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Abstract

An interaction occurs between two humans when they walk with converging trajectories. They need to adapt
their motion in order to avoid and cross one another at respectful distance. This paper presents a model for
solving interactions between virtual humans. The proposed model is elaborated from experimental interactions
data. We first focus our study on the pair-interaction case. In a second stage, we extend our approach to the
multiple interactions case. Our experimental data allow us to state the conditions for interactions to occur between
walkers, as well as each one’s role during interaction and the strategies walkers set to adapt their motion. The low
number of parameters of the proposed model enables its automatic calibration from available experimental data.
We validate our approach by comparing simulated trajectories with real ones. We also provide comparison with
previous solutions. We finally discuss the ability of our model to be extended to complex situations.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Animation; 1.6.4 [Simu-
lation and Modeling]: Model Validation and Analysis; 1.6.5 [Simulation and Modeling]: Model Development;

Keywords: steering method, collision avoidance, interaction

1. Introduction

The computer animation community put in a great deal of
effort to provide virtual humans with autonomy of locomo-
tion. Despite the apparent simplicity of this everyday task,
simulating locomotion in a realistic manner is complex, es-
pecially when virtual walkers are moving in environments
made of many static and dynamic obstacles. A large body
of prior work suggests that simulating interactions between
virtual walkers in a realistic manner is particularly difficult.

An interaction occurs between walkers when a recipro-
cal influence is observed on their respective trajectory: each
one adapts its own motion in order to avoid the others. Un-
derstanding and simulating interactions between humans is
complex due to the possibly high number of factors involved.
Human locomotion is generally driven by a goal to reach,
while it is constrained by physical and biomechanical fac-
tors. In addition, environmental factors - such as the pres-
ence of obstacles - set supplementary constraints. Trajectory
adaptations are based on the perception humans have of oth-
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ers’ motion, which is naturally error-prone. These first two
kinds of factors, related to physics and perception, are ob-
viously important during human interactions, but secondary
factors also need attention. First, sociological and cultural
factors influence human reaction according to some tacit
rules (deviating preferably to the left or to the right, avoid-
ing elderly people more carefully, etc.). Psychological fac-
tors are also involved: people walk according to their mental
state (hurrying, wandering). They are capable of moving in
an expressive manner to objectify this internal state.

Our motivation is to achieve realistic simulation of inter-
actions between walkers. Our objective is first to better un-
derstand how real humans behave in such situations. Our re-
sults allow us to discuss several assumptions which were for-
mulated to build existing computational models (developed
by both the crowd simulation and computer animation com-
munities). We elaborate a new model that better fits our ex-
perimental observations. Our approach is however based on
two major assumptions. First, a complex interaction that in-
volves several walkers simultaneously can be described as a
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combination of pair-interactions involving two walkers only.
Second, physical and perceptual factors are preponderant.
Secondary factors are then to be taken into account in fu-
ture works. As a result, we first focus our study on interac-
tions to the two-walker case only. We however describe how
the proposed model can handle multiple interactions. Un-
derstanding how humans combine pair-interactions to solve
complex ones is discussed in this paper, but certainly de-
serves a complete study. Our contribution is threefold. Our
primary contribution is a model for solving interactions be-
tween virtual walkers, presented in Section 4. The model is
elaborated from experimental observations of real interac-
tions between walkers, which sets our second contribution.
Our experimental data are made available to the research
community. Our third and final contribution is to propose a
quantitative evaluation of our model results. This evaluation
enables an objective assessment of simulated trajectories, as
compared with real data, or ones resulting from previous so-
lutions.

The remainder of this paper is organized as follows: in
Section 2, we review prior work in modeling interactions.
Section 3 describes our experimental results. The model we
elaborated from experiments is described in Section 4. Com-
parison of our model results with previous techniques is de-
tailed in Section 5. Finally, we discuss limitations and possi-
ble extensions of our model to answer complex situations in
Section 6, before concluding.

2. Related Work

Mainly three research fields addressed the problem of in-
teractions between walkers. First, cognitive sciences studied
the influence of obstacles (static or moving) on human loco-
motion. Their experiments demonstrated that humans com-
bine notions of time, distance and velocity to avoid colli-
sions. The second field focused on crowd simulation. Crowd
simulators mainly aim at studying the impact of numer-
ous human-human and obstacle-human interactions on the
global circulation of many walkers. Their main objective
is to achieve realistic simulations at a macroscopic level,
even though solutions are often based on microscopic mod-
els. The third field is Computer Animation which needs
for believable individual locomotion trajectories and devel-
oped specific approaches to simulate interactions. Two main
classes of solutions exist. First ones are based on steering
methods: they are general and efficient, however, evaluating
their level of realism is still an open question. The latter class
of solutions relies on a database of captured real interactions,
reused in simulations to imitate how real humans solve in-
teractions. A high level of realism is intrinsically obtained;
nevertheless, these solutions’ validity domain is limited to
the database content.

Time-to-collision and personal space. Avoiding collisions
is a spatiotemporal problem. Cognitives sciences divided its

temporal and spatial dimensions into two different notions:
the time-to-contact TTC, and the personal space. According
to Cutting and colleagues [CVB95], humans avoid collisions
by answering two successive questions: will a collision oc-
cur? When will this collision occur? Answers result from the
visual perception of their environment and of the moving
or stationary obstacles. Lee [Lee76] and Trésilian [Tré91]
demonstrated that the optical flow generated from the visual
perception of a moving object is sufficient to directly eval-
vate TTC. The real nature of information used by humans
to evaluate TTC is still an open question; however, humans
adapt their motion to avoid collisions in order to preserve
admissible TTC. Velocity, distance and time are intrinsically
linked together. As a result, TTC can also be interpreted as
a preserved distance between humans and obstacles, giving
rise to the personal space notion. Personal space can be de-
fined as a safety area preserved by walkers around them.
The personal space gives walkers enough time to react to an
unexpected moving obstacle appearing in their perception
field. Gérin-Lajoie and colleagues [GLRMOS5] experimen-
tally measured the personal space’s shape and dimensions.
They found the personal space is elliptic, as intuitively imag-
ined by Goffman [Gof71]. The novelty of this study is to
focus on personal space measurement while moving. How-
ever, the experimental process was based on the interaction
between a human walker and a moving manikin mounted on
an overhanging rail.

Reactive approaches. Solving interactions is certainly a
crucial component of crowd simulation. Helbing’s so-
cial forces model is probably the most popular ap-
proach [HMO95]. The model was later revisited and cali-
brated for specific situations [HBJWOS5], or integrated into
a software platform in order to solve well-known arti-
facts [PABO7]. In this model, virtual walkers are modeled
as velocity-controlled particles undergoing a sum of ac-
celeration forces with an analogy to Physics. Interactions
are modeled as repulsive forces between walkers, and ex-
pressed as a function of their relative distance. Treuille and
colleagues [TCPO6] also make an analogy to Physics, but
formulate interactions as a minimization problem. Walk-
ers’ motion is deduced from a potential field, whose dy-
namic component results from a repulsion emitted by walk-
ers. Walkers avoid each other implicitly, interactions are not
explicitly modeled. In [HLTCO3], interactions between hu-
mans are modeled as a mass-spring-damper system: stiffness
and viscosity terms change with respect to relative distance
between walkers.

Anticipated collision avoidance. The steering behaviors
introduced in [Rey99] enable interaction solving with an-
ticipation. The unaligned collision avoidance behavior ex-
trapolates walkers’ trajectories - assuming that their veloc-
ity is constant - and checks for collisions in a near fu-
ture. A reactive acceleration is computed for both walkers,
in the direction opposite from the one of the future colli-
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sion. Van den Berg and colleagues extend the Reciprocal Ve-
locity Obstacle principle from Robotics [vdBPS*08]. Sim-
ilarly to Reynolds’ steering, this technique enables collab-
orative interaction solving with anticipation. Finally, Paris
and colleagues [PPD07], inspired by Feurtey [Feu00], solves
the problem from an egocentric perspective (i.e., walker-
centered). In this approach, perceived neighbors’ motion is
also linearly predicted; an admissible velocity domain for
each walker is deduced. A cost function is used to compute a
specific velocity command belonging to the admissible ones.
More recently, Kapadia and colleagues proposed an egocen-
tric anticipative model in [KSHF09].

Imitating humans. Several solutions appeared in the liter-
ature taking advantage of motion capture or video tracking
technologies to create databases of real interactions [MHO04].
In [LCHLO7], relative motions and positions between vir-
tual humans are related to behaviors: this approach applies
to the collision avoidance problem, but more generally en-
ables behavioral crowd animation. In [LCL0O7], the authors
solve interactions occurring in a simulation by retrieving the
most similar example from the database; however, control-
lability and efficiency problems rise. Both of these problems
are solved in [TLPO7]: walkers are described using a state-
vector, whilst a captured motion is modeled as a state-vector
change. Given a user-defined state command, a motion se-
quence is found to reach the desired state in a near-optimal
manner. Some components of the state-vector are used to de-
scribe interactions with one neighbor walker: this technique
is thus able to solve interactions.

Our approach. The experimental study proposed in the
next section allows us to describe how humans solve col-
lisions. We demonstrate that the adaptations are not purely
reactive and cannot only be modeled as a function of the
distance between them. It is however possible that this as-
sumption becomes true in the case of crowded areas where
walkers have numerous and intensive interactions. Neverthe-
less, a realistic simulation and animation of virtual walkers
in the general case need anticipation. We have mentioned
existing solutions to anticipate a reaction. However, several
questions remain: some approaches anticipate a reaction at
constant distance or time to collision, others immediately
when interaction is detected. Our experiments demonstrate
that interactions start with an observation period of time,
which allows humans to estimate other’s motion accurately
enough before reacting. Our model accounts for perception-
errors in order to evaluate when reactions occur. Moreover,
previous solutions assume velocity is constant before inter-
action, which enables linear extrapolations of trajectories.
We discuss and address the more complex case where walk-
ers are accelerating when interactions are initiated. Concern-
ing imitation techniques, their main advantage is their in-
trinsic realism. However, two main drawbacks limit their
application. First, efficiency does not always enable real-
time simulation. Second, their validity domain is restricted
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Figure 1: Illustration of the proposed experimental protocol.

by the content of example databases. Furthermore, some of
these techniques do not apply to multiple interactions. About
steering methods, the obtained level of realism has not al-
ways been evaluated. Brogan and Johnson proposed evalu-
ation metrics to assess simulated trajectories [BJO3]. Singh
and colleagues [SNK*08] proposed a framework to evaluate
the ability of steering methods to address interactions among
obstacles. We propose an objective evaluation of our results
based on real data.

3. Experimental Study

Objectives Our objective is here to describe how humans
solve pair-interactions. We choose to observe interactions
under protocol-controlled conditions, in order to diminish -
and more important, to maintain constant between each ex-
perimental sample - the role of secondary factors: we focus
our attention on physical and perceptual factors only. Ac-
curate measures of motion adaptations are desired, and we
choose to use a motion capture system to acquire experi-
mental data.

Protocol The proposed experimental protocol is illustrated
in Figure 1. At the start of each experiment, 4 participants
stay still at each corner of a square experimental area. We
randomly give 2 of the 4 participants the simultaneous order
to walk toward the opposite corner (along each diagonal), the
2 others leave the experimental area. Start signals are given
to participants by network-synchronized computers. Partici-
pants have orthogonally intersecting paths and synchronized
trajectories: they are likely to interact, but not necessarily.
Initial conditions of interactions change for each experiment
because participants are asked to walk at their own comfort
speed. Occluding walls prevent participants to observe each
other before reaching their comfort speed. Our experimental
square is 15m long, interaction area is 10m long. We ran-
domize the selection of participants, so that they cannot an-
ticipate the direction from which one may appear. 30 sub-
jects have taken part in this experiment. We recorded 429
experimental samples.
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Figure 2: left: average adaptation over all experiments
made by participant passing first, function of minimum pre-
dicted distance and normalized time to interaction. right:
average adaptation over all experiments made by partici-
pant giving way, function of minimum predicted distance and
normalized time to interaction.

Method The trajectory was established from the mean of
the two shoulder markers: P(x,y). Velocity is noted V =
dP/dt and acceleration is noted A = dV /dt. We note 8 the
velocity vector direction, and v its norm. We check that lat-
eral velocities can be neglected, and assume locomotion is
non-holonomic in our case [ALHBOS]. Data are filtered to
remove noise and reduce the effect of natural oscillations
(Butterworth low-pass second order filter, 1Hz cutoff fre-
quency, zero phase shift). Trajectories are decomposed into
three periods of time: participants start walking during the
initial phase, during which they reach their comfort speed.
The interaction phase starts when participants are able to see
each other (with respect to occluding walls), at time ¢ = #,;5.
The time when the distance between participants is mini-
mal is called the interaction time t;,;. Finally, for t > t;,,
participants head again for their goal during the recovery
phase. Our study is focused on the interaction phase, for
tyis <t < ti;. In the absence of interaction, participants have
constant velocity inside the interaction area. Their trajectory
can be predicted linearly as follows:

Tpred(t>u):P+(u_t)V7 (D

Tprea 18 the predicted trajectory from instantaneous position
and velocity at time ¢. Parameter u > t corresponds to the
future time. For any time ¢ belonging the interaction phase,
we are able to predict the distance at which they would meet
if no adaptation is made (the minimum predicted distance
mpd):

mpd(l) = T;ItlHTpred,l(ta”)Tpred,Z([aujHa 2

where Tpeq,1 and Tpq are the predicted trajectories for
each of the participants at time ¢. As participants walk at their
own comfort speed, initial interaction conditions change for
each experiment. This results in a variety of initial mpd(t =
tyis) values over all our experiments. Finally, in order to en-
able direct inter-experiments comparison, we normalize the
duration of the interaction phase and define the normalized
time-to-interaction #¢iy, as follows (average duration of inter-
action phase over all experiments is 4 s.):

ttin(l) = (tint _t)/(tinl _tvis)7 3
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Figure 3: left: minimum predicted distance for one experi-
ment, function of normalized time to interaction. Three suc-
cessive periods of time are observed: observation, reaction,
and regulation. right: density of minimum predicted dis-
tance trajectories over all experiments, function of normal-
ized time to interaction

ttiy ranges from 1 to 0, respectively corresponding to the
normalized time at which the interaction phase starts, and
next, ends.

Minimum predicted distance as a motion adaptation cri-
terion. As participants’ motion is linear in absence of inter-
action, we simply detect motion adaptation by direct measur-
ing of accelerations. We define thus the adaptation quantity
a(r) as follows:

a(t) = A0 = V@)l = /() + 02 () v2 (). )

Previous studies state that walkers first determine whether
a collision will occur, and react (or not) accordingly. As
a result, adaptations are to be detected for low mpd val-
ues only. Figure 2 plots participants’ adaptation averaged
over all our experiments, in function of mpd (on vertical
axis) and #tin (horizontal axis). Adaptations of the partici-
pant passing first and of the one giving way are plotted sep-
arately (respectively the top and bottom plot). A strong re-
lation between adaptation and mpd is effectively observed:
when mpd > 1m, almost no acceleration is detected. Note
that adaptations at low normalized time values (tti, < 0.1)
correspond to the initiation of the recovery phase.

Three successive stages. The left plot of Figure 3 shows
the evolution of mpd in time for one single experiment.
At the beginning of interaction phase, we observe 0.1m <
mpd < 0.35m: collision is predicted (mpd is effectively a
body center-to-center distance). mpd remains low for half of
the interaction phase. We call this first stage the observation
period. Following this, mpd is increased during the reac-
tion period to an acceptable value of 1m, enabling collision
avoidance: participants necessarily adapt their motion to in-
crease mpd. However, we cannot determine from this plot
only if adaptation is made by one participant or both. Fi-
nally, mpd is maintained during the regulation phase. mpd
gives a clear temporal description of interactions. In order
to obtain a statistical overview of interaction solving, we
cumulate mpd trajectories for all experiments, and plot the
density of trajectories: the result is given at the right of Fig-

(© The Eurographics Association 2009.



Pettré et al. / Experiment-based Modeling, Simulation and Validation of Interactions between Virtual Walkers

ure 3. Note that we later use the density plot to qualitatively
compare simulated and real data. We conclude that the ob-
servation period statistically takes place for 1 > tti, > 0.8,
which means during the first 0.8s of the interaction phase.
Reaction period averagely lasts for 1.6s (¢tin € [0.8,0.4]).
Finally, during the remaining time (1.6s until ##i, = 0, i.e.,
t = t;;) motion is regulated to maintain admissible mpd val-
ues. Note that mpd becomes closer to the distance between
participants when the interaction phase is ending. As a result,
we can see that the average distance at which participants
meet is distributed around 0.8m. The existence of the regu-
lation period of time confirms interactions are solved with
anticipation.

A role-dependent adaptation. Figure 2 separately plots the
adaptations made by each of the two participants. We ob-
serve that both make adaptations, however, the first partici-
pant passing is clearly making less efforts. In conclusion, in-
teraction is solved collaboratively, but asymmetrically. Fur-
ther analysis also reveals different strategies: the first partic-
ipant mainly adapts his velocity, whereas the one giving way
combines velocity and orientation adaptations. This asym-
metry confirms the notion of the personal space: in order to
preserve this space, the participant giving way needs to make
larger avoidances.

Adaptation is error-prone. A common experience we all
have had while walking is to get close to colliding with
someone after successive hesitations on how to avoid him.
We could observe such hesitations: mpd(r) value is lowered
in time instead of being increased. Antinomic adaptations
occur only when mpd is initially close to Om. In such a case,
the role of each participant is not clearly predictable. The
observation period then becomes longer, and reaction is de-
layed. Do participants refine their motion estimation to de-
termine their role? Nevertheless, such cases provoke the ac-
celeration peak that can be seen in Figure 2, right plot, for
ttiy ~ 0.4 and mpd ~ Om. The density plot however reveals
that such cases remain rare.

4. A model for solving interactions between walkers

We elaborated a model for solving interactions between vir-
tual walkers from our experimental observations. Our model
is based on an egocentric representation of walkers’ relative
motion. In the following part, we describe how our model
solves pair-interaction. Next, we describe a calibration tech-
nique to compute realistic model parameters from real in-
teraction data. Finally, the case of multiple interactions is
addressed in Section 4.3.

4.1. A Model for Solving Pair-Interactions

Overview. An interaction is solved for each of the two in-
volved virtual walkers independently. Walkers are modeled

(© The Eurographics Association 2009.

GIVING

. ‘PASSING
y FIRST

Figure 4: left: Illustration of the components of the pro-
posed model. Solution is based on an egocentric represen-
tation of the interaction situation. right: Step 2 and 3 of a
Model Iteration: walker’s role is deduced from the position
of I relatively to the decision line. A solution velocity is com-
puted in order for I to exit the interaction area.

as velocity-controlled moving points. Our description is sup-
ported by the example introduced in Figure 4, left. Two
walkers walk straight forward at comfort velocity toward
their goal, their trajectories are secant. We note R the ref-
erence walker for which the model is controlling the motion,
displayed at the bottom of the figure. The perceived walker
on the top-right of the figure is noted P. Our approach is
based on several components described below.

Model components The first step of our solution consists
in computing the egocentric representation of the interaction
situation, as illustrated in Figure 4. We first compute P’s po-
sition and velocity relatively to R. We consider thus the lo-
cal coordinate system centered and oriented on the reference
walker R. P’s relative position is noted Pp IR and relative
velocity is computed as follows:

Vp/r =Vpyw +Viv/r: 5
where Vp yy is the velocity of P relatively to the world W,

and Vyyx the relative motion of W relatively to R (simply
deduced from absolute velocity vector: Vi = —Vr /w).

The reference walker’s desired velocity Vy is directly de-
duced from its goal. V; is oriented toward this goal, its norm
is the reference walker’s comfort velocity v¢.. The constant
ve is thus an individual parameter. V; is then expressed in
the local coordinate system as a desired world velocity rel-
atively to the reference walker: Vjy )z = —Vy. In the case
presented in Figure 4, the reference walker is walking at the
desired velocity as no adaptation has been made yet. As a
result, desired velocity and current velocity coincide.

A personal area is set around the reference walker. Per-
sonal area has a kite shape. The kite approximates the el-
liptic shape experimentally measured by [GLRMOS5], but is
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mathematically much simpler to handle. The kite allows the
reference walker to keep more space available in front of it
than in its back and on its sides. Note that the personal area
here maintains a center-to-center distance between walkers.
The kite’s dimension on each side and on the back is 0.8m
and velocity-dependent in front of it (where u; is the unit of
time):

[ =0.8+0.4v.u. (6)

T\ and T, are the tangents to the personal area passing by
Pp 2. These tangents delimit an area called interaction area
(colored in light green in Figure 4). We also define the inter-
action point I as follows:

I=Pp/r +uVppy+uVaw/r- M

Our technique is mainly based on the position of [ relatively
to the interaction area: virtual walkers play on this position
to solve an interaction. / results from the relative motion of
P to R, however, each virtual walker can only act on the
self-motion component of this relative velocity. Our exper-
iments demonstrate the importance of motion perception to
explain the interaction temporal structure. As a result, we
model the interaction point location relatively to R as prone
to errors. We only take into account velocity and orientation
perception errors (respectively noted €, and €g), as they re-
sult from position integration in time since interaction initia-
tion. We neglect position and self-motion perception errors.
‘We model perception errors by transforming the / point into
a locus: [}, Errors are dependent on the observation time
since the reference walker is perceiving P: the longer the
observation time, the lower the errors. We compute €, and
€g, as functions of time-to-interaction #¢i, as follows:

iti = arg mkin |1Pp/r +kVp Rl 8)
tA
—By.(1— int Y 9
6= Bl = (), ©
Lint Yo
g9 = Bo.(1 — (— 1M __ytoy, 10
o= Bo.(1 - (2w (10)

where #,,; is the time elapsed since P is perceived. By, Vv, Bo
and g are parameters to be calibrated from real data as ex-
plained in the last paragraphs of this section. Default values
are: B, = 0.5, Bg = 0.5, v» = 0.25, 79 = 0.25. We model 1},
as a rectangle aligned on the P’s velocity vector Vp . Its
length (in the direction of Vp /W) is €, and its width (orthog-
onally to Vp /W) is €g (see Figure 4).

Finally, we define the decision line which joins R and P.
We now describe the successive steps of one model iteration.

Model Iteration Our model works according to the three
following steps.

Step 1 - Is adaptation required? 1f I}, is fully contained
in the interaction area, then R has an accurate enough esti-
mation of P’s motion to be sure they will pass at a too low
distance. Indeed, the extrapolated P’s trajectory is crossing

‘R’s personal area. We are then in the situation illustrated by
Figure 4, right image. (a detailed-view of Figure 4 where R
is not represented anymore). The goal of the following steps
is to move / on the limits of the interaction area. In the op-
posite case, the model iteration stops here.

Step 2 - What is the reference walker’s role? By the inter-
action point definition (cf. Equation 7), the reference walker
can modify I’s position by adapting its desired velocity,
which becomes the solution velocity. In order to solve the
interaction in an optimal manner, / has to be on the limit of
the interaction area: I € T or I € T>. These two solution do-
mains respectively correspond to two different roles: passing
first or giving way. Decision is taken from the relative posi-
tion of / to the decision line. In the case of Figure 4, right, /
is on the side of Tj.

Step 3 - Computing a solution velocity. We want I € T
(T when giving way), the solution velocity Vy,y,% has to
verify the following condition:

Ppr +uVpyw +uVsoryy g €11 an

Infinity of solutions exists. We represent 3 of them in Fig-
ure 4, right, parameterized by o. Vi, (ot = 0) corresponds to
a pure orientation adaptation. Vy,; (ot = 1) corresponds to a
pure velocity adaptation. Finally, V,,; (a0 = 0.5) corresponds
to a combination of velocity and orientation adaptation (by
orthogonal projection of I on 77). We thus introduce a new
parameter o which defines the avoidance strategy of the ref-
erence walker. We set the default value: ot = 0.5, this param-
eter is later calibrated from real data. Note that the personal
area induces asymmetry in the model. When choosing the
T5 solution domain, (i.e., when giving way) more adaptation
is required, and / reaches the limits of the interaction area
later. It is even possible that no adaptation is required for
the first walker passing, whilst the one giving way detects a
need for adapting its motion. This property is correlated to
our experimental observations.

4.2. Model Calibration

A walker’s behavior is controlled by the five model param-
eters. 0. determines the walker’s avoidance strategy while
Bv, v, Pe and g control perception error evolution in time.
We provide default values for each parameter above. We
now propose to use the Maximum Likelihood Estimation
(M.L.E.) technique [HS98] to calibrate our model from ex-
perimental samples. Briefly, this method consists of succes-
sive testing of different parameter sets. The one leading to
the best match between real and simulated trajectories is
identified. We initialize simulations from the measured ex-
perimental conditions (i.e., relative position and comfort ve-
locities at the initiation of the interaction phase). More pre-
cisely, we search for the parameter set p(a., By, v, Be,Yg) SO
that the likelihood estimator £(p) is maximum:

p= argmgx[,(p), where: L(p) = ﬁfp(ﬁi), (12)
i=0

(© The Eurographics Association 2009.



Pettré et al. / Experiment-based Modeling, Simulation and Validation of Interactions between Virtual Walkers

(a) Uncalibrated model (b) Calibrated model

(¢) RVO model
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Figure 5: A direct comparison between real interaction (red trajectories) and simulated interaction (blue trajectories) for

models.

with §; the error between the experimental position Pe at
time i and the simulated position Ps for an identical time
(Manhattan distance is used):

8; = ||PePs]1, (13)

fp(d) is the probability function of a normal distribution

N (u,6°):

1 _ =p?

e . (14)

fr(8) =

T V216

Figure 5 illustrates the model calibration results. All plots
show real trajectories (in red) superimposed with simulated
ones (in blue). Simulated and real positions at identical times
are linked by black line segments. The plot (@) is obtained
from the uncalibrated version of our model, using the default
parameter values. The plot (b) is obtained after calibration.
In the latter case, perception errors are better estimated, al-
lowing the model not to anticipate reaction too early. As a re-
sult, reaction is delayed and needs to be stronger: simulated
adaptation more accurately corresponds to real data. In or-
der to enable comparison to previous solutions, we also pro-
vide simulated data using van den Berg’s model [vdBPS*08]
(using the RVO library implementation), Reynold’s steer-
ing behavior [Rey99] (using the OpenSteer implementation)
and Helbing’s model [HM95]. Plot (¢) (RVO model) reveals
the need of the asymmetrical personal area. Because of the
circular representation, the correction of the walker passing
second to its velocity is small. We also compare our results
to the Reynolds’ technique because the assumptions used
in this solution meet several of our experimental observa-
tions: reactions are anticipated and collaborative. However,
walkers have symmetric reactions, and anticipation time is
near-constant (just lightly randomized). However, this value
is relatively correct in the case of our initial conditions. We
finally choose the Helbing’s model because of the large in-
terest showed in his approach, and the many existing vari-
ants. We further evaluate and validate our model in the fol-
lowing section, in comparison to these three approaches.
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Figure 6: left: Step 3 is modified to solve multiple interac-
tions. The velocity domains Uy and U, contain all possible
solution velocities for 0 < o < 1. right: Step 4 and 5: the
reference walker R needs to avoid a collision with perceived
walkers Py and P,. At the end of step 3, S contains 4 velocity
domains: S = {Uy1,U12,Us1,Ux } (orange color). After step
4,8 ={U{,, Uy, Us} (blue color), whilst Uyy is dropped.
The solution velocity, closest to the current one, Vi, belongs
to Uy but due to the presence of P3, this solution is rejected
and the final solution velocity Vi, belongs to Uy;.

4.3. Multiple Interactions

In the previous section, we describe and calibrate our in-
teraction model from the pair-interaction case perspective.
We are then able to handle sparsely populated environments
where a walker is usually avoiding one or few other walk-
ers at long distance without need for further computation. In
this section, we describe how our model is able to solve si-
multaneous multiple interactions in more densely populated
environments. Two supplementary steps - step 4 and step 5 -
are required to address such situations.

Similarly to the pair-interaction case, steps I to 3 are pro-
cessed for each of the n perceived walker P;, i = 1,..,n.
Note that, for each pair-interaction, steps 2 and 3 run only
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calibr. | uncal. RVO Reynolds’ | Helbing’s
model | model | model steer. model
fig. 5
L(p) | 0285 | 0.056 | 0,001 0.004 1.310713
mean
L(p) | 0214 | 0.165 0.14 0.047 0.004

Table 1: values of the likelihood function using different sim-
ulation models. First results correspond to the example given
Figure 5. Second results are mean values over 429 simula-
tions corresponding to each of the available experimental
sample.

if the corresponding I;,, is inside the interaction area. Step
3 is however slightly modified. Instead of computing Vj,;
according to one specific o value, we compute two velocity
domains U;; € Tj1, Uy € T respectively for 0 < o < 1. Uy
and Uj, are shown in Figure 6, left. Result is a set of solution
velocity domains: S = {U;;,Up} with i = 1,..,m. Note that
m < n because some of the perceived walkers have no in-
teraction with the considered reference walker. Real humans
have a limited capability of considering several interactions
simultaneously, we arbitrarily limit m < 7.

step 4 - Merging solution velocity domains. For each in-
teracting perceived walker, i.e., for i = 0 to m, we compute
the parts of the corresponding solution velocity domain Uj;
and Uj, not intersecting the interaction areas corresponding
to any other considered walker. We thus compute a merged
solution velocity domain " which contains reduced velocity
domains U}; and U}, computed as follows:

Uiy = Uy — Uy U}, and Up = Up —Up UI;,  (15)

where I; is the interaction area corresponding to the j’h per-
ceived walker, j = 0..m, and j # i.

step 5 - Rating velocity domains. In case S’ is empty, we
set Vi, = 0. In the opposite case, each velocity belonging
S’ successfully solves all the considered interactions. How-
ever, they may lead to new interactions with nearby walkers,
yet unconsidered. To diminish the number of interactions in-
duced by the retained solution velocity, each possible solu-
tion is envisaged. We retain the solution velocity Vi, that
minimizes the number of new interactions with walkers (i.e.,
not considered in the S interaction set). Steps 4 and 5 are il-
lustrated in Figure 6, right. Note that /P3 is not interacting
with R at this precise simulation step, but makes R prefer-
ably avoiding P; and P, by turning to the right in order for
him to not start interacting with P3.

5. Results

Quantitative model evaluation. The likelihood function
L(p) can be directly used as a metric for a quantitative eval-
uation of our model results. Moreover, this function can also
be evaluated for any simulated data which enables compar-

ison between different approaches. Table 1 provides the ob-
tained likelihood function value using: first, our calibrated
model, second, our model using default parameter values,
third, RVO model, fourth, Reynolds’ steering behavior and
finally, Helbing’s model. The first line of results in Table 1
is computed from the example presented in Figure 5. The
second line provides the mean value of the likelihood func-
tion computed over all the 429 available experimental sam-
ples. The higher the likelihood value, the more realistic the
results. The obtained likelihood for the calibrated model is
obviously higher than the one with default parameters value.
Likelihood of the uncalibrated model is only slightly better
than RVO model. However, this approach is not able to cor-
rectly simulate a large variety of cases, especially due to the
near-constancy of anticipation times. Furthermore, adapta-
tions are symmetrically made by the two walkers. Reynolds’
model is worse than previous two and has the same disad-
vantages as the RVO model. In the case of Figure 5, the low
contribution of the first walker passing is clearly observable.
Only our solution correctly simulates such an asymmetry,
even without calibration. Helbing’s model is not adequate
for this simulation setup. Finally, 398 times over 429 sam-
ples, the uncalibrated model correctly simulates the passage
order between walkers. After calibration, the correct order
is found 416 times. The obtained realism in our simulation
results has no prohibitive computational cost: the three steps
of one model iteration are averagely computed in 16us. (on
a PC with Intel Core2-Duo X9000 at 2.8GH?z).

Qualitative model evaluation The qualitative comparison
between models can be further detailed looking at the den-
sity plots displayed in Figure 7. Density plots enables a sta-
tistical evaluation of the relative duration of the observation,
reaction and regulation periods, as well as the evolution of
the mpd value. They are obtained from simulated data in
exactly the same manner as for the one displayed in Fig-
ure 3 from experimental data. On plots (a) and (b) of Fig-
ure 7, the uncalibrated and calibrated model density plots are
respectively shown. The uncalibrated version of the model
over-increases the mpd value, the duration of the reaction
period is however correctly simulated. The calibration de-
lays reactions but the final distance between walkers at in-
teraction time is now correctly regulated. The RVO’s and
Reynolds’ model also converges toward a correct final dis-
tance between walkers. For RVO model, mpd is increasing
smoothly but starts increasing from the moment the walkers
can see each other. Reaction is apparently too abrupt con-
cerning the Reynolds’ method. This is due to simultaneous
adaptations of walkers’ motion; in reality, adaptations are
not synchronized, which makes the reaction period longer
and smoother. The lack of anticipation of Helbing’s model is
detectable, and the minimal distance between walkers over-
pass realistic values.

(© The Eurographics Association 2009.
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Figure 7: Trajectory density plots for 429 simulations, using initial conditions extracted from experimental samples, and using
respectively (a) our model with default parameters values, (b) our model with calibrated parameters values, (c) the RVO model,

(d) the Reynolds’ model, and (e) the Helbing’s model.

6. Discussion

Our approach has several limitations. Doubtlessly, the ma-
jor limitation is to have restricted our study on single pair-
interactions. However, we discuss these limitations, as well
as future work directions in the following paragraphs.

Figure 8: A complex interaction situation where the per-
ceived walker has non-linear trajectory.

The non-linear case. So far, we have assumed that walk-
ers have a constant velocity during the observation period of
time. When a curved path is followed, such as in the exam-
ple displayed in Figure 8, this assumption becomes false and
the proposed model version is not able to correctly anticipate
a collision avoidance. The problem comes from the position
of the interaction point / which is moving relatively to the
tangents 77 and 7, (by the interaction point definition, cf.
Equation 7). When P accelerates, the instantaneous velocity
of I in our representation is:

In order to address such a situation, we adapt the step 1 of the
model iteration. We compute two new variables ¢, and four,
which are respectively the time when /;,., is predicted to
enter and next, leave, the interaction area. This evaluation is
made from the instantaneous velocity of /, and distance from
Liyeys to Ty and T, in the V; /R direction. This estimation is
coarse, given that / is probably not having a constant velocity

(© The Eurographics Association 2009.

in time. We then compare f;, and oy to 1ti. If t1i € [fip, tour], @
collision is predicted. Then, two cases are considered. If ##i is
closer to tous than t;,, motion adaptation is computed to make
Ij,cus €Xit the interaction area more rapidly. Conversely, if 7¢i
is closer to #;,, motion adaptation is computed to avoid /.,
entering the interaction area. Steps 2 and 3 of the model iter-
ation are modified accordingly. We illustrate such a complex
situation in the companion video. As far as we know, none
of the existing models is able to handle correctly such a case.

Orientation and velocity perception errors. We divide
perception errors into two terms, €, and €g. Our intuition is
that the initial value of these two terms, when another walker
is just perceived, depends on its relative position and walking
direction. We assume that velocity is more accurately per-
ceived than orientation when locomotion is perceived from
a lateral point of view. Conversely, when walkers are face to
face, orientation is more precisely perceived than velocity.
In the proposed model, and in the example of the latter case,
I1ocus 18 elongated and rapidly contained into the interaction
area due to its orientation. Consequently, this interaction is
solved in simulations at far distances. This intuition is con-
firmed when thinking of interactions in straight corridors.

Taking obstacles into account. Environment obstacles
have three major roles in interactions. First, they limit walk-
ers’ visual perception. Obviously, an interaction is initiated
between two walkers when they are able to see each other.
Second, they may limit the solution velocity domain. As for
multiple interactions, it is possible to solve interactions with
such limitations. Singh and colleagues recently proposed
a framework to evaluate walker-walker interaction solving
among obstacles [SNK*08]. Accounting for obstacles in a
general manner, and evaluating our results using the pro-
posed framework is in progress. We provide first results in
the companion video: one walker cannot deviate during the
interaction due to the presence of an obstacle. Finally, ar-
eas made invisible by obstacles have a role in locomotion.
For instance, at corridors crossing, walkers adapt their mo-
tion because they expect someone to appear from an invisi-
ble area.
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7. Conclusion

We presented a novel approach to simulate interactions be-
tween virtual walkers. The model is based on a detailed ex-
perimental study, allowing us to observe how real humans
behave in such situations. We state that the minimum pre-
dicted distance is an adequate criterion to determine whether
humans require to adapt their trajectory or not. We also
demonstrated that humans react after an observation period
during which perceived motion is estimated more and more
accurately. Interactions are solved by a combination of ve-
locity and orientation adaptations, which is role-dependent.
The task is collaborative between the two walkers, how-
ever, the walker passing in front of the one giving way
makes quantitatively less adaptations. We proposed a model
able to simulate and reproduce our experimental trajecto-
ries. Our model has few parameters and can be automat-
ically calibrated on real data. We evaluated our approach
and compared it to previous techniques. We demonstrated
the achieved improvements: our model is able to determine
correctly if, when and how motion is adapted to solve in-
teractions. Future work’s main objective is to study multiple
and complex interactions between walkers among obstacles,
and to extend our model accordingly. We will then be able
to validate our main hypothesis, which states that a com-
plex interaction can be decomposed into a combination of
pair-interactions. Understanding how humans combine such
pair-interactions is then crucial.
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