does not have the require-
ment of satisfying the standard Windows I/O semantics and
hence is able to minimize the amount of kernel involvement,
context switches, and interrupts.

5.2 V3 Cached-block Performance

Next we examine the overhead of V3-based I/O with
caching turned on. Since the local case does not have as
much cache as a V3 system, we only present numbers for
the V3 setup. Furthermore, since in database systems writes
have to commit to disk we only examine cached read I/O
performance.

Figure 5 shows the average response time for reading an
8 KB block from the V3 cache. When the number of out-
standing requests is less than four the average response time
increases slowly. Above this threshold, the average response
time increases linearly and is a function of network queuing.

Aver age Response Time(ms)

Number of Outstanding 1/0s

Figure 5: V3 read response time for cached blocks (8 KB
requests).
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Figure 6: V3 read throughput for cached blocks.

Figure 6 shows the V3 read throughput for different num-
bers of outstanding requests. With one outstanding request,
the throughput reaches a maximum of about 90 MB/s with
128 KB requests. However, with more outstanding requests,
the peak VI throughput of about 110 MB/s is reached at
smaller request sizes. With four outstanding read requests,
the VI interconnect is saturated even with 8 KB requests.

5.3 V3 vs. Local Case

Finally, we compare the performance of a V3-based I/O
subsystem to the local case. For these experiments the V3
server cache size is set to zero and all V3 I/O requests are
serviced from disks in the V3 server. In each workload all
I/0 operations are random.

Figure 7 shows that the V3 setup has similar random
read response time as the local case when the read size is
less than 64 KB. The extra overhead introduced by V3 is
less than 3%. For larger I/O request sizes, however, V3
introduces higher overheads, which are proportional to the
request size. For example, V3 has around 10% overhead
for 128 KB reads because of increased data transfer time.
In addition, the packet size in the cLan VI implementation
is 64K — 64 bytes. Therefore, to transfer 128 KB requires
breaking the data to three VI RDMAs. Write response time
behaves similarly, For request sizes up to 32 KB, V3 has
response times similar to the local case. For larger request
sizes, V3 is up to 10% slower due to network transfer time.
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Figure 7: V3 and local read and write response time (one
outstanding request).
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Figure 8: V3 and local read and write throughput (two
outstanding requests).

Figure 8 presents throughput results for 100% read and
write workloads with two outstanding 1/O operations. As
mentioned above, with one outstanding request V3 adds
3-10% overhead compared to the local case. However,
when the number of outstanding I/O requests increases, the
throughput difference between a V3 volume and a local disk
decreases due to pipelining (Figure 8). V3 can achieve the
same read throughput as a local disk with two outstand-
ing requests and the same write throughput with eight out-
standing requests. Since databases always generate more
than one outstanding requests to tolerate I/O latency, V3
can provide the same throughput as local disks even with a
0% cache hit ratio for realistic database loads.

6 OLTP RESULTS

Differences in simple latency and throughput tests cannot
directly be translated to differences in database transac-
tion rates since most commercial databases are designed
to issue multiple concurrent I/Os and to tolerate high I/O
response times and low—throughput disks. To investigate
the impact of VI-attached storage on realistic applications
we use TPC-C, a well known on-line transaction process-
ing (OLTP) benchmark [28]. TPC-C simulates a complete
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Figure 9: Effect of optimizations on tpmC for the large
configuration. Results are normalized to the unoptimized
case.

computing environment where a population of users exe-
cutes transactions against a database. The benchmark is
centered around the principal activities of an order—entry
environment. TPC-C involves a mix of concurrent trans-
actions of different types and complexity, either executed
on-line or queued for deferred execution. The 1/O requests
generated by TPC-C are random and they have a 70%
read—30% write distribution. The performance of TPC-C
is measured in transactions per minute (tpmC). Due to re-
strictions imposed by the TPC council, we present relative
tpmC numbers, normalized to the local case.

6.1 Large Database Configuration

To evaluate the impact of our approach on absolute per-
formance and scalability of databases, we run TPC-C on
an aggressive, state-of-the-art 32—processor database server.
To keep up with CPU capacity we also use large database
sizes and numbers of disks as shown in Table 2. The
database working set size is around 1 TB, much larger than
the aggregate cache size (about 52 GB) of the database
server and the V3 storage server. In our experiments, there
are 8 Giganet cLan NICs on the server, each connected to a
single V3 storage node. Each V3 storage node has 80 physi-
cal disks locally attached, for a total of 640 disks (11.2 TB).

We first consider the impact of various optimizations on
the TPC-C transaction rates for the large configuration for
kDSA and ¢DSA. Figure 9 shows that these optimizations
result in significant improvements on performance. Batched
deregistration increases the transaction rate by about 15%
for kDSA and 10% for ¢cDSA. These benefits are mainly due
to the fact that deregistration requires locking pages, which
becomes more expensive at larger processor counts. Batch-
ing interrupts improves system performance by about 7%
for kDSA and 14% for ¢DSA. The improvement for ¢DSA
is larger because SQL Server 2000 mostly uses polling for
I/O completions under ¢DSA. Finally, reducing lock syn-
chronization shows an improvement of about 12% for kDSA
and about 24% for ¢DSA. Reducing lock synchronization
has the largest performance impact in ¢DSA because ¢cDSA
can optimize the full I/O path from the database to the
communication layer.

We next consider absolute database performance. Fig-
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large configuration.
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Figure 11: CPU utilization breakdown for TPC-C for the
large configuration.

ure 10 shows the normalized TPC-C transaction rate for
V3 and a Fibre Channel (FC) storage system; the results
for V3 reflect optimizations in the kDSA and ¢DSA imple-
mentations. The FC device driver used in the local case is
a highly optimized version provided by the disk controller
vendor. We find that kDSA has competitive performance
to the local case. ¢DSA performs 18% better than the local
case. wDSA performs the worst, with a 22% lower transac-
tion rate than kDSA. Figure 11 shows the execution time
breakdown on the database host for the three client imple-
mentations. We do not present the exact breakdown for the
local case because it was measured by the hardware vendor
and we are limited in the information we can divulge by li-
censing agreements. However, kDSA is representative of the
local case. CPU utilization is divided into six categories: (1)
SQL Server 2000, (2) OS kernel processing, (3) locking over-
head, (4) DSA, (5) VI overhead (library and drivers), and
(6) other overhead including time spent inside the socket
library and other standard system libraries. The lock time
is a component of either kDSA and the OS kernel, wDSA, or
¢DSA that we single out and present separately, due to its
importance. Lock synchronization and kernel times include
overheads introduced by SQL Server 2000, such as context
switching, that are not necessarily related to I/O activity.
First, we see that ¢DSA spends the least amount of time in
the OS and lock synchronization. This leaves more cycles
for transaction processing and leads to higher tpmC rates.
We also note that kDSA spends the least amount of time in
the DSA layer, since most 1/O functionality is handled by
the OS kernel. wDSA spends the highest time in the kernel
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Figure 12: Effect of optimizations on tpmC for the mid-size
configuration.

and the DSA layer due to the complex kernel32.d11 seman-
tics. Finally, VI overhead remains relative constant across
all implementations. Second, we notice that the portion of
the CPU time not devoted to transaction processing is high
even in ¢cDSA. For kDSA and wDSA, the time spent execut-
ing database instructions is below 40%, whereas in ¢DSA
this percentage increases to about 50%. This difference is
the primary reason for the higher transaction rates in ¢cDSA.
In this configuration, locking and kernel overheads account
for about 30% of the CPU time. About 15% is in the DSA
layer (excluding locking) and about 5% is unaccounted. Our
results indicate that the largest part of the 30% is due to
non-I/0 related activity caused by SQL Server 2000. We
believe further improvements would require restructuring of
SQL Server 2000 and Windows XP code.

6.2 Mid-size Database Configuration

In contrast to the large configuration which aims at absolute
performance, the mid-size configuration is representative of
systems that aim to reduce the cost—performance ratio.

We first consider the impact of each optimization on
tpmC rates. Figure 12 shows that batched deregistration
results in a 10% improvement in kDSA and 7% in c¢DSA.
Batching interrupts increases the transaction rate by an ad-
ditional 2% in kDSA and 8% in ¢DSA. The reason for the
small effect of batching interrupts, especially in kDSA is
that under heavy I/O loads, many replies from the storage
nodes tend to arrive at the same time. These replies can be
handled with a single interrupt, resulting in implicit inter-
rupt batching. Finally, as in our large configuration, lock
synchronization shows the highest additional improvement,
about 7% in kDSA and 10% in cDSA.

Next, we look at how V3 performs compared to local SCSI
disks. Figure 13 shows the tpmC rates for the local and
different V3 configurations. We see that kDSA, ¢cDSA, and
the local case are comparable in the total tpmC achieved.
kDSA is about 2% worse than the local case and ¢DSA is
about 3% better than the local case. Finally, wDSA is 10%
slower compared to the local case.

Note that the different DSA implementations are com-
petitive with the local case, but use only one third of the
total number of disks (60 as opposed to 176), with the ad-
dition of 8GB of memory (6.4GB used for caching) on the
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Figure 14: CPU utilization breakdown for TPC-C for the
mid-size configuration.

V3 server. Although it is not straight forward to calculate
system prices, preliminary calculations of cost components
show that the V3 based system has a lower price leading
to a better $/tpmC ratio. The reduction in the total num-
ber of disks is possible due to the following reasons: VI-
based communication reduces host CPU overhead. VI has
very low latency and requires no memory copying. This
allows more I/O operations to be issued by the database
server. Also, VI'’s low latency magnifies the effect of V3
server caching, which has 40-45% hit ratio for reads in this
experiment. With 1,625 warehouses, the database working
set size is 100 GB, greater than the aggregate cache size on
the V3 server.

Figure 14 shows the execution time breakdown for the
different implementations. The breakdowns are similar to
the large configuration. However, we note that the kernel
and lock overheads for kDSA and wDSA are much less pro-
nounced on the mid-size than the large size configuration,
and the maximum CPU utilization (in ¢DSA) is about 60%,
compared to 50% in the large configuration.

6.3 Summary

We find that VI-attached storage incurs very low overheads,
especially for requests smaller than 64 KB. In comparing
the three different approaches of using VI to connect to
database storage, we see that ¢DSA has the best perfor-
mance because it incurs the least kernel and lock synchro-

nization overhead. The differences among our client im-
plementations become more apparent under large config-
urations due to increased kernel and synchronization con-
tention. However, our CPU utilization breakdowns indi-
cate that the I/O subsystem overhead is still high even with
¢DSA. Reducing this overhead requires effort at almost ev-
ery software layer including the database server, the com-
munication layer, and the operating system.

7 RELATED WORK

Our work bears similarity with research in the areas of (i)
user—level communication, (i) using VI in databases, and
(iii) storage protocols and storage area networks.

User—level communication: Our work draws heavily
on previous research on system area networks and user—
level communication systems. Previous work has examined
issues related to communication processing in parallel appli-
cations and the use of commodity interconnects to provide
low-latency and high-bandwidth communication at low—
cost. Besides VI, specific examples of user—level communi-
cation systems include Active Messages [9], BDM [19], Fast
Messages [25], PM [27], U-Net [3], and VMMC [12]. Pre-
vious work in user—level communication has also addressed
the issue of dynamic memory registration and deregistra-
tion [8, 4]. These solutions target applications with small
working sets for registered memory and require modifica-
tions either in the NIC firmware or the OS kernel.

Using VI for databases: VI-based interconnects have
been used previously by database systems for purposes other
than improving storage I/O performance. Traditionally,
clients in a LAN connect to database servers through IP—
based networks. Using VI-based communication between
the server and the clients reduces CPU cycles needed to
handle client requests by reducing TCP/IP stack process-
ing on the server, which can improve application transaction
rates by up to 15% [24, 5, 16]. VI-based networks have also
been used to enable parallel database execution on top of
clusters of commodity workstations, e.g. in [5, 24], as op-
posed to tightly integrated database servers.

Storage protocols and storage area networks: The
Direct Access File System (DAFS) [11] collaborative defines
a file access and management protocol designed for local
file sharing on clustered environments connected using VI-
based interconnects. Similar to our work, DAFS provides
a custom protocol between clients and servers in a storage
system over VI. An important difference between DAFS and
the communication protocol used in DSA is that DAF'S op-
erates at the file system level, while our focus has been on
block level I/0.

Traditionally storage area networks are mostly imple-
mented with SCSI or FC interconnects. Recent efforts in
the area have concentrated on optimizing these networks for
database applications. For instance, SCSI controllers and
drivers are optimized to reduce the number of interrupts on



the receive path, and to impose very little overhead on the
send path [23]. This requires offloading storage related pro-
cessing to customized hardware on the storage controller.
However, this approach still requires going through the ker-
nel and incurs relatively high CPU overheads. One can
view the use of VI-based interconnects as an alternative
approach to providing scalable, cost—effective storage area
networks. Recent, industry—sponsored efforts try to unify
storage area networks with traditional, IP-based LANs. Ex-
amples include SCSI over IP (iSCSI), FC over IP (FC/IP),
or VI over IP (VI/IP). Since most of these protocols are
in the prototyping stage, their performance characteristics
have not yet been studied.

Our work is directly applicable to systems that attempt
to use Infiniband as a storage area network. Infiniband [20]
is a new interconnection network technology that targets the
scalability and performance issues in connecting devices, in-
cluding storage devices, to host CPUs. It aims at addressing
scalability issues by using switched technologies and the per-
formance problems by reducing host CPU overhead and pro-
viding Gbit-level bandwidth using ideas from past research
in user—level communication systems and RDMA support.

There has also been a lot of work in the broader area
of databases and storage systems. For instance, Com-
paq’s TruCluster systems [6] provide unified access to re-
mote disks in a cluster, through a memory channel inter-
connect [18], which bears many similarities with VI in-
terconnects. Recent work has also examined the use of
VI in other storage applications, such as clustered web
servers [7]. The authors in [26, 21, 1] study the interac-
tion of OLTP workloads and various architectural features,
focusing mostly on smaller workloads than ours. Also, work
in disk I/0 [30, 15, 14, 29, 2] has explored many directions
in the general area of adding intelligence to the storage de-
vices and providing enhanced features. Although our work
shares similarities with these efforts, it differs in significant
ways, both in terms of goals and techniques used.

8 CONCLUSIONS

In this work, we study how VI-based interconnects can
be used to reduce overheads in the I/O path between a
database system and a storage back-end. We design a
block-level storage architecture (V3) that takes advantage
of features found in VI-based communication systems. In
addition, we provide and evaluate three different client-side
implementations of a block-level I/O module (DSA) that
sits between an application and VI. These different imple-
mentations trade transparency and generality for perfor-
mance at different degrees. We perform detailed measure-
ments using Microsoft SQL Server 2000 with both micro-
benchmarks and real-world database workloads on a mid—
size (4-CPU) and a large (32-CPU) database server.

Our work shows that new storage APIs that help min-
imize kernel involvement in the I/O path are needed to
fully exploit the benefits of user—level communication. We
find that on large database configurations ¢DSA provides
a 18% transaction rate improvement over a well-tuned, Fi-
bre Channel implementation. On mid-size configurations,

all three DSA implementations are competitive with op-
timized Fibre Channel implementations, but provide sub-
stantial potential for better price-performance ratios. Our
results show that the CPU I/O overhead in the database
system is still high (about 40-50% of CPU cycles) even in
our best implementation. Reducing this overhead requires
efforts, not only at the interconnect level, but at almost
every software layer including the database server, the com-
munication layer, and the operating system, and especially
on the interfaces among these components. More aggressive
strategies than ¢DSA are also possible. Storage protocols
can provide new, even database-specific, 1/O APIs, that
take full advantage of user—level communication and allow
applications to provide hints and directives to the I/O sys-
tem. Such protocols and APIs are facilitated by the avail-
ability of low—cost CPU cycles on the storage side as found
in the V3 architecture.

Our experience shows that VI-based interconnects have a
number of advantages compared to more traditional storage
area and IP-based networks. (i) RDMA operations avail-
able in VI help avoid copying in I/O write operations and to
transfer I/O buffers directly from application memory to the
V3 server cache. Also, RDMA can be used to set flags in ap-
plication memory and directly notify the application upon
completion of I/O requests without any application proces-
sor intervention. Even though the application still needs to
poll these flags, their value is updated without the appli-
cation losing the CPU. (ii) The low overhead in initiating
I/0 operations can reduce application CPU utilization to a
bear minimum. (iii) VI interconnects can reach their peak
throughput at relatively small message sizes (smaller than
the size of I/O buffers). This allows for one NIC to service
heavy I/O rates, reducing overall system cost and complex-
ity. However, VI-based interconnects also pose a number
of challenges to higher layers, especially in I/O-intensive
environments, such as database system. In particular, deal-
ing with flow control, memory registration and deregistra-
tion, synchronization, interrupts, and reducing kernel in-
volvement are significant challenges for storage systems.

Finally, there is currently a number of efforts to incorpo-
rate VI-type features in other interconnects as well. Most
notably, Infiniband and iSCSI address many of the issues
related to storage area networks and include (or there is
discussion about including) features such as RDMA capa-
bilities. Our work is directly applicable to systems with In-
finiband interconnects and relevant for systems with future
iSCSI interconnects.
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